
Recommending Structured Objects:
Paths and Sets

Dawei Chen

A thesis submitted for the degree of
Doctor of Philosophy of

The Australian National University

August 2019

c� 2019 Dawei Chen

All Rights Reserved

Declaration

The majority of the work in this thesis has been published in conference proceedings
and preprints, I list them below.

• Dawei Chen, Cheng Soon Ong, Lexing Xie.
Learning points and routes to recommend trajectories.
In Proceedings of the ACM Conference on Information and Knowledge Management,
pages 2227–2232. 2016.

• Dawei Chen, Dongwoo Kim, Lexing Xie, Minjeong Shin, Aditya Krishna Menon,
Cheng Soon Ong, Iman Avazpour, John Grundy.
PathRec: Visual analysis of travel route recommendations.
In Proceedings of the ACM Recommender Systems Conference, pages 364–365. 2017.

• Aditya Krishna Menon, Dawei Chen, Lexing Xie, Cheng Soon Ong.
Revisiting revisits in trajectory recommendation.
In Proceedings of the International Workshop on Recommender Systems for Citizens,
pages 2:1–2:6. 2017.

• Dawei Chen, Lexing Xie, Aditya Krishna Menon, Cheng Soon Ong.
Structured recommendation.
CoRR, abs/1706.09067. 2017. https://arxiv.org/abs/1706.09067

• Dawei Chen, Cheng Soon Ong, Aditya Krishna Menon.
Cold-start playlist recommendation with multitask learning.
CoRR, abs/1901.06125. 2019. https://arxiv.org/abs/1901.06125

Except where otherwise indicated, this thesis is my own original work.

Dawei Chen
12 August 2019

https://arxiv.org/abs/1706.09067
https://arxiv.org/abs/1901.06125

Primary Supervisor

Cheng Soon Ong
Principal Research Scientist, Data61, CSIRO
Adjunct Associate Professor, The Australian National University
Canberra, ACT, Australia

Associate Supervisors

Lexing Xie
Professor, The Australian National University
Canberra, ACT, Australia

Aditya Krishna Menon
Honorary Senior Lecturer, The Australian National University
Senior Research Scientist, Google
New York, NY, USA

To my family.

Acknowledgement

First, I would like to express my deepest gratitude to my primary supervisor, Dr.
Cheng Soon Ong, for his inspiration and guidance during my doctoral study. I greatly
appreciate his tireless efforts for helping me formulate my research problems as well
as guiding me towards making good decisions among the exponential number of
possible design choices. This thesis would not be possible if not for his dedication.
I would like to sincerely thank my associate supervisor, Dr. Lexing Xie, for her
support of my PhD application and her invaluable guidance during the past few years.
I greatly appreciate her help in presenting my work in CIKM when my visa was
granted too late to attend the conference. My sincere thanks also goes to my associate
supervisor, Dr. Aditya Krishna Menon, for contributing a large number of hours to
help with my research, including but not limited to deriving equations, editing paper
drafts and challenging me to prove theorems. His style of working from the most
basic principles has always been inspiring to me.

I would also like to thank all members in the ANU Computational Media Lab
for organising various fun group activities and social events. I am indebted to the
Australian National University, NICTA and CSIRO Data61 for providing financial and
technical support for my research. Last but not the least, I want to thank my family
for their encouragement and constant support.

ix

Abstract

Recommender systems have been widely adopted in industry to help people find the
most appropriate items to purchase or consume from the increasingly large collection
of available resources (e.g., books, songs and movies). Conventional recommendation
techniques follow the approach of “ranking all possible options and pick the top”,
which can work effectively for single item recommendation but fall short when the
item in question has internal structures. For example, a travel trajectory with a
sequence of points-of-interest or a music playlist with a set of songs. Such structured
objects pose critical challenges to recommender systems due to the intractability of
ranking all possible candidates.

This thesis study the problem of recommending structured objects, in particular,
the recommendation of path (a sequence of unique elements) and set (a collection
of distinct elements). We study the problem of recommending travel trajectories in
a city, which is a typical instance of path recommendation. We propose methods
that combine learning to rank and route planning techniques for efficient trajectory
recommendation. Another contribution of this thesis is to develop the structured
recommendation approach for path recommendation by substantially modifying the
loss function, the learning and inference procedures of structured support vector
machines. A novel application of path decoding techniques helps us achieve efficient
learning and recommendation. Additionally, we investigate the problem of recom-
mending a set of songs to form a playlist as an example of the set recommendation
problem. We propose to jointly learn user representations by employing the multi-task
learning paradigm, and a key result of equivalence between bipartite ranking and
binary classification enables efficient learning of our set recommendation method.
Extensive evaluations on real world datasets demonstrate the effectiveness of our
proposed approaches for path and set recommendation.

xi

Contents

Declaration iii

Acknowledgement ix

Abstract xi

List of Figures xviii

List of Tables xix

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis outline . 4

2 Background 5
2.1 The problem of recommending structured objects 5

2.1.1 Path recommendation . 6
2.1.2 Set recommendation . 7

2.2 Techniques for recommender systems . 7
2.2.1 Recommendation strategies . 7
2.2.2 Matrix factorisation techniques . 8

2.3 Structured prediction . 11
2.3.1 Structured support vector machines 11
2.3.2 Methods to train the SSVMs . 14

2.4 Path decoding in Markov chains . 17
2.4.1 The forward and backward approaches in HMM 18
2.4.2 The list Viterbi algorithm . 22
2.4.3 Sub-tour elimination in s-t path TSP 26
2.4.4 Heuristic algorithms . 27

2.5 Binary classification and bipartite ranking 28
2.5.1 Loss functions for binary classification 28
2.5.2 Loss functions for bipartite ranking 29

xiii

xiv Contents

2.6 Multi-task learning . 31
2.7 Summary . 32

3 Feature-based Travel Trajectory Recommendation 33
3.1 Introduction . 33
3.2 Problem statement . 35
3.3 Related work . 35

3.3.1 Solutions for typical travel recommendation problems 36
3.3.2 Methods for ranking locations and trajectories 36
3.3.3 Features and information employed 37

3.4 Query features and POI transition . 37
3.5 Tour recommendation . 39

3.5.1 POI ranking and route planning 39
3.5.2 Combining ranking and transition 40
3.5.3 Avoiding sub-tours . 41
3.5.4 Incorporating time constraints . 43
3.5.5 Discussion . 43
3.5.6 Measuring performance . 44

3.6 Experiments . 45
3.6.1 Photo trajectories from five cities 45
3.6.2 Experimental setup . 46
3.6.3 Results . 47
3.6.4 An illustrative example . 49

3.7 Summary . 50

4 Structured Recommendation for Travel Trajectories 51
4.1 Introduction . 51
4.2 Problem statement . 52
4.3 A structured recommendation approach 53

4.3.1 Trajectory recommendation as structured prediction 53
4.3.2 Global cohesion and the SP model 54
4.3.3 Multiple ground truths and the SR model 54
4.3.4 Eliminating loops in recommendation 55
4.3.5 SP and SR model training . 56
4.3.6 Discussion . 57
4.3.7 Summary of proposed methods 59

4.4 Experiments . 59
4.4.1 Photo trajectory datasets . 59

Contents xv

4.4.2 Evaluation setting . 60
4.4.3 Results and discussion . 62
4.4.4 A qualitative example . 65

4.5 Related work . 66
4.6 Summary . 67

5 Music Playlist Recommendation with Multi-task Learning 69
5.1 Introduction . 69
5.2 Problem statement . 70
5.3 Related work . 72

5.3.1 Playlist recommendation . 73
5.3.2 Cold-start recommendation . 73
5.3.3 Connections between bipartite ranking and binary classification 74

