22,548 research outputs found

    Inductive Logic Programming in Databases: from Datalog to DL+log

    Full text link
    In this paper we address an issue that has been brought to the attention of the database community with the advent of the Semantic Web, i.e. the issue of how ontologies (and semantics conveyed by them) can help solving typical database problems, through a better understanding of KR aspects related to databases. In particular, we investigate this issue from the ILP perspective by considering two database problems, (i) the definition of views and (ii) the definition of constraints, for a database whose schema is represented also by means of an ontology. Both can be reformulated as ILP problems and can benefit from the expressive and deductive power of the KR framework DL+log. We illustrate the application scenarios by means of examples. Keywords: Inductive Logic Programming, Relational Databases, Ontologies, Description Logics, Hybrid Knowledge Representation and Reasoning Systems. Note: To appear in Theory and Practice of Logic Programming (TPLP).Comment: 30 pages, 3 figures, 2 tables

    Transitioning Applications to Semantic Web Services: An Automated Formal Approach

    No full text
    Semantic Web Services have been recognized as a promising technology that exhibits huge commercial potential, and attract significant attention from both industry and the research community. Despite expectations being high, the industrial take-up of Semantic Web Service technologies has been slower than expected. One of the main reasons is that many systems have been developed without considering the potential of the web in integrating services and sharing resources. Without a systematic methodology and proper tool support, the migration from legacy systems to Semantic Web Service-based systems can be a very tedious and expensive process, which carries a definite risk of failure. There is an urgent need to provide strategies which allow the migration of legacy systems to Semantic Web Services platforms, and also tools to support such a strategy. In this paper we propose a methodology for transitioning these applications to Semantic Web Services by taking the advantage of rigorous mathematical methods. Our methodology allows users to migrate their applications to Semantic Web Services platform automatically or semi-automatically

    HoCHC: A Refutationally Complete and Semantically Invariant System of Higher-order Logic Modulo Theories

    Full text link
    We present a simple resolution proof system for higher-order constrained Horn clauses (HoCHC) - a system of higher-order logic modulo theories - and prove its soundness and refutational completeness w.r.t. the standard semantics. As corollaries, we obtain the compactness theorem and semi-decidability of HoCHC for semi-decidable background theories, and we prove that HoCHC satisfies a canonical model property. Moreover a variant of the well-known translation from higher-order to 1st-order logic is shown to be sound and complete for HoCHC in standard semantics. We illustrate how to transfer decidability results for (fragments of) 1st-order logic modulo theories to our higher-order setting, using as example the Bernays-Schonfinkel-Ramsey fragment of HoCHC modulo a restricted form of Linear Integer Arithmetic

    On the Relative Expressiveness of Argumentation Frameworks, Normal Logic Programs and Abstract Dialectical Frameworks

    Full text link
    We analyse the expressiveness of the two-valued semantics of abstract argumentation frameworks, normal logic programs and abstract dialectical frameworks. By expressiveness we mean the ability to encode a desired set of two-valued interpretations over a given propositional signature using only atoms from that signature. While the computational complexity of the two-valued model existence problem for all these languages is (almost) the same, we show that the languages form a neat hierarchy with respect to their expressiveness.Comment: Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014
    • ā€¦
    corecore