24,941 research outputs found

    ANTIDS: Self-Organized Ant-based Clustering Model for Intrusion Detection System

    Full text link
    Security of computers and the networks that connect them is increasingly becoming of great significance. Computer security is defined as the protection of computing systems against threats to confidentiality, integrity, and availability. There are two types of intruders: the external intruders who are unauthorized users of the machines they attack, and internal intruders, who have permission to access the system with some restrictions. Due to the fact that it is more and more improbable to a system administrator to recognize and manually intervene to stop an attack, there is an increasing recognition that ID systems should have a lot to earn on following its basic principles on the behavior of complex natural systems, namely in what refers to self-organization, allowing for a real distributed and collective perception of this phenomena. With that aim in mind, the present work presents a self-organized ant colony based intrusion detection system (ANTIDS) to detect intrusions in a network infrastructure. The performance is compared among conventional soft computing paradigms like Decision Trees, Support Vector Machines and Linear Genetic Programming to model fast, online and efficient intrusion detection systems.Comment: 13 pages, 3 figures, Swarm Intelligence and Patterns (SIP)- special track at WSTST 2005, Muroran, JAPA

    SMART: Unique splitting-while-merging framework for gene clustering

    Get PDF
    Copyright @ 2014 Fa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named “splitting merging awareness tactics” (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1) needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to many different applications, (3) offering superior performance compared with counterpart algorithms.National Institute for Health Researc

    Identification of Invariant Sensorimotor Structures as a Prerequisite for the Discovery of Objects

    Full text link
    Perceiving the surrounding environment in terms of objects is useful for any general purpose intelligent agent. In this paper, we investigate a fundamental mechanism making object perception possible, namely the identification of spatio-temporally invariant structures in the sensorimotor experience of an agent. We take inspiration from the Sensorimotor Contingencies Theory to define a computational model of this mechanism through a sensorimotor, unsupervised and predictive approach. Our model is based on processing the unsupervised interaction of an artificial agent with its environment. We show how spatio-temporally invariant structures in the environment induce regularities in the sensorimotor experience of an agent, and how this agent, while building a predictive model of its sensorimotor experience, can capture them as densely connected subgraphs in a graph of sensory states connected by motor commands. Our approach is focused on elementary mechanisms, and is illustrated with a set of simple experiments in which an agent interacts with an environment. We show how the agent can build an internal model of moving but spatio-temporally invariant structures by performing a Spectral Clustering of the graph modeling its overall sensorimotor experiences. We systematically examine properties of the model, shedding light more globally on the specificities of the paradigm with respect to methods based on the supervised processing of collections of static images.Comment: 24 pages, 10 figures, published in Frontiers Robotics and A

    The Fractal Geometry of the Cosmic Web and its Formation

    Full text link
    The cosmic web structure is studied with the concepts and methods of fractal geometry, employing the adhesion model of cosmological dynamics as a basic reference. The structures of matter clusters and cosmic voids in cosmological N-body simulations or the Sloan Digital Sky Survey are elucidated by means of multifractal geometry. A non-lacunar multifractal geometry can encompass three fundamental descriptions of the cosmic structure, namely, the web structure, hierarchical clustering, and halo distributions. Furthermore, it explains our present knowledge of cosmic voids. In this way, a unified theory of the large-scale structure of the universe seems to emerge. The multifractal spectrum that we obtain significantly differs from the one of the adhesion model and conforms better to the laws of gravity. The formation of the cosmic web is best modeled as a type of turbulent dynamics, generalizing the known methods of Burgers turbulence.Comment: 35 pages, 8 figures; corrected typos, added references; further discussion of cosmic voids; accepted by Advances in Astronom

    Representation Learning for Clustering: A Statistical Framework

    Full text link
    We address the problem of communicating domain knowledge from a user to the designer of a clustering algorithm. We propose a protocol in which the user provides a clustering of a relatively small random sample of a data set. The algorithm designer then uses that sample to come up with a data representation under which kk-means clustering results in a clustering (of the full data set) that is aligned with the user's clustering. We provide a formal statistical model for analyzing the sample complexity of learning a clustering representation with this paradigm. We then introduce a notion of capacity of a class of possible representations, in the spirit of the VC-dimension, showing that classes of representations that have finite such dimension can be successfully learned with sample size error bounds, and end our discussion with an analysis of that dimension for classes of representations induced by linear embeddings.Comment: To be published in Proceedings of UAI 201

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Incompatibility boundaries for properties of community partitions

    Get PDF
    We prove the incompatibility of certain desirable properties of community partition quality functions. Our results generalize the impossibility result of [Kleinberg 2003] by considering sets of weaker properties. In particular, we use an alternative notion to solve the central issue of the consistency property. (The latter means that modifying the graph in a way consistent with a partition should not have counterintuitive effects). Our results clearly show that community partition methods should not be expected to perfectly satisfy all ideally desired properties. We then proceed to show that this incompatibility no longer holds when slightly relaxed versions of the properties are considered, and we provide in fact examples of simple quality functions satisfying these relaxed properties. An experimental study of these quality functions shows a behavior comparable to established methods in some situations, but more debatable results in others. This suggests that defining a notion of good partition in communities probably requires imposing additional properties.Comment: 17 pages, 3 figure
    • …
    corecore