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Entanglement in Cognition violating Bell Inequalities

Beyond Cirel’son’s Bound

Diederik Aerts, Jonito Aerts Arguëlles, Lester Beltran
Suzette Geriente∗ and Sandro Sozzo†

December 26, 2020

Abstract

We present the results of two tests where a sample of human participants were asked to make judge-
ments about the conceptual combinations The Animal Acts and The Animal eats the Food. Both tests
significantly violate the Clauser-Horne-Shimony-Holt version of Bell inequalities (‘CHSH inequality’),
thus exhibiting manifestly non-classical behaviour due to the meaning connection between the individ-
ual concepts that are combined. We then apply a quantum-theoretic framework which we developed for
any Bell-type situation and represent empirical data in complex Hilbert space. We show that the ob-
served violations of the CHSH inequality can be explained as a consequence of a strong form of ‘quantum
entanglement’ between the component conceptual entities in which both the state and measurements
are entangled. We finally observe that a quantum model in Hilbert space can be elaborated in these
Bell-type situations even when the CHSH violation exceeds the known ‘Cirel’son bound’, in contrast to
a widespread belief. These findings confirm and strengthen the results we recently obtained in a variety
of cognitive tests and document and image retrieval operations on the same conceptual combinations.

Keywords: Cognition; Bell-type tests; CHSH inequality; quantum entanglement; quantum structures.

1 Introduction

In physics, the violation of the so-called ‘Bell inequalities’ is generally maintained to prove that quantum
entities exhibit specific aspects, as ‘contextuality’, ‘entanglement’ and ‘nonseparability’, which cannot
be explained in terms of the mathematical structures that are typically used in classical physics. This
contextuality also persists for far away quantum entities, an aspect known as ‘nonlocality’ after Bell’s
seminal paper [1, 2]. The consistent violation of Bell inequalities in physics tests performed on a variety
of quantum entities, in addition to confirming the predictions of quantum theory, in particular reveals
that the statistics of repeated experiments shows connections between quantum entities that cannot be
represented within a classical probabilistic model satisfying the axioms of Kolmogorov (‘Kolmogorovian
probability’) (see, e.g., [3]).

The setting of a Bell-type test is relatively simple, if formulated in the so-called ‘EPR-Bohm form’ [4, 5].
We briefly review it here, as Bell-type tests are relevant to the purposes of the present paper. One considers
a composite physical entity S12, prepared in an initial state p and such that two individual entities S1
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and S2 that have interacted in the past but are now far away (‘space-like separation’) can be recognized
as parts of S12. Then, 4 coincidence experiments AB, AB′, A′B and A′B′ are performed on S12 which
consist in performing measurements eA, with outcomes A1 and A2, and eA′ with outcomes A′1 and A′2,
on entity S1, and measurements eB, with outcomes B1 and B2, and eB′ with outcomes B′1 and B′2, on
entity S2. If the measurement outcomes can be only −1 or +1, then the expected values of AB, AB′, A′B
and A′B′ become the correlation functions E(A,B), E(A,B′), E(A′, B) and E(A′, B′), respectively, and a
specific inequality, which is the ‘Clauser-Horne-Shimony-Holt version of Bell inequalities’ (briefly, ‘CHSH
inequality’)

− 2 ≤ E(A′, B′) + E(A′, B) + E(A,B′)− E(A,B) ≤ 2 (1)

can be formulated [2]. John Bell put forward the type of inequality carrying his name [1], with the aim
of making experimental tests possible with respect to the strange quantum phenomenon revealed in the
Einstein Podolsky Rosen paradox reasoning [4] called ‘entanglement’, i.e. if this phenomenon would not be
present the inequality would not be violated. The violation of Bell’s inequality can also be connected with
the non-existence of a Kolmogorovian probability model for the joint entity [3], but in the investigation
we put forward here our interest goes to the original situation for which the inequalities were formulated,
i.e. the connections possible between individual entities recognizable within a joint entity. It is indeed the
case that quantum theory makes specific predictions about Equation (1). More specifically, one can choose
the individual entities, e.g., pair of spin 1/2 quantum particles, states, e.g., entangled state (typically, the
singlet spin state), and observables, e.g., pairs of spin along different directions, in such a way that Equation
(1) is violated [1, 2]. Moreover, one can show that the ‘CHSH factor’ ∆CHSH = E(A′, B′) + E(A′, B) +
E(A,B′) − E(A,B) is bound in quantum theory by the numerical value ∆QMC = 2

√
2 ≈ 2.83, known as

the ‘Cirel’son bound’ [6, 7]. It is important to observe, at this stage, that the existence of such a ‘quantum
bound’ is not trivial because, from a mathematical point of view, the CHSH factor can take any value
between −4 and +4. In addition, the derivation of the Cirel’son bound explicitly refers to measurements
eXY , corresponding to coincidence experiments XY , X = A,A′, Y = B,B′, on the composite entity that
are represented by product self-adjoint operators whenever the states of the composite entity S12 are
represented by the unit vectors of the tensor product Hilbert space of two Hilbert spaces of which their
unit vectors represent the states of the possible to be recognized entities S1 and S2. This remark will play
an important role in what follows.

In the last two decades, several theoretical studies, mainly inspired by quantum computation and
quantum information and their flourishing applications, have deeply analysed and extended Bell inequalities
(see, e.g., [8, 9]). In addition, numerous empirical tests have followed the seminal experiments of Aspect
and his collaborators [10, 11]. All empirical tests that have been performed so far strongly confirm the
predictions of quantum theory (see, e.g., [12, 13, 14, 15]). The natural consequence of these results is that
‘entanglement’, i.e. unavoidable connection between the individual entities recognizable in a composite
quantum entity, give rise to empirically observable phenomena, so much that, in particular, entanglement
is nowadays considered as one of the fingerprints of quantum theory.

Growing theoretical and empirical research reveals that several quantum structures, such as ‘contex-
tuality’, ‘entanglement’, ‘indistinguishability’, ‘interference’ and ‘superposition’, also manifest themselves
in other domains than micro-physics, which include, in particular, cognition (e.g., human probability and
similarity judgements, decision-making and visual perception), socio-economic domains (economics and
finance) and information systems (computer science and artificial intelligence) (see, e.g., [16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] and references therein). In particular, interesting results have
been obtained in the identification of quantum structures and, in particular, quantum entanglement, in
the combination of natural concepts and applied computer science domains, as information retrieval and
natural language processing (see, e.g., [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47] and
references therein). In this regard, our research team has produced both theoretical and empirical research
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on how to identify entanglement in conceptual combinations and document retrieval applications.
At an empirical level, in particular, we performed both cognitive tests on human participants [38],

document retrieval tests on structured corpuses of documents [46] and image retrieval tests on the web
[29]. In these tests, we considered the composite conceptual entity The Animal Acts as a combination
of the individual conceptual entities Animal and Acts. We performed an additional document retrieval
test on the web in which we considered the composite conceptual entity The Animal eats the Food as a
combination of the individual conceptual entities Animal and Food [32]. In all these tests, we observed a
systematic violation of the CHSH inequality, accompanied by a systematic violation of a property called
the ‘marginal law’.