5.4 Multi-task learning for playlist recommendation 74
5.4.1 Multi-task learning objective . 75
5.4.2 Cold-start playlist recommendation 76
5.4.3 Ranking songs via Bottom-Push 77
5.4.4 Efficient optimisation . 78

5.5 Experiments . 79
5.5.1 Dataset . 79
5.5.2 Features . 80
5.5.3 Experimental setup . 81
5.5.4 Results . 85

5.6 Discussion . 91
5.6.1 Multi-task learning, bipartite ranking and binary classification . 91
5.6.2 Cold-start playlist recommendation versus playlist continuation 92
5.6.3 Information of songs, playlists and users 92

5.7 Summary . 93

6 Conclusion 95
6.1 Research summary . 95
6.2 Future work . 96

A Cutting-plane Methods 97
A.1 Overview of cutting-plane methods . 97
A.2 Methods to generate query points . 99

A.2.1 Method of Kelley-Cheney-Goldstein 100
A.2.2 Chebyshev centre method . 100
A.2.3 Analytic centre cutting-plane method 101

xvi Contents

A.2.4 Centre of gravity or Bayes point method 101

B Linking Losses for Bipartite Ranking and Binary Classification 103

C Time Constraints for Travel Trajectory Recommendation 107

D Details of Travel Trajectory Recommendation Experiments 111
D.1 Features . 111

D.1.1 POI-query features . 111
D.1.2 Transition features . 111

D.2 Evaluation metrics . 112
D.2.1 F1 score on points . 113
D.2.2 F1 score on pairs . 113
D.2.3 Kendall’s t with ties . 114

D.3 Additional empirical results . 114

E Proof of Lemma 1 121

Bibliography 125

List of Figures

2.1 Illustration of Matrix Factorisation. 9
2.2 Graphical models of PMF and BPMF. 10
2.3 Graphical model of a hidden Markov model (HMM). 18

3.1 Three settings of travel recommendation problems. 34
3.2 Transition matrices for two POI features. 39
3.3 Examples of F1 versus pairs-F1 as evaluation metric. 45
3.4 Example of recommendations from different methods. 50

4.1 Histograms of the number of trajectories per query. 60
4.2 Histograms of trajectory length. 60
4.3 F1 score on points for short and long trajectories on Glasgow. 64
4.4 F1 score on pairs for short and long trajectories on Glasgow. 64
4.5 Kendall’s t for short and long trajectories on Glasgow. 64
4.6 Example of a recommended trajectory. 65

5.1 Three settings of cold-start playlist recommendation. 70
5.2 Histogram of the number of playlists per user. 81
5.3 Histogram of song popularity. 81
5.4 Illustration of a non-linear transformation for Novelty and Spread. . . . 85
5.5 Hit Rate of playlist recommendation in three cold-start settings. 86
5.6 Raw Novelty of playlist recommendation in three cold-start settings. . . 89

A.1 Illustration of cutting-plane methods. 98

D.1 F1 score on points for trajectories on Osaka. 117
D.2 F1 score on pairs for trajectories on Osaka. 117
D.3 Kendall’s t for trajectories on Osaka. 117
D.4 F1 score on points for trajectories on Toronto. 118
D.5 F1 score on pairs for trajectories on Toronto. 118
D.6 Kendall’s t for trajectories on Toronto. 118
D.7 F1 score on points for trajectories on Edinburgh. 119
D.8 F1 score on pairs for trajectories on Edinburgh. 119

xvii

xviii LIST OF FIGURES

D.9 Kendall’s t for trajectories on Edinburgh. 119
D.10 F1 score on points for trajectories on Melbourne. 120
D.11 F1 score on pairs for trajectories on Melbourne. 120
D.12 Kendall’s t for trajectories on Melbourne. 120

List of Tables

2.1 Techniques for recommending structured objects. 6
2.2 Time and space complexities of three typical list Viterbi algorithms. . . 26

3.1 Statistics of trajectory datasets. 46
3.2 Information captured by different trajectory recommendation methods. 46
3.3 Performance comparison in terms of F1 scores. 48
3.4 Performance comparison in terms of pairs-F1 scores. 48

4.1 Challenges of travel trajectory recommendation and proposed solutions. 52
4.2 Summary of challenges considered in different methods. 59
4.3 Statistics of trajectory datasets. 60
4.4 F1 score on points of trajectory recommendation methods. 63
4.5 F1 score on pairs of trajectory recommendation methods. 63
4.6 Kendall’s t of trajectory recommendation methods. 63

5.1 Glossary of frequently used symbols. 72
5.2 Methods to rank songs in three cold-start settings. 76
5.3 Statistics of music playlist datasets. 80
5.4 Statistics of datasets in three cold-start settings. 82
5.5 AUC for playlist recommendation in three cold-start settings. 85
5.6 Raw Spread for playlist recommendation in three cold-start settings. . . 88
5.7 Transformed Spread for cold-start playlist recommendation. 88
5.8 Transformed Novelty for cold-start playlist recommendation. 90

D.1 Features of POI with respect to query. 112
D.2 POI features used to capture POI-POI transitions. 112
D.3 Performance of trajectory recommendation on best of top-1. 115
D.4 Performance of trajectory recommendation on best of top-3. 115
D.5 Performance of trajectory recommendation on best of top-5. 116
D.6 Performance of trajectory recommendation on best of top-10. 116

xix

xx LIST OF TABLES

Chapter 1

Introduction

The ever increasing number of available items from content providers (e.g., news
articles and blog posts from online publishing platforms, books from Amazon book
store, music from Spotify and Apple Music, and movies from Netflix library) pose
critical challenges for both users and content providers. This information overload
problem makes it particularly difficult for users to find items they want, and further,
it undermines the effort to facilitate users getting the most appropriate items that
content providers have tirelessly been striving to achieve. Such challenges motivate
the development of recommender system, a type of information system that suggests
items which (hopefully) match users’ preferences. Good recommendations enhance
user satisfaction (Bennett et al., 2007; Koren et al., 2009; Aggarwal, 2016), which helps
content providers to be more successful, and therefore enables the further expansion
of available items to attract even more users. This in turn makes it more challenging
to provide good recommendations that meet user needs.

1.1 Motivation

Classic recommender systems (e.g., those used for book or movie recommendation)
work by ranking items for a particular user. One of the most widely used techniques
for recommender systems of this type is the collaborative filtering approach (Goldberg
et al., 1992), in particular, latent factor models such as the matrix factorisation family
of techniques (Koren et al., 2009). These methods work by explicitly matching user
preferences with item properties, both of which are latent factors learned from
historical interaction records between users and items (e.g., user’s ratings of items,
histories of purchases or browsing). The advantage of this technique is the ability to
automatically learn informative representations of users and items from historical
data, and the capability to scale to large systems with millions of users and items, and
some variants can even capture the temporal dynamics of user preferences (Koren
et al., 2009; Koren, 2009; Rendle et al., 2010; Xiong et al., 2010).

1

2 Introduction

However, there are at least two limitations of such approaches. First, it suffers
from addressing users or items without historical records, since it is unlikely to learn
any meaningful representations for these new users and items; this is known as the
cold start problem (Schein et al., 2002; Koren et al., 2009). Further, this approach makes
a recommendation for a user by scoring each item for that user and suggests the top
scored ones, which falls short when dealing with structured objects (i.e., object that
is a cohesive composition of interrelated and interdependent elements) effectively,
since the huge number of possible combinations of elements is unlikely to be scored
efficiently if one adopts a naïve approach (Taskar, 2004; Joachims et al., 2009b).

