13 research outputs found

    Theories of Informetrics and Scholarly Communication

    Get PDF
    Scientometrics have become an essential element in the practice and evaluation of science and research, including both the evaluation of individuals and national assessment exercises. Yet, researchers and practitioners in this field have lacked clear theories to guide their work. As early as 1981, then doctoral student Blaise Cronin published "The need for a theory of citing" —a call to arms for the fledgling scientometric community to produce foundational theories upon which the work of the field could be based. More than three decades later, the time has come to reach out the field again and ask how they have responded to this call. This book compiles the foundational theories that guide informetrics and scholarly communication research. It is a much needed compilation by leading scholars in the field that gathers together the theories that guide our understanding of authorship, citing, and impact

    Implications of Computational Cognitive Models for Information Retrieval

    Get PDF
    This dissertation explores the implications of computational cognitive modeling for information retrieval. The parallel between information retrieval and human memory is that the goal of an information retrieval system is to find the set of documents most relevant to the query whereas the goal for the human memory system is to access the relevance of items stored in memory given a memory probe (Steyvers & Griffiths, 2010). The two major topics of this dissertation are desirability and information scent. Desirability is the context independent probability of an item receiving attention (Recker & Pitkow, 1996). Desirability has been widely utilized in numerous experiments to model the probability that a given memory item would be retrieved (Anderson, 2007). Information scent is a context dependent measure defined as the utility of an information item (Pirolli & Card, 1996b). Information scent has been widely utilized to predict the memory item that would be retrieved given a probe (Anderson, 2007) and to predict the browsing behavior of humans (Pirolli & Card, 1996b). In this dissertation, I proposed the theory that desirability observed in human memory is caused by preferential attachment in networks. Additionally, I showed that documents accessed in large repositories mirror the observed statistical properties in human memory and that these properties can be used to improve document ranking. Finally, I showed that the combination of information scent and desirability improves document ranking over existing well-established approaches

    Theories of Informetrics and Scholarly Communication

    Get PDF
    Scientometrics have become an essential element in the practice and evaluation of science and research, including both the evaluation of individuals and national assessment exercises. Yet, researchers and practitioners in this field have lacked clear theories to guide their work. As early as 1981, then doctoral student Blaise Cronin published The need for a theory of citing - a call to arms for the fledgling scientometric community to produce foundational theories upon which the work of the field could be based. More than three decades later, the time has come to reach out the field again and ask how they have responded to this call. This book compiles the foundational theories that guide informetrics and scholarly communication research. It is a much needed compilation by leading scholars in the field that gathers together the theories that guide our understanding of authorship, citing, and impact

    Document ranking with quantum probabilities

    Get PDF
    In this thesis we investigate the use of quantum probability theory for ranking documents. Quantum probability theory is used to estimate the probability of relevance of a document given a user's query. We posit that quantum probability theory can lead to a better estimation of the probability of a document being relevant to a user's query than the common approach, i.e. the Probability Ranking Principle (PRP), which is based upon Kolmogorovian probability theory. Following our hypothesis, we formulate an analogy between the document retrieval scenario and a physical scenario, that of the double slit experiment. Through the analogy, we propose a novel ranking approach, the quantum probability ranking principle (qPRP). Key to our proposal is the presence of quantum interference. Mathematically, this is the statistical deviation between empirical observations and expected values predicted by the Kolmogorovian rule of additivity of probabilities of disjoint events in configurations such that of the double slit experiment. We propose an interpretation of quantum interference in the document ranking scenario, and examine how quantum interference can be effectively estimated for document retrieval. To validate our proposal and to gain more insights about approaches for document ranking, we (1) analyse PRP, qPRP and other ranking approaches, exposing the assumptions underlying their ranking criteria and formulating the conditions for the optimality of the two ranking principles, (2) empirically compare three ranking principles (i.e. PRP, interactive PRP, and qPRP) and two state-of-the-art ranking strategies in two retrieval scenarios, those of ad-hoc retrieval and diversity retrieval, (3) analytically contrast the ranking criteria of the examined approaches, exposing similarities and differences, (4) study the ranking behaviours of approaches alternative to PRP in terms of the kinematics they impose on relevant documents, i.e. by considering the extent and direction of the movements of relevant documents across the ranking recorded when comparing PRP against its alternatives. Our findings show that the effectiveness of the examined ranking approaches strongly depends upon the evaluation context. In the traditional evaluation context of ad-hoc retrieval, PRP is empirically shown to be better or comparable to alternative ranking approaches. However, when we turn to examine evaluation contexts that account for interdependent document relevance (i.e. when the relevance of a document is assessed also with respect to other retrieved documents, as it is the case in the diversity retrieval scenario) then the use of quantum probability theory and thus of qPRP is shown to improve retrieval and ranking effectiveness over the traditional PRP and alternative ranking strategies, such as Maximal Marginal Relevance, Portfolio theory, and Interactive PRP. This work represents a significant step forward regarding the use of quantum theory in information retrieval. It demonstrates in fact that the application of quantum theory to problems within information retrieval can lead to improvements both in modelling power and retrieval effectiveness, allowing the constructions of models that capture the complexity of information retrieval situations. Furthermore, the thesis opens up a number of lines for future research. These include (1) investigating estimations and approximations of quantum interference in qPRP, (2) exploiting complex numbers for the representation of documents and queries, and (3) applying the concepts underlying qPRP to tasks other than document ranking