In particular, the violation of the marginal law, which is believed not to occur in principle in Bell-type
tests in quantum physics – we come back to this later, led us to study in detail a theoretical problem which is
usually overlooked in physics, the ‘identification problem’, i.e. the problem of recognising individual entities
of a composite entity by performing on the latter measurements that resemble the typical coincidence
experiments of Bell-type tests [41, 42]. We constructed a general theoretical framework to model any Bell-
type situation in the Hilbert space formalism of quantum theory [48]. In this framework, one explicitly
applies the prescription of the standard formalism of quantum theory that the joint entity needs to be
modelled in a complex Hilbert space of which the dimension is given by the number of outcomes of the
defining measurements, which is hence C4. Only then as a secondary step, with respect to the attempt
to ‘recognize’ entities in the joint entity, one considers possible isomorphisms with another Hilbert space,
namely, the one built as the tensor product C2⊗C2 of two-dimensional complex Hilbert spaces which need
to describe the two possible entities, since the defining measurements to recognize these entities have two
outcomes. Like we analyzed in detail in [41, 42], there is no unique isomorphism between C4 and C2 ⊗C2

and this is the reason that from a mathematical point of view there are different ways to account for
entanglement being present within the joint entity with respect to the entities to be recognized individual
entities. Essentially, entanglement manifests on the level of the probabilities of a joint measurements
not being able to be written as products of probabilities on the level of the component measurements of
this joint measurement and hence it is a property of the relation between the joint measurements and
their components. Only when an extra symmetry is present connecting different joint measurements the
entanglement of these different joint measurements can be captured in a state of the joint entity. This
symmetry can be detected by verifying whether the marginal law corresponding to the considered joint
measurements is satisfied, in that case, the entanglement of these joint measurements can together be
captured in a state of the joint entity. If this is true for all joint measurements one can prove that there
is only one isomorphism connecting C4 with C2 ⊗ C2 and in that case C4 can be substituted by C4 with
C2 ⊗ C2 and the joint entity can be directly modeled in C2 ⊗ C2. With respect to ‘entanglement’, a
property of the structure of the probabilities of a joint measurement with respect to the probabilities of
the component measurements, this situation is exceptional and definitely not the general one. In [42] we
work out in detail several experimental examples and how how entanglement can generally only be located
in the joint measurements and only exceptionally in the state of the joint entity. It is widely accepted
that in the typically considered quantum physics situations where entanglement is being measured and
studied this exceptional symmetry is always present and hence apriori the tensor product Hilbert space
is taken to be the Hilbert space to model the joint entity, although already the first experiments of Alain
Aspect [10] showed violations of the marginal law, confirmed manifestly by later experiments [13]. For the
cognition experiments that we consider in the present article where joint measurements are performed on
joint concepts The Animal Acts and The Animal eats the Food the symmetry is not fulfilled and hence
no unique isomorphism exists between C4 and C2 ⊗ C2. The new quantum-theoretic perspective enabled
modelling of both cognitive and web tests on The Animal Acts and introduced a novel mathematical
ingredient in the modelling of Bell-type situations, namely, ‘entangled measurements’ [30, 41, 42, 47].
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Entangled measurements have recently been applied with success to perform quantum computation and
information tasks (see, e.g., [9]). We show in the present paper that ‘entanglement measurement also allow
to identify the presence of quantum entanglement also in Bell-type tests where the violation of the Cirel’son
bound occurs in addition to the violation of the CHSH inequality’. More specifically, we present the results
of two cognitive tests, one on The Animal Acts and the other on The Animal eats the Food situations, that
we have recently performed on a sample of 81 participants. In both tests, a significant violation of the
CHSH has been observed. Furthermore, while The Animal Acts test has revealed a result very close to
the Cirel’son bound, The Animal eats the Food test has revealed a significant violation of the latter bound
– a result which we had already been obtained in the web tests above on The Animal Acts [46, 47]. We
successfully apply and refine the quantum-theoretic framework to The Animal Acts and The Animal eats
the Food situations and get a confirmation that a ‘strong form of quantum entanglement’ exists between the
respective individual concepts which involves both states and measurements’. Moreover, we get a further
confirmation that ‘such a form of entanglement captures the deeply non-classical meaning connections
existing between those individual concepts’. Finally, we prove that ‘quantum entanglement also exists
beyond Cirel’son bound, but it is a joint effect of state-entanglement and measurement-entanglement.
This final result is relevant, in our opinion, as it confutes the widespread belief that one cannot model
situations exceeding Cirel’son in the Hilbert space formalism in Hilbert space (see, e.g., [6, 7, 9]). As such,
this final result may also have an impact on the foundations of quantum theory.

For the sake of completeness, we summarise the content of this paper in the following.
In Section 2, we briefly review the theoretical and empirical results that our research team has obtained

in the last years on the identification of quantum entanglement in conceptual combinations. In Section 3,
we report and analyse the data collected in two cognitive tests that we have recently performed on human
participants about the conceptual combinations The Animal Acts and The Animal eats the Food. In Section
4, we explicate, refine and particularise to The Animal Acts and The Animal eats the Food situations the
general quantum-theoretic framework that we have developed in [48] to model any Bell-type situation.
In Section 5, we show that the quantum-theoretic framework allows to faithfully represent empirical data
in Section 3. Finally, in Section 6, we explain how and why a violation of the CHSH inequality which
also exceed the Cirel’son bound may indicate the presence of a stronger form of quantum entanglement
involving both states and measurements.

2 A brief history of Bell-type tests in conceptual combinations

We review in this section the results that we have obtained in the last decade on the identification of
entanglement in the combination of natural concepts and related applied domains, as information retrieval
and natural language processing. For a detailed description of the tests and a complete analysis of the
obtained results, the reader is referred to the papers cited below (see also Section 3).

In the first empirical test of entanglement involving concepts, we studied the combination The Animal
eats the Food, which we regarded as a combination of the individual concepts Animal and Food [32]. We
considered different items of Animal, namely, Cat, Cow, Horse and Fish, and different items of Food,
namely, Grass, Meat, Fish and Nuts, and combined them to form all possible combinations, i.e. The
Cow eats the Grass, The Cat eats the Meat, The Cat eats the Fish, The Squirrel eats the Nuts, and
so on, which were considered as items of the combination The Animal eats the Food. Next, we split
the 16 combinations obtained in this way into 4 groups of 4 combinations each in order to reproduce
the 4 coincidence experiments described in Section 1. For example, coincidence experiment AB had 4
outcomes, The Cat eats the Grass, The Cat eats the Meat, The Cow eats the Grass and The Cow eats the
Meat; the other experiments were constructed in an analogous way. We used the World Wide Web as a
conceptual space and counted co-occurrence of words, e.g., “cow” and “grass”, “cat” and “fish”, and so on,
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in document retrieval operations by means of the ‘Google’ search engine. We collected relative frequencies of
co-occurrences which we considered, in the large number limit, as joint probabilities and inserted them into
the correlation functions in Equation (1). With our surprise, we found ∆CHSH = 2.86, hence a significant
violation of the CHSH inequality. We put forward the presence of some type of entanglement between the
concepts Animal and Food was responsible of the observed deviation from the CHSH inequality. At that
time, we also noticed without however deepening it, the simultaneous violation of Cirel’son bound.

This empirical finding was really exciting for us, also because it was partially unexpected, thus we
decided to deepen the investigation on entanglement in conceptual combinations and performed a cognitive
test in which the direct responses of a sample of participants were collected [38]. In this case, we analysed the
conceptual combination The Animal Acts, which we regarded as a combination of the individual concepts
Animal and Acts – “acts” refers here to the action of an animal emitting a sound. We again considered
different items of Animal, namely, Horse, Bear, Tiger and Cat, and different items of Atcs, namely, Growls,
Whinnies, Snorts and Meows, and combined them to form all possible combinations, i.e. The Horse Growls,
The Bear Whinnies, The Tiger Snorts, The Cat Meows, and so on, which were considered as items of the
combination The Animal Acts. Then, we split the 16 combinations obtained in this way into 4 groups
of 4 combinations each in order to reproduce the 4 coincidence experiments in Section 1. For example,
coincidence experiment AB had 4 outcomes, The Horse Growls, The Horse Whinnies, The Bear Growls,
The Bear Whinnies; the other experiments were constructed in a similar way. After reading an introductory
text, a sample of 81 respondents had to fill in a questionnaire where, in each coincidence experiment, they
had to choose which item in a list of 4 items they judged as a ‘good example’ of the conceptual combination
The Animal Acts. Relative frequencies of positive responses were considered, in the large number limit, as
joint probabilities and inserted into the correlation functions in Equation (1). Also in this case, we found a
significant violation the CHSH inequality, ∆CHSH = 2.42, which we again interpreted as the consequence
of a form of entanglement in the combination The Animal Acts, due to the connections of meaning between
the component concepts Animal and Acts.