On the other hand, the task of recommending structured objects is prevalent in
real-world applications, for example, recommending a trajectory of points-of-interest
(POIs) in a city to a visitor (Lu et al., 2010, 2012; Lim et al., 2015; Chen et al., 2016; He
et al., 2018), suggesting a chemical compound (Dehaspe et al., 1998; Agrafiotis et al.,
2007), or a playlist of songs (McFee and Lanckriet, 2011; Chen et al., 2012; Choi et al.,
2016; Ben-Elazar et al., 2017). A trajectory is a sequence of distinct POIs, which is a
path; and a music playlist involves a set of unique songs. Such tasks of recommending
structured objects (e.g., paths and sets), which are both practically important and
computationally hard, motivate the work in this thesis.

1.2 Contributions

In this thesis, we develop techniques that can efficiently recommend objects with
different types of structures, in particular, paths and sets. Machine learning techniques
including learning to rank and structured prediction, as well as route planning
techniques are employed to achieve efficient path recommendation. We empirically
evaluate these techniques on the task of recommending travel trajectories. In addition,
we develop a technique for set recommendation by leveraging bipartite ranking and
multi-task learning, and evaluate it on the task of recommending a set of songs from
a music library. The major contributions of this thesis are summarised as follows:

1. Efficient path recommendation via point ranking and route planning. We
study the problem of recommending paths, which is to recommend a sequence
of elements in a certain order without repetition. Specifically, we investigate
the problem of recommending travel trajectories, which is an instance of path
recommendation, to visitors in a city. We propose a new formulation of this prob-
lem by combining two widely studied problems, i.e., learning to rank (Burges
et al., 2005; Cao et al., 2007; Liu, 2009) and the travelling salesman problem
(TSP) (Miller et al., 1960; Applegate et al., 2011). We develop an approach that

§1.2 Contributions 3

can efficiently recommend travel trajectories by employing the RankSVM (Lee
and Lin, 2014; Kuo et al., 2014) and route planning techniques from the research
of the TSP or the orienteering problem (Miller et al., 1960; Golden et al., 1987;
Applegate et al., 2011). This work is published in Chen et al. (2016).

2. Structured recommendation for paths based on structured prediction. We
study the problem of recommending paths from a structured prediction perspec-
tive (Tsochantaridis et al., 2004; Taskar et al., 2005; BakIr et al., 2007; Joachims
et al., 2009b), and propose a new structured recommendation approach based
on the structured support vector machines (SSVMs) framework. We analyse
the fundamental challenges of travel trajectory recommendation, which are
shared among many path recommendation tasks, and show how the structured
recommendation approach can address these challenges by systematically incor-
porating point preferences and transition patterns, as well as a novel application
of the list variant of the Viterbi decoding algorithm for hidden Markov mod-
els (Soong and Huang, 1991; Seshadri and Sundberg, 1994; Nill and Sundberg,
1995; Nilsson and Goldberger, 2001), or the integer linear programming for-
mulation of the s-t path TSP (Hoogeveen, 1991; An et al., 2015). This work is
presented in Chen et al. (2017a,b) and Menon et al. (2017).

3. Efficient set recommendation via bipartite ranking and multi-task learning.
We study the problem of recommending sets, which is to recommend a collection
of distinct elements where no particular order of the elements are of interest. We
propose a new approach for set recommendation via bipartite ranking (Agarwal
and Niyogi, 2005; Ertekin and Rudin, 2011; Menon and Williamson, 2016). Specif-
ically, we investigate the problem of recommending a set of songs from a music
library to form a new playlist or extend a user’s existing playlist in cold-start
scenarios. A bipartite ranking loss is adopted to encourage songs in a playlist
to be ranked higher than those not in it, and the multi-task learning paradigm
is employed to jointly learn user representations that facilitate cold-start rec-
ommendation. Lastly, we achieve efficient learning of the set recommendation
approach by leveraging a key equivalence between bipartite ranking and binary
classification (Ertekin and Rudin, 2011; Menon and Williamson, 2016). This work
is presented in Chen et al. (2019).

In addition to the above contributions, in Appendix B, we generalise the results of
the equivalence between classification and ranking presented in Ertekin and Rudin
(2011) and show that, under some conditions, the equivalence also holds for a paramet-
ric family of binary classification losses and a parametric family of bipartite ranking
losses. This result is presented for the first time in this thesis.

4 Introduction

1.3 Thesis outline

The rest of this thesis is outlined as follows. In Chapter 2, we first define the problem
of recommending structured objects. In particular, the problems of interest in this
thesis, i.e., the path and set recommendation problems are formulated. We then
present classic techniques for recommender systems, and review essential techniques
that help us achieve efficient recommendation of paths and sets, including structured
prediction and path decoding techniques in Markov chains for path recommendation;
and loss functions of bipartite ranking and binary classification as well as the multi-
task learning paradigm that enables effective set recommendation.

In Chapter 3, we study the problem of recommending path by investigating one
particular example – travel trajectory recommendation, which is to suggest a sequence
of points-of-interest (POIs) without repetition. We first show that both the ranking of
POIs and the transition patterns between POIs are helpful in recommending travel
trajectories, and then present a method that combines POI ranking and route planning
to achieve effective recommendation of travel trajectories.

We continue the study of the path recommendation problem in Chapter 4. Here
we investigate the travel trajectory recommendation problem from a structured pre-
diction viewpoint. We propose the structured recommendation approach for path
recommendation by modifying the loss function of the SSVMs to aggregate multiple
ground truths for a query. Further, we show how a novel application of the list variant
of the classic Viterbi algorithm in both training and inference procedures of the SSVMs
can help us overcome the challenges of trajectory recommendation.

In Chapter 5, we study the problem of recommending sets. We investigate an
instance of this problem, which is to recommend a set of songs from a music library
to form a new playlist or extend an existing playlist in cold-start scenarios. We employ
a bipartite ranking loss to rank songs in a playlist above those that are not in it, and
adopt the multi-task learning paradigm to learn the representations of all users jointly.
A key equivalence between bipartite ranking and binary classification enables the
efficient learning of our set recommendation approach from historical playlists.

Lastly, in Chapter 6, we summarise the work in this thesis, i.e., the path and
set recommendation techniques and their applications in recommending travel tra-
jectories and music playlists. We then present the limitations of our approaches to
recommending structured objects as well as future research directions.

Chapter 2

Background

We review important problems and techniques that serve as the foundation of our
work in this thesis. First, we define the problem of recommending structured objects,
in particular, we formulate the path and set recommendation problems (Section 2.1).
We then review classic techniques for recommender systems (Section 2.2). In Sec-
tions 2.3 and 2.4, we present structured prediction and path decoding techniques that
enables efficient path recommendation, followed by techniques for set recommen-
dation including bipartite ranking and binary classification (Section 2.5), as well as
the multi-task learning paradigm (Section 2.6). Table 2.1 shows the corresponding
problems and chapters of this thesis that make use of the techniques we reviewed.

2.1 The problem of recommending structured objects

The problem of recommendation is to suggest items (e.g., books, movies and news)
that a user may like. In this thesis, we consider the case when the item in question
is an object with internal structures (i.e., object that is a cohesive composition of
interrelated and interdependent elements), such as a set or a tree.

Let Y be the space of all structured objects, given a set of N queries that describe
the specifications of desired recommendations, and the historical records (e.g., items
purchased or consumed by users) of the corresponding queries

S = {(q(i), {y(ij)}Ni
j=1)}

N
i=1, y(ij) 2 Y , i 2 {1, . . . , N}, j 2 {1, . . . , Ni}, (2.1)

where the i-th query q(i) is associated with Ni 2 Z+ objects. The problem of recom-
mending structured objects is to make recommendations for a new query q not seen in
S , in other words, we learn a function f from S :

f : q ! {y(k)}K
k=1, y(k) 2 Y , (2.2)

where K 2 Z+ is the number of structured objects we shall recommend for query q.

5

6 Background

Table 2.1: Techniques for recommending structured objects.