    The Janus Faced Scholar:a Festschrift in honour of Peter Ingwersen

    Get PDF

    Towards a geometrical model for polyrepresentation of information objects

    Get PDF
    The principle of polyrepresentation is one of the fundamental recent developments in the field of interactive retrieval. An open problem is how to define a framework which unifies different as- pects of polyrepresentation and allows for their application in several ways. Such a framework can be of geometrical nature and it may embrace concepts known from quantum theory. In this short paper, we discuss by giving examples how this framework can look like, with a focus on in- formation objects. We further show how it can be exploited to find a cognitive overlap of different representations on the one hand, and to combine different representations by means of knowledge augmentation on the other hand. We discuss the potential that lies within a geometrical frame- work and motivate its further developmen

    Theories of information and uncertainty for the modelling of information retrieval : an application of situation theory and Dempster-Shafer's theory of evidence

    Get PDF
    Current information retrieval models only offer simplistic and specific representations of information. Therefore, there is a need for the development of a new formalism able to model information retrieval systems in a more generic manner. In 1986, Van Rijsbergen suggested that such formalisms can be both appropriately and powerfully defined within a logic. The resulting formalism should capture information as it appears in an information retrieval system, and also in any of its inherent forms. The aim of this thesis is to understand the nature of information in information retrieval, and to propose a logic-based model of an information retrieval system that reflects this nature. The first objective of this thesis is to identify essential features of information in an information retrieval system. These are: 0 flow, 0 intensionality, 0 partiality, 0 structure, 0 significance, and o uncertainty. It is shown that the first four features are qualitative, whereas the last two are quantitative, and that their modelling requires different frameworks: a theory of information, and a theory of uncertainty, respectively. The second objective of this thesis is to determine the appropriate framework for each type of feature, and to develop a method to combine them in a consistent fashion. The combination is based on the Transformation Principle. Many specific attempts have been made to derive an adequate definition of information. The one adopted in this thesis is based on that of Dretske, Barwise, and Devlin who claimed that there is a primitive notion of information in terms of which a logic can be defined, and subsequently developed a theory of information, namely Situation Theory. Their approach was in accordance with Van Rijsbergen' s suggestion of a logic-based formalism for modelling an information retrieval system. This thesis shows that Situation Theory is best at representing all the qualitative features. Regarding the modelling of the quantitative features of information, this thesis shows that the framework that models them best is the Dempster-Shafer Theory of Evidence, together with the notion of refinement, later introduced by Shafer. The third objective of this thesis is to develop a model of an information retrieval system based on Situation Theory and the Dempster-Shafer Theory of Evidence. This is done in two steps. First, the unstructured model is defined in which the structure and the significance of information are not accounted for. Second, the unstructured model is extended into the structured model, which incorporates the structure and the significance of information. This strategy is adopted because it enables the careful representation of the flow of information to be performed first. The final objective of the thesis is to implement the model and to perform empirical evaluation to assess its validity. The unstructured and the structured models are implemented based on an existing on-line thesaurus, known as WordNet. The experiments performed to evaluate the two models use the National Physical Laboratory standard test collection. The experimental performance obtained was poor, because it was difficult to extract the flow of information from the document set. This was mainly due to the data used in the experimentation which was inappropriate for the test collection. However, this thesis shows that if more appropriate data, for example, indexing tools and thesauri, were available, better performances would be obtained. The conclusion of this work was that Situation Theory, combined with the Dempster-Shafer Theory of Evidence, allows the appropriate and powerful representation of several essential features of information in an information retrieval system. Although its implementation presents some difficulties, the model is the first of its kind to capture, in a general manner, these features within a uniform framework. As a result, it can be easily generalized to many types of information retrieval systems (e.g., interactive, multimedia systems), or many aspects of the retrieval process (e.g., user modelling)
    corecore