The numerical value 2.42 obtained in the cognitive test on The Animal Acts resembled the values found
in Bell-type tests in quantum physics (see Section 1). To make the analogy with physics more convincing, we
then decided to construct an explicit quantum-theoretic model in Hilbert space of empirical data [41]. But,
we realised at once that we could not reproduce empirical data on The Animal Acts test by representing the
initial state of The Animal Acts by an entangled state and the 4 measurements by product measurements,
as one would be tempted to do in analogy with a quantum representation in physics. We discovered
that the main reason of this impossibility was that, if one wants to model The Animal Acts situation
starting from the modelling of Animal and Acts, hence using the usual tensor product representation,
then the ‘marginal law of probability’ has to be satisfied, as it occurs in quantum physics, whereas it was
systematically violated in the cognitive test. This difference between physical and cognitive realms led us
to study in detail a problem that is generally overlooked in physics, the ‘identification problem’, that is,
the problem of recognising individual entities, e.g., concepts, from measurements performed on composite
entities, e.g., conceptual combinations. The investigation led us to develop a novel quantum-theoretic
framework for any Bell-type situation, which allowed us to recognise systematic analogies and differences
between violations of Bell inequalities in physics and cognition [48].1 But, the quantum-theoretic framework
also introduced a new fundamental element in the modelling of such situations, namely, the empirically
justified use of ‘entangled measurements’ in addition to entangled states. Entangled measurements were
indeed successfully used in the quantum representation of The Animal Acts situation [41].

In the meanwhile, we had also started systematically looking into possible applications of quantum

1A closer analogy between Bell-type situations in physical and cognitive realms was identified in a cognitive test we
performed on the conceptual combination Two Different Wind Directions, where the marginal law was not violated and we
could represent data in Hilbert space using entangled states and product measurements [50, 51].
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structures in information retrieval and natural language processing, where representation of meaning en-
tities, like concepts and conceptual combinations, play a crucial role (see, e.g., [44, 27]). In particular, we
considered again The Animal Acts situation in a document retrieval test in which we collected data on
co-occurrence of words, as we had done for The Animal eats the Food situation, but using known corpuses
of documents instead of web search engines – corpuses of documents provide more reliable word counts than
search engines [46]. We used ‘Google Books’, ‘Corpus of Contemporary American English (COCA)’ and
‘News On Web (NOW)’ as corpuses of documents and performed the coincidence experiments described in
Section 1, finding 3.41, 3.00 and 3.33, respectively in the factor appearing in Equation (1). These empirical
findings were statistically significant and, more important, they were completely unexpected. Indeed, not
only we had obtained consistent violations of the CHSH inequality across all corpuses of documents, but the
numerical value of the violation systematically exceeded the Cirel’son bound. According to a widespread
belief, a violation of the CHSH inequality which also violates Cirel’son bound cannot be modelled in Hilbert
space formalism of quantum theory, hence does not represent a ‘quantum effect’ [9]. On the other side,
we noticed that the derivation of this bound does not consider entangled measurements, but only product
measurements [6, 7]. If one allows entangled measurements, then it is in principle possible to model in
Hilbert space any violation of the CHSH inequality whose numerical value lies in the mathematically per-
mitted interval from −4 to +4. Indeed, we applied in [47] the general quantum-theoretic framework and
faithfully represented the web data presented in [46].

Finally, in an independent but related investigation, we performed a web test on artefacts of visual
perception, such as images, using ‘Google Images’ as a web search engine to count images representing
items of the conceptual combination The Animal Acts [29]. Also in this case, we obtained the value
∆CHSH = 2.41 for the CHSH factor in Equation (1), which again indicated the presence of entanglement
in visual perception. The corresponding quantum-theoretic modelling enabled faithful representation of
empirical data and confirmed that a strong form of entanglement, involving both states and measurements,
exists between the component concepts Animal and Acts, again due to their meaning connections.

We now intend to complete the investigation above and consider two cognitive tests on the conceptual
combinations The Animal Acts and The Animal eats the Food with the aim of ‘identifying the presence of
quantum entanglement beyond the limits imposed by Cirel’son bound’. We will dedicate the next sections
to this purpose.

3 New empirical results

We report in this section the details of the two cognitive tests that we have performed on the conceptual
combinations The Animal Acts and The Animal eats the Food. As we will see, their results substantially
confirm the empirical patterns highlighted in Section 2.

Let us start by The Animal Acts test. As anticipated in Section 2, we consider the concept The Animal
Acts as a combination of the individual concepts Animal and Acts, where “acts” refers to the sound, or
noise, produced by an animal. Next, we consider two pairs of items of Animal, namely, (Horse, Bear) and
(Tiger, Cat), and two pairs of items of Acts, namely, (Growls, Whinnies) and (Snorts, Meows). We are
now ready to illustrate the test.

A sample of 81 individuals were presented in a ‘within subjects design’ a questionnaire which contained
4 coincidence experiments AB, AB′, A′B and A′B′ whose setting was similar to the typical setting of a
Bell-type test sketched in Section 1. More specifically, participants were preliminarily asked to read an
‘introductory text’ where the concepts under study were introduced and a description of the tasks involved
in the judgement test was provided. Then, in each coincidence experiment participants were asked to
choose which item in a list of 4 items they judged as a good example of the conceptual combination The
Animal Acts.
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In coincidence experiment AB, participants had to choose among the 4 items:
(A1B1) The Horse Growls
(A2B2) The Bear Whinnies
(A1B2) The Horse Whinnies
(A2B1) The Bear Growls
If the response was (A1B1) or (A2B2), then experiment AB was attributed outcome +1; if the response

was (A1B2) or (A2B1), then experiment AB was attributed outcome −1.
In coincidence experiment AB′, participants had to choose among the 4 items:
(A1B

′
1) The Horse Snorts

(A1B
′
2) The Horse Meows

(A2B
′
1) The Bear Snorts

(A2B
′
2) The Bear Meows

If the response was (A1B
′
1) or (A2B

′
1), then experiment AB′ was attributed outcome +1; if the response

was (A1B
′
2) or (A2B

′
1), then experiment AB′ was attributed outcome −1.

In coincidence experiment A′B, participants had to choose among the 4 items:
(A′1B1) The Tiger Growls
(A′1B2) The Tiger Whinnies
(A′2B1) The Cat Growls
(A′2B2) The Cat Whinnies
If the response was (A′1B1) or (A′2B2), then experiment A′B was attributed outcome +1; if the response

was (A′1B2) or (A′2B1), then experiment A′B was attributed outcome −1.
Finally, in coincidence experiment A′B′, participants had to choose among the 4 items:
(A′1B

′
1) The Tiger Snorts

(A′1B
′
2) The Tiger Meows

(A′2B
′
1) The Cat Snorts

(A′2B
′
2) The Cat Meows

If the response was (A′1B
′
1) or (A′2B

′
2), then experiment A′B′ was attributed outcome +1; if the response

was (A′1B
′
2) or (A′2B

′
1), then experiment A′B′ was attributed outcome −1.

For each coincidence experiment AB, AB′, A′B and A′B′, we collected the relative frequencies of the
obtained responses which we considered, in the large number limit, as the probability µ(AiBj), µ(AiB

′
j),

µ(A′iBj) and µ(A′iBj) that the outcome AiBj , AiB
′
j , A

′
iBj and A′iB

′
j , i, j = 1, 2, respectively, is obtained in

the corresponding experiment. Table 3 reports the judgement probabilities computed in this way. Referring
to these probabilities, we can then calculate the expectation values, or correlation functions, of coincidence
experiments AB, AB′, A′B and A′B′, as follows:

E(AB) = µ(A1B1)− µ(A1B2)− µ(A2B1) + µ(A2B2) = −0.8025 (2)

E(AB′) = µ(A1B
′
1)− µ(A1B

′
2)− µ(A2B

′
1) + µ(A2B

′
2) = 0.4568 (3)

E(A′B) = µ(A′1B1)− µ(A′1B2)− µ(A′2B1) + µ(A′2B2) = 0.7037 (4)

E(A′B′) = µ(A′1B
′
1)− µ(A′1B

′
2)− µ(A′2B

′
1) + µ(A′2B

′
2) = 0.8765 (5)

Inserting Equations (2)–(5) into Equation (1), we get

∆CHSH = E(A′, B′) + E(A′, B) + E(A,B′)− E(A,B) = 2.7901 (6)

The numerical value 2.7901 ≈ 2.79 exceeds the classical limit imposed by the CHSH inequality and is
slightly below the Cirel’son bound. However, while the deviation from the value 2 is statistically significant
(p-value 1.44∗10−5), the deviation from the value 2

