68,170 research outputs found

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes

    Reading Scene Text in Deep Convolutional Sequences

    Full text link
    We develop a Deep-Text Recurrent Network (DTRN) that regards scene text reading as a sequence labelling problem. We leverage recent advances of deep convolutional neural networks to generate an ordered high-level sequence from a whole word image, avoiding the difficult character segmentation problem. Then a deep recurrent model, building on long short-term memory (LSTM), is developed to robustly recognize the generated CNN sequences, departing from most existing approaches recognising each character independently. Our model has a number of appealing properties in comparison to existing scene text recognition methods: (i) It can recognise highly ambiguous words by leveraging meaningful context information, allowing it to work reliably without either pre- or post-processing; (ii) the deep CNN feature is robust to various image distortions; (iii) it retains the explicit order information in word image, which is essential to discriminate word strings; (iv) the model does not depend on pre-defined dictionary, and it can process unknown words and arbitrary strings. Codes for the DTRN will be available.Comment: To appear in the 13th AAAI Conference on Artificial Intelligence (AAAI-16), 201

    Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives

    Get PDF
    Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities
    • …
    corecore