Technique Recommendation problem

Structured prediction (§2.3) Path recommendation (Chapter 4)
Path decoding in Markov chains (§2.4) Path recommendation (Chapters 3 and 4)
Binary classification and bipartite ranking (§2.5) Set recommendation (Chapter 5)
Multi-task learning (§2.6) Set recommendation (Chapter 5)

Compared to standard supervised learning, there are multiple ground truth labels
(i.e., recommended objects) in the training set (2.1). Further, in contrast to a fixed set
of individual items, the huge number of all possible structured labels (i.e., |Y|) poses
a critical challenge to efficient recommendation. Lastly, taking into account constraints
inherent to particular types of structures, for example, a set should not have duplicate
elements, presents another fundamental challenge.

This thesis aims to develop methods that can address these challenges in recom-
mending structured objects, particularly for two types of structures: path and set. We
remark that the recommendation of other types of structures (e.g., tree or graph) are
important research topics on their own, and we leave them as future work.

2.1.1 Path recommendation

We define a path as a sequence of elements where no element in the sequence appears
more than once. The path recommendation problem is a particular instance of the
problem of recommending structured objects, where the objects in question are paths.
Specifically, given a set of elements P , a structured object in both (2.1) and (2.2) is a
path with elements from P , i.e.,

y 2 P|y| and yl 6= yl0 , l, l0 2 {1, . . . , |y|}, l 6= l0,

where |y| denotes the number of elements in path y.

A particular example of the path recommendation problem is travel trajectory (or
tour) recommendation, where we suggest tours (i.e., sequences of distinct POIs) to
visitors that satisfy certain properties (e.g., starting and ending at specific locations,
visiting a particular number of POIs) which shall be specified in a trajectory query.
In Chapter 3, we discuss a path recommendation approach for suggesting travel
trajectories, where we leverage POI rankings and transition preferences to recommend
tours. We further develop a structured recommendation approach for recommending
paths in Chapter 4, which is based on structured prediction and path decoding
techniques that will be reviewed in Section 2.3 and Section 2.4, respectively.

§2.2 Techniques for recommender systems 7

2.1.2 Set recommendation

A set is a collection of distinct elements, i.e., no element in the collection appears
more than once, and there is also no particular order between elements. The set
recommendation problem is another example of the problem of recommending
structured objects, where the objects in question are sets. In particular, given a set of
elements C, the structured object space Y in (2.1) and (2.2) is the power set of C.

In Chapter 5, we study an instance of the set recommendation problem – music
playlist recommendation,1 where we recommend a set of songs from a music library
to form a new playlist or extend a user’s existing playlist, with respect to certain
properties specified in a query. We discuss a set recommendation method for music
playlist recommendation in three cold-start settings. Our approach employs the
multi-task learning paradigm (Section 2.6) to jointly learn user representations, and
efficient learning of our set recommendation method is achieved by leveraging a key
equivalence between bipartite ranking and binary classification (Section 2.5).

2.2 Techniques for recommender systems

In this section, we review classic techniques underlying typical recommender systems
(also known as recommendation systems). First, we present the general recommenda-
tion strategies, then we review a family of techniques widely employed in practice.

2.2.1 Recommendation strategies

To suggest items to a user, a recommender system generally ranks items by matching
their properties with the preferences of the user, and top-ranked items are then
recommended. User preferences and item properties are often encoded using a vector
of real numbers, which are known as the representation or features of a user or an
item. Features can be extracted either manually by human experts (e.g., the Music
Genome Project that powers the Pandora Radio (John, 2006)) or learned automatically
by computer algorithms. The former is known as the content filtering approach, and the
latter is known as the collaborative filtering approach (Goldberg et al., 1992), including,
for example, the neighbourhood method and latent factor models.

Content filtering approaches rely on human experts to extract (user or item)
features, with the advantage of leveraging knowledge accumulated in a certain

1Music playlist can also be formulated as a path recommendation problem which emphasises the
listening order of songs in a playlist, however, whether the order of songs in a playlist is critical is still
not clear from previous research; further, we observe that it is not uncommon to listen a playlist in
shuffle mode, where a random listening order is generated each time, we therefore focus on suggesting
a set of songs for music playlist recommendation.

8 Background

domain; however, different experts may devise different values for a certain feature of
the same user or item due to the variety in backgrounds and experiences of human
experts. In addition, this approach cannot be applied on a large scale simply because
the number of human experts in a certain domain is limited.

On the other hand, collaborative filtering approaches leverage historical interaction
data to make recommendations. For example, the neighbourhood method makes
recommendations by using information from similar users and similar items:2 for a
particular user u, it recommends items purchased by users similar to u, or suggests
items similar to what u has purchased. Latent factor models, on the other hand, learn
user and item features (i.e., latent factors) from data of interactions between users and
items. For example, learning a low-rank matrix that approximates to the matrix of
user-item interactions (e.g., ratings), which is generally very sparse, by exploiting the
redundancies in interaction data (Aggarwal and Parthasarathy, 2001).

A major drawback of collaborative filter approaches is the inability to address the
cold-start scenarios, where there is no historical data for either users or items, which
occurs when new users or new items are added to an existing system (Koren et al.,
2009; Aggarwal, 2016). In this case, the content filtering approach can generally work
more effectively as it can leverage external information of the new users or items
provided by human experts.

2.2.2 Matrix factorisation techniques

One of the most successful latent factor models is the matrix factorisation (MF)
family of techniques, these learn the representation or features of users and items by
factorising a matrix with historical records, e.g., ratings of books or movies.

Given a set of N users and a set of M items, Matrix Factorisation approximates
the user-item rating matrix R 2 RN⇥M using the product of two low rank matrices,
i.e., R̂ = UVT, as illustrated in Figure 2.1, where U 2 RN⇥D and V 2 RM⇥D are low
rank matrices, with row vectors ui, i 2 {1, . . . , N} and vj, j 2 {1, . . . , M} representing
the D dimensional latent features of user i and item j respectively.

Due to the fact that the rating matrix R is generally highly sparse (i.e., most
of the entries in R are not observed), classic matrix decomposition methods such
as the Singular Value Decomposition (SVD) are not applicable.3 In addition, data
imputation could be very costly given the large number of unobserved ratings in

2A user u is regarded to be similar to another user u0 if both u and u0 have purchased (or have given
similar ratings to) the same set of items, in other words, u and u0 are like-minded users; similarly, an
item v is regarded to be similar to another item v0 if both v and v0 have been purchased by (or have
received similar ratings from) the same user.

3SVD is only defined for matrices where every entry is observed.

§2.2 Techniques for recommender systems 9

R

v

V

U

j

ui rij

T

T

Figure 2.1: Illustration of Matrix Factorisation. U is a matrix of latent factors of users,
V is a matrix of latent factors of items, and R is the observed (sparse) rating matrix.
Matrix Factorisation aims to approximate the observed ratings using a function of the
corresponding latent factors of users and items, e.g., rij ⇡ u>

i vj.

practical datasets, and inaccurate imputation could considerably distort the data. As
a result, many works propose to model the observed ratings directly by minimising a
regularised squared error (Paterek, 2007; Takács et al., 2007; Koren et al., 2009),

min
U,V

N

Â
i=1

M

Â
j=1

dij

⇣
rij � u>

i vj

⌘2
+ C

N

Â
i=1

kuik2 +
M

Â
j=1

kvjk2

!
, (2.3)

where dij indicates whether user i has rated item j (i.e., dij = 1 if entry rij is observed
and dij = 0 otherwise), and C 2 R+ is a regularisation constant.

The objective in Equation (2.3) is non-convex, which makes it hard to find an
optimal solution of the problem. However, optimisation methods such as stochastic
gradient descent (SGD) and coordinate descent (e.g., alternating least squares (ALS))
have been shown to work effectively in practice (Hu et al., 2008; Koren et al., 2009).