√
2 is not significant (p-value 0.4151), which entails that

The Animal Acts data show a non definite behaviour with respect to the Cirel’son bound. This empirical
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Experiment AB Horse Growls Horse Whinnies Bear Growls Bear Whinnies
Probability µ(A1B1) = 0.0494 µ(A1B2) = 0.1235 µ(A2B1) = 0.7778 µ(A2B2) = 0.0494

Experiment AB′ Horse Snorts Horse Meows Bear Snorts Bear Meows
Probability µ(A1B

′
1) = 0.7160 µ(A1B

′
2) = 0.0494 µ(A2B

′
1) = 0.2222 µ(A2B

′
2) = 0.0123

Experiment A′B Tiger Growls Tiger Whinnies Cat Growls Cat Whinnies
Probability µ(A′1B1) = 0.7778 µ(A′1B2) = 0.0864 µ(A′2B1) = 0.0617 µ(A′2B2) = 0.0741

Experiment A′B′ Tiger Snorts Tiger Meows Cat Snorts Cat Meows
Probability µ(A′1B

′
1) = 0.0864 µ(A′1B

′
2) = 0.0617 µ(A′2B

′
1) = 0.0247 µ(A′2B

′
2) = 0.8272

Table 1: The data collected in coincidence experiments on entanglement in the conceptual combination The Animal Acts.

pattern confirms and strengthens the results obtained in [38] where a violation of the CHSH inequality was
observed. This non-classical behaviour admits the presence of entanglement between the concepts Animal
and Acts as a natural explanation, because Animal and Acts are connected by meaning and this connection
gives rise to statistical correlations, those expressed by Equations (2)–(5).

Let us now come to The Animal eats the Food test. As mentioned in Section 2, we consider the concept
The Animal eats the Food as a combination of the individual concepts Animal and Food. Let us then
consider two pairs of items of Animal, namely, (Cat, Cow) and (Horse, Squirrel), and two pairs of items of
Food, namely, (Grass, Meat) and (Fish, Nuts). The test can be illustrated as follows.

A sample of 81 individuals were presented in a ‘within subjects design’ a questionnaire which contained
again the 4 coincidence experiments AB, AB′, A′B and A′B′ that are typical of a Bell-type test. More
precisely, participants, after reading an introductory text on concepts and their combinations as in the first
test, were asked to choose in each coincidence experiment one item in a list of 4 items, namely, the item
that they judged as a good example of the conceptual combination The Animal eats the Food.

In coincidence experiment AB, participants had to choose among the 4 items:
(A1B1) The Cat eats the Grass
(A2B2) The Cat eats the Meat
(A1B2) The Cow eats the Grass
(A2B1) The Cow eats the Meat
If the response was (A1B1) or (A2B2), then experiment AB was attributed outcome +1; if the response

was (A1B2) or (A2B1), then experiment AB was attributed outcome −1.
In coincidence experiment AB′, participants had to choose among the 4 items:
(A1B

′
1) The Cat eats the Fish

(A1B
′
2) The Cat eats the Nuts

(A2B
′
1) The Cow eats the Fish

(A2B
′
2) The Cow eats the Nuts

If the response was (A1B
′
1) or (A2B

′
1), then experiment AB′ was attributed outcome +1; if the response

was (A1B
′
2) or (A2B

′
1), then experiment AB′ was attributed outcome −1.

In coincidence experiment A′B, participants had to choose among the 4 items:
(A′1B1) The Horse eats the Grass
(A′1B2) The Squirrel eats the Meat
(A′2B1) The Horse eats the Grass
(A′2B2) The Cow eats the Meat
If the response was (A′1B1) or (A′2B2), then experiment A′B was attributed outcome +1; if the response

was (A′1B2) or (A′2B1), then experiment A′B was attributed outcome −1.
Finally, in coincidence experiment A′B′, participants had to choose among the 4 items:
(A′1B

′
1) The Horse eats the Fish
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Experiment AB Cat eats Grass Cat eats Meat Cow eats Fish Cow eats Meat
Probability µ(A1B1) = 0.1111 µ(A1B2) = 0.3457 µ(A2B1) = 0.5185 µ(A2B2) = 0.0247

Experiment AB′ Cat eats Fish Cat eats Nuts Cow eats Fish Cow eats Nuts
Probability µ(A1B

′
1) = 0.8765 µ(A1B

′
2) = 0.0494 µ(A2B

′
1) = 0.0494 µ(A2B

′
2) = 0.0247

Experiment A′B Horse eats Grass Horse eats Meat Squirrel eats Grass Squirrel eats Meat
Probability µ(A′1B1) = 0.8889 µ(A′1B2) = 0.0494 µ(A′2B1) = 0 µ(A′2B2) = 0.0617

Experiment A′B′ Horse eats Fish Horse eats Nuts Squirrel eats Fish Squirrel eats Nuts
Probability µ(A′1B

′
1) = 0.0494 µ(A′1B

′
2) = 0.1235 µ(A′2B

′
1) = 0.0617 µ(A′2B

′
2) = 0.8765

Table 2: The data collected in coincidence experiments on entanglement in the conceptual combination The Animal eats the
Food.

(A′1B
′
2) The Horse eats the Nuts

(A′2B
′
1) The Squirrel eats the Fish

(A′2B
′
2) The Squirrel eats the Nuts

If the response was (A′1B
′
1) or (A′2B

′
2), then experiment A′B′ was attributed outcome +1; if the response

was (A′1B
′
2) or (A′2B

′
1), then experiment A′B′ was attributed outcome −1.

As in the first test, after collecting relative frequencies of responses, we calculated in the large number
limit the probability µ(XiYj) that the outcome XiYj is obtained in the coincidence experiment XY , i, j =
1, 2, X = A,A′, Y = B,B′. Table 3 reports the judgement probabilities computed in this way. The
corresponding expectation values, or correlation functions, are then calculated as follows:

E(AB) = µ(A1B1)− µ(A1B2)− µ(A2B1) + µ(A2B2) = −0.7284 (7)

E(AB′) = µ(A1B
′
1)− µ(A1B

′
2)− µ(A2B

′
1) + µ(A2B

′
2) = 0.8025 (8)

E(A′B) = µ(A′1B1)− µ(A′1B2)− µ(A′2B1) + µ(A′2B2) = 0.9012 (9)

E(A′B′) = µ(A′1B
′
1)− µ(A′1B

′
2)− µ(A′2B

′
1) + µ(A′2B

′
2) = 0.8519 (10)

Inserting Equations (7)–(10) into Equation (1), we get ∆CHSH = 3.2840 ≈ 3.28.
The numerical value 3.28 violates both the CHSH inequality and the Cirel’son bound. In both cases,

the deviation is statistically significant (p-values 2.81 ∗ 10−11 and 4.40 ∗ 10−2, respectively). Hence, this
deviation confirms and strengthens the empirical patterns identified in document retrieval tests on the
web in [32] and [46]. Also in this case, entanglement between the concepts Animal and Food is a natural
candidate to explain this non-classical behaviour, due to the meaning connections existing between Animal
and Food.

We will show in the next two sections that these empirical findings can be represented in the Hilbert
space formalism of quantum theory, independently of their behaviour with respect to the Cirel’son bound.
However, we firstly need to present the essentials of a general quantum-theoretic framework that we have
recently elaborated to model Bell-type situations in any empirical domain.

4 Construction of a general Hilbert space model

In this section we study how a theoretical framework can be constructed which models the two cognitive
situations in Section 3 but is also general enough to cope with any domain in which Bell-type tests are
performed. We will show that the violations of the CHSH inequality and the Cirel’son bound can be simul-
taneously explained by assuming that a strong form of ‘quantum entanglement’ is present in conceptual
combinations. We refine and generalise the modelling scheme that we have elaborated in [41, 42] to identify
the entanglement that occurs in Bell-type settings. The theoretical scheme has already been applied with
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success to model the web tests in [47] (see also Section 2). We refer to [48] for a detailed analysis and
comparison of the entanglement situations occurring in physical and cognitive realms.

The general modelling scheme for Bell-type situations consists in the implementation of three main
steps which we summarise in the following.

(i) One identifies in the empirical situation under investigation the composite conceptual entity and the
individual conceptual entities composing it.

(ii) One recognises in the composite conceptual entity the states, measurements and outcome probabil-
ities that are relevant to the phenomenon under study.

(iii) One represents entities, states, measurements and outcome probabilities using the Hilbert space
representation of entities, states, measurements and outcome probabilities of quantum theory.

