7 research outputs found

    Towards Playlist Generation Algorithms Using RNNs Trained on Within-Track Transitions *

    Get PDF
    ABSTRACT We introduce a novel playlist generation algorithm that focuses on the quality of transitions using a recurrent neural network (RNN). The proposed model assumes that optimal transitions between tracks can be modelled and predicted by internal transitions within music tracks. We introduce modelling sequences of high-level music descriptors using RNNs and discuss an experiment involving different similarity functions, where the sequences are provided by a musical structural analysis algorithm. Qualitative observations show that the proposed approach can effectively model transitions of music tracks in playlists

    Representation, Exploration, and Recommendation of Music Playlists

    Get PDF
    abstract: Playlists have become a significant part of the music listening experience today because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. Similar concepts can be applied to music to learn fixed length representations for playlists and the learned representations can then be used for downstream tasks such as playlist comparison and recommendation. In this thesis, the problem of learning a fixed-length representation is formulated in an unsupervised manner, using Neural Machine Translation (NMT), where playlists are interpreted as sentences and songs as words. This approach is compared with other encoding architectures and evaluated using the suite of tasks commonly used for evaluating sentence embeddings, along with a few additional tasks pertaining to music. The aim of the evaluation is to study the traits captured by the playlist embeddings such that these can be leveraged for music recommendation purposes. This work lays down the foundation for analyzing music playlists and learning the patterns that exist in the playlists in an end-to-end manner. This thesis finally concludes with a discussion on the future direction for this research and its potential impact in the domain of Music Information Retrieval.Dissertation/ThesisMasters Thesis Computer Science 201

    Recommending Structured Objects: Paths and Sets

    Get PDF
    Recommender systems have been widely adopted in industry to help people find the most appropriate items to purchase or consume from the increasingly large collection of available resources (e.g., books, songs and movies). Conventional recommendation techniques follow the approach of ``ranking all possible options and pick the top'', which can work effectively for single item recommendation but fall short when the item in question has internal structures. For example, a travel trajectory with a sequence of points-of-interest or a music playlist with a set of songs. Such structured objects pose critical challenges to recommender systems due to the intractability of ranking all possible candidates. This thesis study the problem of recommending structured objects, in particular, the recommendation of path (a sequence of unique elements) and set (a collection of distinct elements). We study the problem of recommending travel trajectories in a city, which is a typical instance of path recommendation. We propose methods that combine learning to rank and route planning techniques for efficient trajectory recommendation. Another contribution of this thesis is to develop the structured recommendation approach for path recommendation by substantially modifying the loss function, the learning and inference procedures of structured support vector machines. A novel application of path decoding techniques helps us achieve efficient learning and recommendation. Additionally, we investigate the problem of recommending a set of songs to form a playlist as an example of the set recommendation problem. We propose to jointly learn user representations by employing the multi-task learning paradigm, and a key result of equivalence between bipartite ranking and binary classification enables efficient learning of our set recommendation method. Extensive evaluations on real world datasets demonstrate the effectiveness of our proposed approaches for path and set recommendation
    corecore