Probabilistic Matrix Factorisation (PMF) (Salakhutdinov and Mnih, 2008b) provides
a probabilistic explanation to the regularisation in Equation (2.3). PMF models the
user-item rating Rij using a Gaussian random variable, with mean µij = u>

i vj and
precision a. Assuming zero mean spherical Gaussian priors over the latent feature
vectors of both users and items, it has been shown that maximising the log-posterior
over U and V is equivalent to

min
U,V

N

Â
i=1

M

Â
j=1

dij

⇣
rij � u>

i vj

⌘2
+

aU

a

N

Â
i=1

kuik2 +
aV

a

M

Â
j=1

kvjk2, (2.4)

where aU and aV are hyper-parameters. Figure 2.2(a) shows the graphical model of
the Probabilistic Matrix Factorisation.

10 Background

u ivj

rij rij

vj u i

Figure 2.2: Graphical models of (a) Probabilistic Matrix Factorisation (PMF) and (b)
Bayesian Probabilistic Matrix Factorisation (BPMF). Shaded nodes: observed variables;
unshaded nodes: latent variables (Salakhutdinov and Mnih, 2008a).

One approach to tune the hyper-parameters a, aU and aV in Equation (2.4) is to
search over a set of carefully selected values based on the model performance on
a validation set, however, this is computationally expensive as a large number of
models should to be trained. Alternatively, one can take a Bayesian approach, i.e.,
introducing priors for hyper-parameters. Salakhutdinov and Mnih (2008a) proposed
the Bayesian Probabilistic Matrix Factorisation (BPMF) which assumes more general
Gaussian priors over the latent feature vectors of users and items instead of zero mean
Gaussian priors as did in the PMF approach,

P(U | µU , LU) =
N

’
i=1

N (ui | µU , L�1
U),

P(V | µV , LV) =
M

’
j=1

N (vj | µV , L�1
V).

It further assumes Gaussian-Wishart priors over hyper-parameters QU = {µU , LU}
and QV = {µV , LV},

P(QU | Q0) = N (µU | µ0, (b0LU)
�1)W(LU | W0, n0),

P(QV | Q0) = N (µV | µ0, (b0LV)
�1)W(LV | W0, n0),

where Q0 = {µ0, W0, n0}, and W is the Wishart distribution with degrees of freedom
n0 and scale matrix W0 2 RD⇥D. Figure 2.2(b) shows the graphical model of the
Bayesian Probabilistic Matrix Factorisation.

§2.3 Structured prediction 11

To obtain the posterior distribution, all model parameters and hyper-parameters
need to be integrated out, which is analytically intractable. Salakhutdinov and Mnih
(2008a) proposed to approximate the posterior distribution using a Markov chain
Monte Carlo (MCMC) method, in particular, a Gibbs sampling algorithm that samples
from conditional distributions over model parameters and hyper-parameters.

Matrix factorisation techniques have also been generalised to deal with implicit
feedback, e.g., history of purchasing, ad clicking and browsing. Hu et al. (2008)
proposed to use a matrix with binary values to represent implicit feedback, and
minimised an objective similar to that in Equation (2.3) but with a weighted square
loss. Rendle et al. (2009) observed that only positive and unlabelled data are available
for implicit feedback, they proposed to dealt with it from a ranking perspective: For a
particular user, the approach ranked observed items (e.g., items purchased or viewed
by that user) higher than all other items. Other variants of MF that can deal with
specific scenarios have been proposed, such as those that can incorporate additional
sources of information (Paterek, 2007; Koren, 2008; Koren et al., 2009), and variants
that can capture temporal effects (Koren, 2009; Koren et al., 2009; Xiong et al., 2010).

2.3 Structured prediction

Structured prediction is the task of predicting interdependent output variables for
a given input (BakIr et al., 2007), typical applications including multi-class and
multi-label classification, image segmentation and machine translation. The pri-
mary challenge in structured prediction is how to make efficient inference in the
exponentially-sized output space. In this section, we review an important technique
for structured prediction, the structured support vector machines (SSVMs), which
generalises the support vector machines (SVMs) to the structured output setting.
Another important technique for structured prediction is the conditional random
fields (CRFs), Pletscher et al. (2010) proposed a framework that unifies CRFs and
SSVMs, we therefore focus on reviewing the SSVMs in this section. In Chapter 4, we
formulate the problem of recommending paths in the context of travel trajectories as a
structured prediction problem, and adapt both the training and prediction procedures
of the SSVMs to deal with challenges in recommending paths.

2.3.1 Structured support vector machines

Consider the task of predicting some structured label, e.g., a tree, let X be the instance
space, and Y be the space of all possible structured labels, e.g., all possible trees. The
scoring function f : X ⇥ Y ! R (parameterised by w) measures the affinity between

12 Background

a particular example x 2 X and a specific structured label y 2 Y . The structured
support vector machines makes a prediction given example x by

y⇤ = argmax
ȳ2Y

f (x(i), ȳ), (2.5)

which is known as the inference or prediction procedure of the SSVMs.

To learn the parameters w, the SSVMs minimises the following (`2 regularised)
empirical risk on dataset S = {(x(i), y(i))}N

i=1:

min
w

1
2

w>w +
C
N

N

Â
i=1

`(y(i), f (x(i), ·)), (2.6)

where C 2 R+ is a regularisation constant and `(y(i), f (x(i), ·)) is the structured hinge
loss for the i-th labelled example

`(y(i), f (x(i), ·)) = max
✓

0, max
ȳ2Y

n
D(y(i), ȳ)� (f (x(i), y(i))� f (x(i), ȳ))

o◆
, (2.7)

here D(y(i), ȳ) measures the discrepancy between two structured labels y(i) and ȳ.

If we employ a slack variable x(i) to upper bound the structured hinge loss for the
i-th example, we can transform the unconstrained optimisation problem (2.6) into a
constrained optimisation problem:

min
w, x

1
2

w>w +
C
N

N

Â
i=1

x(i)

s.t. x � 0,

x(i) � D(y(i), ȳ)�
⇣

f (x(i), y(i))� f (x(i), ȳ)
⌘

, 8ȳ 2 Y .

(2.8)

This formulation is known as the “n-slack” SSVMs due to the number of slack variables
in (2.8) equals the numbers of examples N (Joachims et al., 2009a).

We can rearrange the second constraint in problem (2.8) as

x(i) + f (x(i), y(i)) � D(y(i), ȳ) + f (x(i), ȳ), 8ȳ 2 Y ,

or equivalently,

x(i) + f (x(i), y(i)) � max
ȳ2Y

n
D(y(i), ȳ) + f (x(i), ȳ)

o
. (2.9)

The right-hand-side (RHS) of Equation (2.9) is known as the loss-augmented inference,
which is closely related to the inference or prediction procedure of the SSVMs (Equa-

§2.3 Structured prediction 13

tion 2.5). In practice, if D(y(i), ȳ) can be decomposed into discrepancies of individual
elements in y(i) and ȳ, then the loss-augmented inference could be optimised using
techniques similar to that for the inference procedure (2.5).

Joachims et al. (2009a) observed that one can sum up the structured hinge losses
(Eq. 2.7) for all examples, which results in the following empirical risk on dataset S :

R(f ,S) = max

0, max

(ȳ(1),...,ȳ(N))2YN

(
1
N

N

Â
i=1

⇣
D(y(i), ȳ(i))�

⇣
f (x(i), y(i))� f (x(i), ȳ(i))

⌘⌘)!
.