The application of steps (i)–(iii) to The Animal Acts situation has been presented in various papers
[38, 41, 47]. Let us then focus here on how (i)–(iii) are applied to The Animal eats the Food situation. Let
us start by coincidence experiment AB and its outcomes The Cat eats the Grass, The The Cat eats the
Meat, The Cow eats the Grass and The Cow eats the Meat.

(i) The conceptual combination The Animal eats the Food can be considered as a composite conceptual
entity made up of the individual conceptual entities Animal and Food.

(ii) Whenever an individual reads the introductory text which explains the details of the test and nature
of the involved concepts, this set of instructions prepares the composite entity The Animal eats the Food in
an initial state p which describes the general situation of an animal that eats food. This initial state is the
unique conceptual state which all participants are confronted with in the test. In coincidence experiment
AB, each respondent interacts with this uniquely prepared state p and operates as a measurement context
eAB for The Animal eats the Food which changes p into a generally different state. The latter state is
not predetermined, as it depends on the concrete choice being made, which results as a consequence of
this ‘contextual interaction’ between the respondent and the conceptual entity. More specifically, if the
respondent chooses The Cow eats the Grass, that is, the outcome A2B1 is obtained in AB (see Section
3), the interaction between the entity The Animal eats the Food prepared in the state p and the (mind of
the) respondent will determine a change of state of The Animal eats the Food from p to the state pA2B1

which describes the more concrete situation of a cow that eats grass. When all responses are collected,
a statistics of outcomes arises from this intrinsically and genuinely indeterministic contextual process of
state change. This outcome statistics is interpreted, in the large number limit, as the probability Pp(A2B1)
that the outcome A2B1 is obtained when the measurement eAB is performed on the composite entity The
Animal eats the Food in the initial state p.2

(iii) Let us finally come to the quantum mathematical representation. The entity The Animal eats the
Food is associated with a Hilbert space and the state p is represented by a unit vector |p〉 of this Hilbert
space. The measurement eAB is instead represented by a self-adjoint operator or, equivalently, by a spectral
family, on the Hilbert space whose eigenvectors represent the outcome states, or ‘eigenstates’, of eAB, while
outcome probabilities are obtained through the Born rule of quantum probability. This representation will
become clear in Section 5.

The description above can be extended in a straightforward way to the other coincidence experiments of
The Animal eats the Food situation. Hence, the complete identification of states, measurements, outcomes
and outcome probabilities that are relevant to the situations in Section 3 is presented in the following.

For every X = A,A′, Y = B,B′, coincidence experiment XY corresponds to a measurement eXY
performed on the composite conceptual entity The Animal Acts (respectively, The Animal eats the Food)
with 4 possible outcomes XiYj , i, j = 1, 2, where we choose XiYj = +1 if i = j and XiYj = −1 if i 6= j, and

2In [49]), we have called ‘realistic’ and ‘operational’ the above description of a measurement process on a conceptual entity,
where the term ‘realistic’ refers to the preparation of the conceptual entity in a defined state and the term ‘operational’ refers
to the measurements that are performed on the entity.
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4 eigenstates pXiYj describing the state of The Animal Acts (The Animal eats the Food) after the outcome
XiYj occurs in XY . Let us denote by Pp(XiYj) the probability that the outcome XiYj is obtained when
the measurement eXY is performed on The Animal Acts (The Animal eats the Food) in the state p.

Once we have completed the identification of entities, initial state, measurements, eigenstates and
outcome probabilities occurring in the The Animal Acts and The Animal eats the Food situations, we need
to construct a general quantum framework in Hilbert space to model these conceptual situations. However,
before doing so, we need to recall a theoretical analysis that we have presented in detail in [27] (see also
[41, 47]).

We preliminarily observe that in both The Animal Acts and The Animal eats the Food situations,
all measurements eXY , X = A,A′, Y = B,B′, have 4 outcomes XiYj , i, j = 1, 2, which entails that both
composite entities should be associated, as overall entities, with the complex Hilbert space C4 of all ordered
4-tuples of complex numbers. In addition, each state p of The Animal Acts (respectively, The Animal eats
the Food) should be represented by a unit vector of C4 and each measurement on The Animal Acts (The
Animal eats the Food) should be represented by a self-adjoint operator or, equivalently, by a spectral
family, on C4. On the other side, for every i, j = 1, 2, each outcome XiYj is obtained by juxtaposing the
outcomes Xi and Yj , e.g., The Bear Growls is obtained by syntactically juxtaposing the words “bear” and
“growls”. This operation defines a 2-outcome measurement eX , X = A,A′ on the individual entity Animal
(Animal) and a 2-outcome measurement eY , Y = B,B′ on the individual entity Acts (Food). Hence, each
of these individual entities should be associated with the complex Hilbert space C2 of all ordered couples
of complex numbers. But, then, the standard Hilbert space formalism prescribes that both composite
entities The Animal Acts and The Animal eats the Food should be associated with the tensor product
Hilbert space C2⊗C2. We stress that we are studying here an ‘identification problem’, that is, the problem
of how the composite entity The Animal Acts (The Animal eats the Food) can be decomposed into the
individual entities Animal (Animal) and Acts (Food)’ in such a way that ‘these individual entities can be
recognised from measurements performed on the respective composite entities’. As such, we are doing an
operation that is opposite to what one typically does in Bell-type situations in quantum physics, where one
constructs or, better, ‘composes’, the measurements on the composite entity from measurements performed
on individual entities.

From a mathematical point of view, the vector spaces C4 and C2⊗C2 are isomorphic, and any isomor-
phism can be expressed in terms of the relationship between the corresponding orthonormal (ON) bases.
States of The Animal Acts are represented by unit vectors of C4, hence of C2⊗C2, which contains both vec-
tors representing ‘product states’ and vectors representing ‘entangled states’. Moreover, the vector space
L(C4) of all linear operators on C4 is isomorphic to the tensor product L(C2)⊗ L(C2), where L(C2) of all
linear operators on C2. Analogously, the tensor product L(C2)⊗L(C2) contains both self-adjoint operators
representing ‘product measurements’ and self-adjoint operators representing ‘entangled measurements’.

Now, let I : C4 −→ C2⊗C2 be an isomorphism mapping a given ON basis of C4 onto a given ON basis
of C2 ⊗C2. We say that a state p represented by the unit vector |p〉 ∈ C4 is a ‘product state’ with respect
to I, if two states pA and pB, represented by the unit vectors |pA〉 ∈ C2 and |pB〉 ∈ C2, respectively, exist
such that I|p〉 = |pA〉 ⊗ |pB〉. Otherwise, p is an ‘entangled state’ with respect to I. Next, we say that a
measurement e represented by the self-adjoint operator E on C4 is a ‘product measurement’ with respect
to I, if two measurements eX and eY , represented by the self-adjoint operators EX and EY , respectively,
on C2 exist such that IE I−1 = EX ⊗ EY . Otherwise, e is an ‘entangled measurement’ with respect to I.
Hence, the notion of entanglement crucially depends on the ‘isomorphism that is used to identify individual
entities within a given composite entity’.

With reference to the Bell-type setting presented in this section, one can then prove that, if the mea-
surements eXY and eXY ′ , X = A,A′, Y, Y ′ = B,B′, Y ′ 6= Y , are product measurements with respect to
the isomorphism I, then, for every state p of the composed entity, the ‘marginal law of Kolmogorovian
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probability’ is satisfied, that is, for every i = 1, 2,
∑

j Pp(XiYj) =
∑

j Pp(XiY
′
j ). Analogously, if the mea-

surements eXY and eX′Y , X,X ′ = A,A′, Y = B,B′, X ′ 6= X, are product measurements with respect to
the isomorphism I, then, for every state p of the composed entity, the marginal law is satisfied, that is, for
every j = 1, 2,

∑
i Pp(XiYj) =

∑
i Pp(X

′
iYj) (see Theorem 2, [41]). In the case the marginal law is satisfied

in all measurements, one can also prove that a unique isomorphism exists, which can be chosen to be the
identify operator (see, Theorem 4, [41]).

It follows from the above that, if the marginal law is violated, as it occurs in both conceptual tests in
Section 3,3 then one cannot find a unique isomorphism between C4 and C2⊗C2 such that all measurements
are product measurements with respect to this isomorphism. In this case, one cannot explain the violation
of the CHSH inequality as due to the usual situation in quantum physics where all measurements are
product measurements and only the initial, or pre-measurement, state is entangled. Furthermore, if the
marginal law is systematically violated, 4 distinct isomorphisms IXY , X = A,A′, Y = B,B′, exist such
that the measurement eXY is a product measurement with respect to IXY . As a consequence, there is
no unique isomorphism allowing to identify individual entities of a given composite entity. Finally, if we
consider a given isomorphism between C4 and C2⊗C2 with respect to which identifying individual entities
of a composite entity in a given test, then it may happen that both the pre-measurement state and all
measurements are entangled. This final remark suggests the following considerations.

Firstly, the non-classical connections which violate the CHSH inequality in both The Animal Acts
and The Animal eats the Food situations can be reasonably attributed to the fact that ‘the component
individual concepts carry meaning and further meaning is created in the combination process’. Since the
violation of the CHSH inequality indicates the presence of entanglement between the individual conceptual
entities, then it is reasonable to assume that ‘it is the quantum structure of entanglement which is able
to theoretically capture the meaning connections that are created in these cases’. This suggests, in a
quantum-theoretic perspective, that the initial state p of both composite entities The Animal Acts and
The Animal eats the Food should be an entangled state. This entangled state would then capture the
meaning connections that are created between Animal and Acts and also between Animal and Food when
the respondent read the introductory text and start the questionnaire.

Secondly, in both The Animal Acts and The Animal eats the Food situations, all measurements eXY ,
X = A,A′, Y = B,B′, violate the marginal law of Kolmogorovian probability. This suggests, again
in a quantum-theoretic perspective, that all these measurements should be entangled measurements. In
addition, in each measurement, all outcomes XiYj , i, j = 1, 2, correspond to combined concepts, e.g., The
Cat Meows, The Cat eats the Fish, etc., which are thus in turn connected by meaning. This also suggests
that all eigenstates pXiYj should be entangled states.

The two considerations above applied to the Hilbert space representation of both The Animal Acts
cognitive and web tests [41, 47]. We will see in the next section that these considerations also apply to the
empirical tests in in Section 3.

5 Quantum representation of data

We work out in this section a quantum representation in Hilbert space of the cognitive tests data in
Section 3, following the methodology developed in [48] and already applied to previous tests [41, 47].
The considerations in Section 4 suggest the following quantum mathematical representation for both The
Animal Acts and The Animal eats the Food situations.

3The marginal law is systematically violated in The Animal Acts test. For example, µ(A2B1) + µ(A2B2) = 0.8272 6=
0.2345 = µ(A2B

′
1) + µ(A2B

′
2). Analogously, the marginal law is systematically violated in The Animal eats the Food test. For

example, µ(A′1B1) + µ(A′1B2) = 0.9383 6= 0.1729 = µ(A′1B
′
1) + µ(A′1B

′
2).
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The composite conceptual entity is associated with the Hilbert space C4 of all ordered 4-tuples of
complex numbers. Let (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1)} be the unit vectors of the canonical
ON basis of C4 and let us consider the isomorphism I : C4 −→ C2 ⊗ C2 where this ON basis coincides
with the ON basis of the tensor product Hilbert space C2 ⊗C2 made up of the unit vectors (1, 0)⊗ (1, 0),
(1, 0)⊗ (0, 1), (0, 1)⊗ (1, 0) and (0, 1)⊗ (0, 1). In these ON bases, the initial state p of the composite entity
is represented by the unit vector |p〉 = (aeiα, beiβ, ceiγ , deiδ), where a, b, c, d ≥ 0, a2 + b2 + c2 + d2 = 1, α,
β, γ, δ ∈ < and < is the real line. One easily proves that |p〉 represents a product state if and only if the
following condition is satisfied:

adei(α+δ) − bcei(β+γ) = 0 (11)

Otherwise, p represents an entangled state.
Let us now represent the measurements eAB, eAB′ , eA′B and eA′B′ in Section 4. Each measurement

eXY , X = A,A′, Y = B,B′, has 4 outcomes X1Y1, X1Y2, X2Y1 and X2Y2 and 4 eigenstates pX1Y1 , pX1Y2 ,
pX2Y1 and pX2Y2 . As in Sections 3 and 4, we set, for every X = A,A′, Y = B,B′, X1Y1 = X2Y2 = +1
and X1Y2 = X2Y1 = −1. The measurement eXY is represented by the self-adjoint operator EXY on C4

or, equivalently, by the spectral family {|pX1Y1〉〈pX1Y1 |, |pX1Y2〉〈pX1Y2 |, |pX2Y1〉〈pX2Y1 |, |pX2Y2〉〈pX2Y2 |}, such
that the eigenstates pX1Y1 , pX1Y2 , pX2Y1 and pX2Y2 are represented by the eigenvectors

|p11〉 = (a11e
iα11 , b11e

iβ11 , c11e
iγ11 , d11e

iδ11) (12)

|p12〉 = (a12e
iα12 , b12e

iβ12 , c12e
iγ12 , d12e

iδ12) (13)

|p21〉 = (a21e
iα21 , b21e

iβ21 , c21e
iγ21 , d21e

iδ21) (14)

|p22〉 = (a22e
iα22 , b22e

iβ22 , c22e
iγ22 , d22e

iδ22) (15)

of EXY , respectively. In Equations (12)–(15), the coefficients are such that aij , bij , cij , dij ≥ 0 and
αij , βij , γij , δij ∈ <, i, j = 1, 2. For every X = A,A′, Y = B,B′, the self-adjoint operator EXY can
be expressed as a tensor product operator if and only if all unit vectors in Equations (12)–(15) represent
product states. Otherwise, EXY cannot be expressed as a tensor product operator, hence eXY is an entan-
gled measurement. For every X = A,A′, Y = B,B′, i, j = 1, 2, the probability Pp(XiYj) of obtaining the
outcome XiYj in a measurement of eXY on the composite entity in the state p is then given by the Born
rule of quantum probability, that is, Pp(XiYj) = |〈pij |p〉|2.

To find a quantum mathematical representation of the data in Section 3, for every measurement eXY ,
the unit vectors in (12)–(15) have to satisfy the following three sets of conditions.

(i) Normalization. The vectors in Equations (12)–(15) are unitary, that is,

a211 + b211 + c211 + d211 = 1 (16)

a212 + b212 + c212 + d212 = 1 (17)

a221 + b221 + c221 + d221 = 1 (18)

a222 + b222 + c222 + d222 = 1 (19)

(ii) Orthogonality. The vectors in Equations (12)–(15) are mutually orthogonal, that is,

0 = 〈p11|p12〉 = a11a12e
i(α12−α11) + b11b12e

i(β12−β11) + a11c12c
i(γ12−γ11) + d11d12e

i(δ12−δ11) (20)

0 = 〈p11|p21〉 = a11a21e
i(α21−α11) + b11b21e

i(β21−β11) + a11c21c
i(γ21−γ11) + d11d21e

i(δ21−δ11) (21)

0 = 〈p11|p22〉 = a11a22e
i(α22−α11) + b11b22e

i(β22−β11) + a11c22c
i(γ22−γ11) + d11d22e

i(δ22−δ11) (22)

0 = 〈p12|p21〉 = a12a21e
i(α21−α12) + b12b21e

i(β21−β12) + a12c21c
i(γ21−γ12) + d12d21e

i(δ21−δ12) (23)

0 = 〈p12|p22〉 = a12a22e
i(α22−α12) + b12b22e

i(β22−β12) + a12c22c
i(γ22−γ12) + d12d22e

i(δ22−δ12) (24)

0 = 〈p21|p22〉 = a21a22e
i(α22−α21) + b21b22e

i(β22−β21) + a21c22c
i(γ22−γ21) + d21d22e

i(δ22−δ21) (25)
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(iii) Probabilities. For every X = A,A′, Y = B,B′, i, j = 1, 2, the probability Pp(XiYj) coincides with
the empirical probability µ(XiYj) in Tables 1 and 2, that is,