(2.10)

Similar to the “n-slack” SSVM (2.8), we can transform the (`2 regularised) empirical
risk minimisation into a constrained optimisation problem, however, here only one
slack variable is needed to upper bound the empirical risk R(f ,S) defined in (2.10),

min
w,x

1
2

w>w + Cx

s.t. x � 0,

x � 1
N

N

Â
i=1

⇣
D(y(i), ȳ(i))� (f (x(i), y(i))� f (x(i), ȳ(i)))

⌘
, 8(ȳ(1), . . . , ȳ(N)) 2 YN .

(2.11)
This formulation is known as the “1-slack” SSVMs (Joachims et al., 2009a).

If we rearrange the second constraint in (2.11) as

x +
1
N

N

Â
i=1

f (x(i), y(i)) � 1
N

N

Â
i=1

⇣
D(y(i), ȳ(i)) + f (x(i), ȳ(i))

⌘
, 8(ȳ(1), . . . , ȳ(N)) 2 YN

or equivalently

x +
1
N

N

Â
i=1

f (x(i), y(i)) � max
(ȳ(1),...,ȳ(N))2YN

1
N

N

Â
i=1

⇣
D(y(i), ȳ(i)) + f (x(i), ȳ(i))

⌘
. (2.12)

The RHS of Equation (2.12) is known as the loss-augmented inference in the “1-slack”
formulation of the SSVMs.

Both the “n-slack” (2.8) and “1-slack” (2.11) formulations of the SSVMs result in
constrained optimisation problems. If the affinity function f (x, y) takes the form of
a linear function, then both formulations are quadratic programs (QPs). However,
naively feeding these problems into an off-the-shelf QP solver is unlikely to work due
to the huge number of constraints in (2.8) and (2.11). In particular, in the “n-slack”
SSVMs, there is one constraint for every structured label in the set of labels Y \ y(i)

for the i-th example, and the “1-slack” formulation further increases the number of
constraints exponentially (Joachims et al., 2009a).

14 Background

One practical approach to train both the “n-slack” and “1-slack” formulations of
the SSVMs is a cutting-plane method (Joachims et al., 2009a,b), which is a general
optimisation technique for constrained optimisation problems with convex objective
and constraints (Boyd and Vandenberghe, 2008). Intuitively, it starts with finding an
optimal solution by optimising the objective without any constraints, then generating
cutting planes (i.e., linear constraints) by querying a cutting-plane oracle (Wulff and
Ong, 2013). This procedure is repeated until convergence. In the next section, we
review methods to train the SSVMs, in particular, how one can train the “n-slack” and
“1-slack” SSVMs efficiently using cutting-plane methods. More details of cutting-plane
methods can be found in Appendix A.

2.3.2 Methods to train the SSVMs

Suppose the affinity function f (x, y) takes the form of a linear function, i.e., f (x, y) =
w>Y(x, y) where w is the parameter vector and Y(x, y) is known as the joint feature
map of example x and structured label y.

Training the n-slack SSVMs To train the “n-slack” SSVMs using cutting-plane
methods, we make use of a standard QP solver by repeatedly solving a QP with
respect to an increasingly larger set of constraints. In each iteration, a new constraint
(or cut) is generated to reduce the feasible region of the problem, until the optimal
solution achieves a specified precision # (Joachims et al., 2009b).

Algorithm 1 describes the pseudo-code of a cutting-plane algorithm to train the
“n-slack” SSVMs. In each iteration, and for each example, we solve a QP with the
current set of constraints W , the solution is our query point q(k) (Line 5). To check
if the current query point is #-feasible, we first compute the most violated label by
doing the loss augmented inference (Line 7), then check if q(k) is #-feasible for this
example (Line 8), if not, we generate a feasibility cut (A.3) and add it to the working
set W (Line 9). This procedure is repeated until a #-feasible query point is found.

As a remark, in Algorithm 1 we can compute the structured hinge loss on the fly
for each example (Tsochantaridis et al., 2004), i.e.,

x(k)i = max
✓

0, max
ȳ2Si

n
D(y(i), ȳ) + hw(k), Y(x(i), ȳ)i

o
� hw(k), Y(x(i), y(i))i

◆
,

in this case, the query point q(k) = w(k).

Training the 1-slack SSVMs The “1-slack” SSVMs can be trained similarly as the
“n-slack“ SSVMs using cutting-plane methods. Here we replace the N cutting-plane

§2.3 Structured prediction 15

Algorithm 1 A cutting-plane algorithm to train the n-slack SSVMs

1: Input: {(x(i), y(i)}N
i=1, C, #

2: W = ∆, Si = ∆, i 2 {1, . . . , N}, k = 1
3: repeat
4: for i = 1, . . . , N do
5: Generate query point q(k) = (w(k), x(k)) by solving QP (2.8)

w.r.t. all constraints in W
6: . Query the oracle at point q(k) as follows
7: Do loss-augmented inference:

ŷ(k) = argmaxȳ2Y{D(y(i), ȳ) + hw(k), Y(x(i), ȳ)i}
8: if q(k) is not #-feasible:

hw(k), Y(x(i), y(i))� Y(x(i), ŷ(k))i+ # < D(y(i), ŷ(k))� x(k)i then
9: Form a feasibility cut and update constraints:

W = W [
n
hw, Y(x(i), y(i))� Y(x(i), ŷ(k))i � D(y(i), ŷ(k))� xi

o

Si = Si [{ŷ(k)}, k = k + 1
10: end if
11: end for
12: until q(k) is #-feasible for all training examples
13: return q(k)

Algorithm 2 A cutting-plane algorithm to train the 1-slack SSVMs

1: Input: S = {(x(i), y(i))}N
i=1, C, #

2: W = ∆
3: for k = 1, . . . ,+• do
4: Generate query point q(k) = (w(k), x(k)) by solving QP (2.11)

w.r.t. all constraints in W
5: . Query the oracle at point q(k) as follows
6: Do loss-augmented inference:

ŷ(k)
i =argmaxȳ2Y

n
D(y(i), ȳ) + hw(k), Y(x(i), ȳ)i

o
, 8i

7: if q(k) is #-feasible, i.e.,
1
N ÂN

i=1hw(k), Y(x(i), y(i))� Y(x(i), ŷ(k)
i)i+ # � 1

N ÂN
i=1 D(y(i), ŷ(k)

i)� x(k) then
8: return q(k)
9: else

10: Form a feasibility cut and update constraints:
W = W [

n
1
N ÂN

i=1hw, Y(x(i), y(i))� Y(x(i), ŷ(k)
i)i � 1

N ÂN
i=1 D(y(i), ŷ(k)

i)� x
o

11: end if
12: end for

models (i.e., one cutting plane for each training example) with a single cutting-plane
for the training set in each iteration.

Algorithm 2 describes the pseudo-code of a cutting-plane algorithm to train the

16 Background

“1-slack” SSVMs. Similar to Algorithm 1, it generates a query point by solving a QP
with respect to the working set W (Line 4). However, to check whether the query
point q(k) is #-feasible, it does the loss-augmented inference to find the most violated
label for every example in the training set (Line 6), and then check feasibility (Line
7). If q(k) is #-feasible, we are done and return q(k) (Line 8), otherwise, we form a
feasibility cut (A.3) and add it to the working set W (Line 10). This procedure is
repeated until a #-feasible query point is found.

As a remark, it generally becomes more difficult to solve a QP when the set of
constraints becomes larger, Müller (2014) found that removing the least recently active
constraints (i.e., cuts) from the working set W can speed up the training of SSVMs.

Efficient training via dualisation Recall that in Algorithm 1 and 2, the separation
oracle solves a loss-augmented inference problem for each query point and each exam-
ple, which significantly reduces the scalability of the training algorithm. Techniques
have been developed to overcome this repeated inference, typically by exploring
the dual problem of either the loss-augmented inference or the structured hinge
loss (Taskar, 2004; Taskar et al., 2005; Meshi et al., 2010; Bach et al., 2015).

In particular, if we can find a concise formulation of the loss-augmented inference
(i.e., the number of variables and constraints in this formulation is polynomial in Li,
the number of variables in y(i)), we can write its Lagrangian dual problem as

min
li�0

hi(w, li)

s.t. gi(w, li) 0,

where hi(·) and gi(·) are convex in both w and li. Combining this minimisation
over li with the minimisation over w and x, we have a joint and compact convex
minimisation problem (Taskar et al., 2005),

min
w,x,l

1
2

w>w +
C
N

N

Â
i=1

xi

s.t. w>Y(x(i), y(i)) + xi � hi(w, li), 8i

gi(w, li) 0, 8i

x � 0, li � 0, 8i.

(2.13)

If hi(·) and gi(·) are linear functions of w and li, then Problem (2.13) is a quadratic
program with polynomial number of variables and constraints, which can be solved
using existing off-the-shelf QP solvers.

§2.4 Path decoding in Markov chains 17

Alternative training methods Besides the cutting-plane methods, there are a few
alternatives that have been developed to train the SSVMs, such as the sub-gradient
method (Ratliff et al., 2006) and Frank-Wolfe method (Lacoste-julien et al., 2013).

Recall that the objective of the SSVMs is

1
2

w>w +
1
N

N

Â
i=1

max
✓

0, max
ȳ2Y

n
D(y(i), ȳ)�

⇣
f (x(i), y(i))� f (x(i), ȳ)

⌘o◆
,

observing that the structured hinge loss in the objective is not differentiable, however,
its sub-gradient with respect to w still exists, the sub-gradient method optimises
this objective by leveraging its sub-gradient to solve an unconstrained optimisation
problem. The Frank-Wolfe method optimises the first-order linear approximation of
the quadratic objective in (2.8). It transforms the quadratic program into a series of
linear programs that can be solved more efficiently. In practice, these methods can
sometimes converge faster than cutting-plane methods.

To conclude, we have described a number of methods to efficiently train the
SSVMs, in the next section, we review efficient inference techniques for prediction
given a trained SSVMs, in particular those that can decode paths in Markov chains.

2.4 Path decoding in Markov chains

In this section, we first review the forward and backward approaches that solve two
typical problems in hidden Markov models (HMMs), i.e., computing the probability
of an observed sequence, and identifying the most likely sequence of states for a
given observed sequence. These methods are better known as the forward-backward
algorithm and the Viterbi algorithm (and its backward variant). Interestingly, these
algorithms are closely related in the sense that they are different special cases of the
generalised distributive law (Aji and McEliece, 2000). Further, we review methods
that generalise either the Viterbi algorithm or its backward variant to find K most
likely state sequences for an observed sequence, which are known as the list Viterbi
algorithm (LVA). We leverage the LVA to solve the path decoding problem in Markov
chains, i.e., finding the most likely path (i.e., state sequence without repeated states).
Finally, we review another approach for the path decoding problem based on the
integer linear programming formulation of the travelling salesman problem (TSP), as
well as a few heuristic algorithms. In Chapter 4, we show how these path decoding
techniques can be employed to address essential challenges in recommending paths,
e.g., in the task of recommending travel trajectories.

18 Background

q1 q2 q3 qT...

O1 ...O2 O3 OT

Figure 2.3: Graphical model of a hidden Markov model (HMM). The observed
sequence O1O2 · · ·OT is generated by a sequence of T hidden states q1q2 · · · qT.

2.4.1 The forward and backward approaches in HMM

Given a hidden Markov model (HMM) with N states and parameters q = (A, B, p),
A = {aij}, B = {bj(vk)}, p = {pi}, state sequence q = q1:T = q1q2 · · · qT, qt 2
{si}N

i=1, and observation sequence O1:T = O1O2 · · ·OT, Ot 2 {vm}M
m=1, as illustrated

in Figure 2.3, where

aij
.
= P(qt+1 = sj | qt = si), i, j 2 {1, . . . , N}

bj(vm)
.
= P(vm | sj), 1 j N, 1 m M

pi
.
= P(q1 = si), 1 i N.

(2.14)

The forward-backward algorithms solve the problem of computing the likelihood
of an observed sequence O1:T, and the Viterbi algorithm and its backward variant deal
with the problem of identifying the most likely sequence of states for an observed
sequence O1:T. Interestingly, both problems can be computed either forwards or back-
wards along the observation sequence by making use of the conditional independences
encoded in an HMM:

qt ?? qk/2{t�1,t} | qt�1, 8t 2 {2, . . . , T},

qt ?? O1:T | qt�1, 8t 2 {2, . . . , T},

Ot ?? qk 6=t | qt, 8t 2 {1, . . . , T},

Ot ?? Ok 6=t | qt, 8t 2 {1, . . . , T}.

(2.15)

We first describe the forward approach of likelihood computation and sequence
identification, followed by the backward approach for these two problems.

The forward algorithm

The forward algorithm is based on the insight that the likelihood of observed sequence
O1:T can be computed from the likelihood of the sub-sequence O1:T�1, i.e.,

P(O1:T; q) = Â
i

P(O1:T, qT = si; q),

§2.4 Path decoding in Markov chains 19

and observe that

P(O1:T, qT = si; q) =

"

Â
j

P(O1:T�1, qT�1 = sj; q) · P(qT = si | qT�1 = sj)

#

· P(OT | qT = si),

(2.16)

where for simplicity, we define

P(O1:t, qt = si; q) .
= Â

q1:t�1

P(O1:t, q1:t�1, qt = si; q).

Let at(si) = P(O1:t, qt = si; q). (2.17)

Then by Eq. (2.14) and (2.16) the likelihood of O1:T is

P(O1:T; q) = Â
i

aT(si)

= Â
i

"

Â
j

aT�1(sj) · aji

#
bi(OT).

(2.18)

We can repeat the procedure in (2.16) to decompose aT�1(sj), in general, we have

at(si) =

8
<

:
pi · bi(Ot), t = 1,
h
Âj at�1(sj) · aji

i
bi(Ot), t = 2, . . . , T.

(2.19)

Computing the at(si) values by Eq. (2.19) is known as the forward algorithm, and
the likelihood of the observated sequence O1:T is Âi aT(si).

The Viterbi algorithm

To identify the most likely sequence of states for an observed sequence O1:T, note that

q⇤1:T = argmax
q1:T

P(O1:T, q1:T; q).

Further, similar to (2.16), we observe that the computation can be decomposed into
smaller sub-problems

max
q1:T

P(O1:T, q1:T; q) = max
i

⇢
max
q1:T�1

P(O1:T, q1:T�1, qT = si; q)
�

,

max
q1:T�1

P(O1:T, q1:T�1, qT = si; q) = max
j

⇢
max
q1:T�2

P(O1:T�1, q1:T�2, qT�1 = sj; q)

· P(qT = si | qT�1 = sj)

�
· P(OT | qT = si).

(2.20)

20 Background

Let eat(si) = max
q1:t�1

P(O1:t, q1:t�1, qt = si; q), (2.21)

by Eq. (2.14) and (2.20) we have

max
q1:T

P(O1:T, q1:T; q) = max
i

eaT(si) = max
i

⇢
max

j

�
eaT�1(sj) · aji

bi(OT)

�
. (2.22)

We can repeat the procedure in (2.20) to decompose eaT�1(sj), in general, we have

eat(si) =

8
<

:
pi · bi(Ot), t = 1,
⇥
maxj eat�1(sj) · aji

⇤
bi(Ot), t = 2, . . . , T.

(2.23)

Computing the eat(si) values by Eq. (2.23) is known as the Viterbi algorithm, and a
sequence q⇤ = q⇤1:T with highest probability can be identified via back-tracking.