µ(X1Y1) = |〈p11|p〉|2 = a2a211 + b2b211 + c2c211 + d2d211 +

+ 2aba11b11 cos(α− α11 − β + β11) +

+ 2aca11c11 cos(α− α11 − γ + γ11) +

+ 2ada11d11 cos(α− α11 − δ + δ11) +

+ 2bcb11c11 cos(β − β11 − γ + γ11) +

+ 2bdb11d11 cos(β − β11 − δ + δ11) +

+ 2cdc11d11 cos(γ − γ11 − δ + δ11) (26)

µ(X1Y2) = |〈p12|p〉|2 = a2a212 + b2b212 + c2c212 + d2d212 +

+ 2aba12b12 cos(α− α12 − β + β12) +

+ 2aca12c12 cos(α− α12 − γ + γ12) +

+ 2ada12d12 cos(α− α12 − δ + δ12) +

+ 2bcb12c12 cos(β − β12 − γ + γ12) +

+ 2bdb12d12 cos(β − β12 − δ + δ12) +

+ 2cdc12d12 cos(γ − γ12 − δ + δ12) (27)

µ(X2Y1) = |〈p21|p〉|2 = a2a221 + b2b221 + c2c221 + d2d221 +

+ 2aba21b21 cos(α− α21 − β + β21) +

+ 2aca21c21 cos(α− α21 − γ + γ21) +

+ 2ada21d21 cos(α− α21 − δ + δ21) +

+ 2bcb21c21 cos(β − β21 − γ + γ21) +

+ 2bdb21d21 cos(β − β21 − δ + δ21) +

+ 2cdc21d21 cos(γ − γ21 − δ + δ21) (28)

µ(X2Y2) = |〈p22|p〉|2 = a2a222 + b2b222 + c2c222 + d2d222 +

+ 2aba22b22 cos(α− α22 − β + β22) +

+ 2aca22c22 cos(α− α22 − γ + γ22) +

+ 2ada22d22 cos(α− α22 − δ + δ22) +

+ 2bcb22c22 cos(β − β22 − γ + γ22) +

+ 2bdb22d22 cos(β − β22 − δ + δ22) +

+ 2cdc22d22 cos(γ − γ22 − δ + δ22) (29)

Then, let us represent represent the initial state p of the composite conceptual entity by the unit vector

|p〉 =
1√
2

(0, 1,−1, 0) (30)

The vector in Equation (30) represents a maximally entangled state and corresponds to the ‘singlet spin
state’ that is used in typical Bell-type tests in quantum physics (see Section 1). There are different reasons
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for this choice. Firstly, our aim is to incorporate all possible entanglement of the state-measurement
situation in the pre-measurement state, so that the ensuing measurements are as close as possible to
product measurements. We are however aware that some measurements, if not all, are entangled, due to
the violation of the marginal law (see Section 4). Secondly, it is known that the singlet spin state has
specific symmetry properties, namely, it is always represented by a unit vector of the form in Equation (30)
independently of the ON basis in which the unit vector is expressed. This would intuitively correspond
to the fact both The Animal Acts and The Animal eats the Food express more abstract concepts than the
corresponding outcomes.

Thus, for every X = A,A′, Y = B,B′, conditions (i)–(iii) identify 20 equations which should be satisfied
by the 32 real variables aij , bij , cij , dij , αij , βij , γij , δij , i, j = 1, 2. To simplify the calculation, we set, for
every i, j = 1, 2, αij = βij = γij = δij = θij , where θij ∈ <. Thus, each unit vector in Equations (12)–(15)
takes the form |pij〉 = eiθij (aij , bij , cij , dij), i, j = 1, 2. This reduces the total number of unknown variables
to 20.

We are now ready to represent the empirical data in Section 3 in Hilbert space. We start by The Animal
Acts test.

The eigenstates of the measurement eAB are represented by the unit vectors

|pA1B1〉 = ei174.91
◦
(0.97,−0.10, 0.21, 0) (31)

|pA1B2〉 = ei0.38
◦
(0, 0.88, 0.38, 0.29) (32)

|pA2B1〉 = ei32.54
◦
(0.23, 0.35,−0.90, 0.12) (33)

|pA2B2〉 = ei98.90
◦
(0.03, 0.32, 0,−0.95) (34)

By applying the entanglement condition in Equation (11), we can verify that all unit vectors are entangled,
hence eAB is an entangled measurement. However, one observes that the condition in Equation (11) shows
a relatively larger deviation from zero in the unit vector |pA2B1〉. We can then say that the eigenstate
pA2B1 , corresponding to The Bear Growls, is a ‘relatively more entangled state’.

The eigenstates of the measurement eAB′ are represented by the unit vectors

|pA1B′1
〉 = ei0.07

◦
(0.14, 0.24,−0.96, 0.08) (35)

|pA1B′2
〉 = ei18.24

◦
(0.01, 0.31, 0,−0.95) (36)

|pA2B′1
〉 = ei64.68

◦
(−0.02, 0.92, 0.25, 0.30) (37)

|pA2B′2
〉 = ei132.68

◦
(0.99,−0.02, 0.14, 0) (38)

Also in this case, all unit vectors are entangled, hence eAB′ is an entangled measurement. The entanglement
condition in Equation (11) shows a relatively larger deviation from zero in the unit vector |pA1B′1

〉. We
can then say that the eigenstate pA1B′1

, corresponding to The Horse Snorts, is a ‘relatively more entangled
state’.

The eigenstates of the measurement eA′B are represented by the unit vectors

|pA′1B1
〉 = ei45.48

◦
(0.25, 0.37,−0.88, 0.17) (39)

|pA′1B2
〉 = ei2.21

◦
(0.01, 0.84, 0.42, 0.35) (40)

|pA′2B1
〉 = ei308.44

◦
(0.97,−0.13, 0.22, 0) (41)

|pA′2B2
〉 = ei163.38

◦
(0.05, 0.39, 0,−0.92) (42)

All unit vectors are entangled, hence eA′B is an entangled measurement. The entanglement condition in
Equation (11) shows a relatively larger deviation from zero in the unit vector |pA′1B1

〉. We can then say
that the eigenstate pA′1B1

, corresponding to The Tiger Growls, is a ‘relatively more entangled state’.
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Finally, the eigenstates of the measurement eA′B′ are represented by the unit vectors

|pA′1B′1〉 = ei353.32
◦
(0.96,−0.18, 0.23, 0) (43)

|pA′1B′2〉 = ei143.07
◦
(0.07, 0.35, 0,−0.93) (44)

|pA′2B′1〉 = ei0.58
◦
(0.01, 0.78, 0.55, 0.30) (45)

|pA′2B′2〉 = ei41.95
◦
(0.29, 0.49,−0.80, 0.20) (46)

All unit vectors are entangled, hence eA′B′ is an entangled measurement. The entanglement condition in
Equation (11) shows a relatively larger deviation from zero in the unit vector |pA′2B′2〉. We can then say
that the eigenstate pA′2B′2 , corresponding to The Cat Meows , is a ‘relatively more entangled state’.

Let us now come to the representation of empirical data of The Animal eats the Food test. The
eigenstates of the measurements eAB, eAB′ , eA′B and eA′B′ are respectively represented by the 4 unit
vectors

|pA1B1〉 = ei156.99
◦
(0.91,−0.06, 0.41, 0) (47)

|pA1B2〉 = ei0.38
◦
(0.01, 0.97, 0.13, 0.22) (48)

|pA2B1〉 = ei117.49
◦
(0.41, 0.11,−0.90, 0.03) (49)

|pA2B2〉 = ei160.39
◦
(0.02, 0.22, 0,−0.97) (50)

|pA1B′1
〉 = ei45.38

◦
(0.22, 0.49,−0.84, 0.12) (51)

|pA1B′2
〉 = ei2.20

◦
(0.01, 0.83, 0.52, 0.19) (52)

|pA2B′1
〉 = ei308.12

◦
(0.97,−0.13, 0.18, 0) (53)

|pA2B′2
〉 = ei158.68

◦
(0.03, 0.22, 0,−0.97) (54)

|pA′1B1
〉 = ei45.43

◦
(0, 0.47,−0.87, 0.17) (55)

|pA′1B2
〉 = ei2.21

◦
(0.02, 0.81, 0.50, 0.31) (56)

|pA′2B1
〉 = ei337.01

◦
(0.99,−0.01,−0.01, 0) (57)

|pA′2B2
〉 = ei163.38

◦
(0, 0.35, 0,−0.94) (58)

|pA′1B′1〉 = ei353.52
◦
(0.97,−0.13, 0.19, 0) (59)

|pA′1B′2〉 = ei143.07
◦
(0.02, 0.16, 0,−0.99) (60)

|pA′2B′1〉 = ei0.58
◦
(0.02, 0.85, 0.50, 0.14) (61)

|pA′2B′2〉 = ei42.01
◦
(0.22, 0.48,−0.84, 0.08) (62)

Also in this case, referring to Equation (11), one can show that all unit vectors in Equations (47)–(62) are
entangled, hence ‘all measurements eAB, eAB′ , eA′B and eA′B′ are entangled measurements’. In addition,
as in The Animal Acts test, in each measurement, one eigenstate is represented by a unit vectors which
exhibits a larger deviation in the entanglement condition in Equation (11). These ‘relatively more entangled
states’ are pA2B1 , corresponding to The Cow eats the Grass in eAB, pA1B′1

, corresponding to The Cat eats
the Fish in eAB′ , pA′1B1

, corresponding to The Horse eats the Grass in eA′B, and pA′2B′2 , corresponding to
The Squirrel eats the Nuts in eA′B′ .
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We have thus completed the quantum mathematical representation of the data on The Animal Acts
and The Animal eats the Food tests. This representation also suggests additional considerations, as follows.

We firstly observe that all measurements are entangled in the quantum representation in both The
Animal Acts and The Animal eats the Food situations. This result is due to the violation of the marginal
law of probability in both tests which forbids concentrating all the entanglement of the state-measurement
situation into the state, as we have seen in Section 4. Moreover, in each measurement, all eigenstates are
entangled. This result confirms with our suggestion in Section 4 that ‘quantum entanglement theoretically
captures the meaning connections between the individual concepts that form the composite conceptual en-
tity, and that these meaning connections are not predetermined, but are created when the test is performed
and each respondent interacts with the composite entity’.

Secondly, in both situations, there are some outcome eigenstates which exhibit a relatively higher degree
of entanglement than others, which can exactly be explained with the fact that entanglement captures
meaning connections, hence higher degrees of entanglement correspond to higher meaning connections.
For example, in The Animal Acts situation, the eigenstate pA2B1 of the measurement eAB, corresponding
to The Bear Growls, is relatively more entangled than the other eigenstates of eAB, which can be naturally
explained by the fact that the individual items Bear and Growls, which are concepts themselves, are
relatively more connected by meaning. As a matter of fact, if we look at empirical probabilities (see Table
1, Section 3), we note that the outcome A2B1, corresponding to The Bear Growls, scores a high probability
to be judged as a good example of the conceptual combination The Animal Acts. Vice versa, items like
Bear Meows and Horse Growls score a low probability and are less connected by meaning. And, indeed, the
corresponding eigenstates are relatively less entangled. Analogously, in The Animal eats the Food situation,
the eigenstate pA′2B′2 of the measurement eA′B′ , corresponding to The Squirrel eats the Nuts, is relatively
more entangled than the other outcome eigenstates of eA′B′ , which can be again explained by the fact
that the individual items Squirrel and Nuts, which are concepts themselves, are relatively more connected
by meaning. And, indeed, if we look at empirical probabilities (see Table 2, Section 3), we note that the
outcome A′2B

′
2, corresponding to The Squirrel eats the Nuts, scores a high probability to be judged as a

good example of the conceptual combination The Animal eats the Food. On the contrary, items like The
Cow eats the Meat, The Cat eats the Nuts and The Squirrel eats the Grass score a low probability and are
less meaning-connected. And, indeed, the corresponding eigenstates are relatively less entangled.

Thirdly, we observe that the quantum representation of the cognitive tests appears to be more complex
and less symmetric than the quantum representation of the information retrieval tests on the web in [46] (see
[47]), where all measurements were entangled but each spectral measure contained two product eigenstates
and two entangled eigenstates. The reason is that many judgement probabilities were zero in [46], due
to the fact that human minds are able to create additional meaning connections between concepts than
corpuses of documents.

Fourthly, we observe that the violation of Cirel’son bound in The Animal eats the Food situation can
still be explained in terms of quantum entanglement, in contrast to widespread beliefs. Hence, there is
quantum entanglement also beyond Cirel’son bound, but this type of entanglement involves both states
and measurements. This result is important and we will devote the next section to deepen it.

6 Quantum entanglement beyond Cirel’son bound

The empirical results in the cognitive test on The Animal eats the Food presented in Section 3 show a
significant violation of the Cirel’son bound and, as such, they confirm the results in the document retrieval
tests on the web in [32] and [46]. As we have noticed throughout the paper, these results contrast with
widespread beliefs in quantum physics. It is thus worth to carefully explain their meaning and implications.

The original question behind the determination of the Cirel’son bound was whether there is a funda-
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mental limit to quantum nonlocality, that is, whether the correlations exhibited by two far away physical
entities should satisfy any condition in order to represent them in the mathematical formalism of quantum
theory – this problem is also connected with the old problem of exploiting quantum nonlocality to send
a faster than light signal between far away entities (see, e.g., [9]). One then considers a typical Bell-type
situation, as the one presented in Section 1, performs a set of 4 measurements on a composite entity,
made up of two far away individual entities, by separately performing each time one measurement on one
individual entity and one measurement on the other, and deduces that the CHSH factor in Equation (1) is
bound by the value ∆QMC = 2

√
2 ≈ 2.83 in quantum theory [6, 7]. Hence, the Cirel’son bound obtained in

this way is usually considered, especially by quantum physicists, as the limit outside which the correlations
exhibited by any two entities cannot be modelled within the Hilbert space formalism of quantum theory
[6, 7].

On the other side, we have proved, in this and in other papers that it is possible to represented in Hilbert
space empirical data collected in Bell-type tests which violate the CHSH inequality by an amount which
also exceeds Cirel’son bound (see, e.g., [47, 48]). This means that the statistical correlations exhibited
in these Bell-type tests, which are anyway non-classical and non-signalling, can be represented within
quantum theory.

As we have seen in Sections 4 and 5, the fundamental element which makes it possible the above
mentioned quantum mathematical representation in Hilbert space is the suggestion that the measurements
performed on the composite entity have outcomes that are products of outcomes obtained in measurements
separately performed on individual entities, but their eigenstates are generally entangled, that is, they
are entangled measurements, hence they cannot generally be decomposed into product measurements.
Cirel’son, and the scholars who investigated this bound after him, did not envisage such alternative, hence
they implicitly assumed only product measurements in the derivation of the Cirel’son bound. If one
also allows the possibility of using entangled measurements, then one can in principle violate the CHSH
inequality in Equation (1) by any amount within its mathematical limit, i.e. between −4 and +4 (see also
[48]).

The result above is relevant, in our opinion, for various reasons. Firstly, it follows from a careful in-
vestigation of the identification problem in which individual entities are identified through measurements
that are performed on composite entities. Secondly, it shows that a violation of Bell inequalities which
also exceeds the Cirel’son bound can still be explained in terms of quantum entanglement. More impor-
tant, this ‘quantum entanglement beyond Cirel’son bound’ is deeper and stronger than the entanglement
that is generally believed to be responsible of the violation of Bell inequalities in quantum physics., i.e.
‘entanglement in the state’. Indeed, a violation of the Cirel’son bound, in addition to a violation of Bell
inequalities, can be explained by assuming the presence of entanglement in both the state and the measure-
ments, i.e. ‘state-measurement entanglement’. Thirdly, together with the violation of the marginal law,
the violation of the Cirel’son bound may have deep implications on the foundations of quantum physics,
as it could shed new light on the problem of faster than light communication and signalling and could
explain apparent deviations from quantum predictions in some Bell-type tests in physics. These deviations
have been studied putting forward the hypothesis that they would be due to measurement errors [52, 53],
however in [54] it is shown that they might well be of a fundamental nature and not be due to measurement
errors. If the analysis put forward in [54] turns out to be true a whole new perspective is needed also on
the physical violation of the Bell inequalities where experimentally results a violation of the marginal law
[10, 13], indicating that the type of signalling believed to be possible as a consequence of the violation of
the marginal law is ‘not’ the one imagined taking place and hence would not, due to its different nature,
be able to be faster than light even if the coincidence events are space-like separated events [54].
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