As a remark, the only difference between the forward algorithm (Eq. 2.19) and
the Viterbi algorithm (Eq. 2.23) is that the former uses summation and the latter uses
maximisation (Aji and McEliece, 2000). Computations in Eq. (2.18) and (2.22) can be
simplified by adding dummy (deterministic) state qT+1 = s⇤T+1 and observation OT+1,

P(O1:T; q) = Â
q1:T

P(O1:T+1, q1:T, qT+1 = s⇤T+1; q) = aT+1(s⇤T+1)

max
q1:T

P(O1:T, q1:T; q) = max
q1:T

P(O1:T+1, q1:T, qT+1 = s⇤T+1; q) = eaT+1(s⇤T+1).

The backward algorithm

Alternatively, the likelihood of an observed sequence O1:T can be computed backwards,
note that P(O1:T; q) = Âq1:T

P(O1:T, q1:T; q), and by Eq. (2.15),

Â
q1:T

P(O1:T, q1:T; q) = Â
i

Â
q2:T

P(q1 = si, q2:T, O1:T; q)

= Â
i

"

Â
q2:T

P(q2:T, O2:T | q1 = si; q)

#
P(q1 = si) · P(O1 | q1 = si)

Â
q2:T

P(q2:T, O2:T | q1 = si; q) = Â
j

"

Â
q3:T

P(q3:T, O3:T | q2 = sj; q)

#
P(q2 = sj | q1 = si) · P(O2 | q2 = sj)

(2.24)
Let bt(si) = Â

qt+1:T

P(qt+1:T, Ot+1:T | qt = si; q), (2.25)

and by Eq. (2.14) and (2.24) we have

P(O1:T; q) = Â
i

b1(si) · pi · bi(O1) = Â
i

"

Â
j

b2(sj) · aij · bj(O2)

#
pi · bi(O1). (2.26)

§2.4 Path decoding in Markov chains 21

We can repeat the procedure in (2.24) to decompose b2(sj), in general, we have

bt(si) =

8
<

:
1, t = T

Âj bt+1(sj) · aij · bj(Ot+1), t = T�1 downto 1.
(2.27)

Computing the bt(si) values by Eq. (2.27) is known as the backward algorithm, and
the likelihood of observation sequence O1:T is Âi b1(si) · pi · bi(O1).

The “backward Viterbi” algorithm

We can also identify the most likely sequence of states for observations O1:T by
computing backwards similar to (2.27), note that

max
q1:T

P(O1:T, q1:T; q) = max
i

max
q2:T

P(q1 = si, q2:T, O1:T; q)

= max
i

⇢
max
q2:T

P(q2:T, O2:T | q1 = si; q)
�

P(q1 = si) · P(O1 | q1 = si),

(2.28)
and by the conditional independences (2.15), we have

max
q2:T

P(q2:T, O2:T | q1 = si; q) = max
j

max
q3:T

P(q2 = sj, q3:T, O2:T | q1 = si; q)

= max
j

⇢
max
q3:T

P(q3:T, O3:T | q2 = sj; q)
�

· P(q2 = sj | q1 = si) · P(O2 | q2 = sj).

(2.29)

Let
ebt(si) = max

qt+1:T
P(qt+1:T, Ot+1:T | qt = si; q), (2.30)

by Eq. (2.14), (2.28) and (2.29) we have

max
q1:T

P(O1:T, q1:T; q) = max
i

eb1(si) · pi · bi(O1)

= max
i

⇢
max

j
eb2(sj) · aij · bj(O2)

�
pi · bi(O1).

(2.31)

We can repeat the procedure in (2.29) to decompose eb2(sj), in general, we have

ebt(si) =

8
<

:
1, t = T

maxj ebt+1(sj) · aij · bj(Ot+1), t = T�1 downto 1.
(2.32)

Interestingly, if we compare the Viterbi algorithm (Eq. 2.23) with Eq. (2.32), we note
that the latter can be treated as the Viterbi algorithm works backwards, and a sequence

22 Background

q⇤1:T with highest probability can be identified via forward-tracking.

As a remark, the only difference between Eq. (2.27) and (2.32) is that the former
uses summation and the latter uses maximisation (Aji and McEliece, 2000). Computa-
tions in Eq. (2.26) and (2.31) can also be simplified by adding dummy (deterministic)
state q0 = s⇤0 and observation O0,

P(O1:T; q) = Â
q1:T

P(O0:T, q0 = s⇤0, q1:T; q) = Â
q1:T

P(O1:T, q1:T | q0 = s⇤0; q) = b0(s⇤0)

max
q1:T

P(O1:T, q1:T; q) = max
q1:T

P(O0:T, q0 = s⇤0, q1:T; q) = max
q1:T

P(O1:T, q1:T | q0 = s⇤0; q) = eb0(s⇤0).

2.4.2 The list Viterbi algorithm

For tasks such as decoding digital signals corrupted by noise (e.g., speech recognition),
it has been shown that considerable improvement can be obtained when a list of top
K > 1 best sequences through the HMM trellis graph can be utilised (Ostendorf et al.,
1991; Seshadri and Sundberg, 1994; Nill and Sundberg, 1995; Stolcke et al., 1997). In
this section, we describe algorithms that generalise the Viterbi algorithm to find the
top K best sequences from a HMM, which are known as the list Viterbi algorithm (Nill
and Sundberg, 1995; Nilsson and Goldberger, 2001).

The list Viterbi algorithm (LVA) can be employed to decode paths in a HMM
by sequentially searching the next best sequence through the trellis graph until the
specified number of paths are found. In Chapter 4, we make use of the LVA to deal
with two challenges for path recommendations: incorporating multiple ground truths
in training and eliminating loops in prediction.

Let gt(si, sj) denote the likelihood of an observed sequence O1:T such that the
states at time t and t + 1 are si and sj respectively. By Eq. (2.17) and (2.25) we have

gt(si, sj) = Â
q1:t�1,t+2:T

P(O1:T, q1:t�1, qt = si, qt+1 = sj, qt+2:T; q)

=

"

Â
q1:t�1

P(O1:t, q1:t�1, qt = si; q)

#
P(qt+1 = sj | qt = si) · P(Ot+1 | qt+1 = sj)

·
"

Â
qt+2:T

P(Ot+2:T, qt+2:T | qt+1 = sj; q)

#

= at(si) · aij · bj(Ot+1) · bt+1(sj).

(2.33)

We note that gt(si, sj) is the marginal joint probability of all possible pairs of observations-
states (O1:T, q1:t�1 si sj qt+2:T) given an HMM. Similar to Section 2.4.1, we can com-
pute the maximum joint probability over all possible pairs of observations-states

§2.4 Path decoding in Markov chains 23

(O1:T, q1:t�1 si sj qt+2:T), by Eq. (2.15), (2.21) and (2.30) we have

egt(si, sj) = max
q1:t�1,t+2:T

P(O1:T, q1:t�1, qt = si, qt+1 = sj, qt+2:T; q)

=

⇢
max
q1:t�1

P(O1:t, q1:t�1, qt = si; q)
�

P(qt+1 = sj | qt = si) · P(Ot+1 | qt+1 = sj)

·
⇢

max
qt+2:T

P(Ot+2:T, qt+2:T | qt+1 = sj; q)
�

= eat(si) · aij · bj(Ot+1) · ebt+1(sj).
(2.34)

Nilsson and Goldberger (2001) proposed an algorithm to find K(K > 1) most
likely state sequences for a given observed sequence O1:T using information encoded
in egt (Eq. 2.34). It cleverly partitions the space of possible state sequences into subsets
and identifies the most likely state sequence in each subset, this procedure is repeated
until all K most likely state sequences have been found.

Algorithm 3 shows the pseudocode of the method of Nilsson and Goldberger
(2001), it uses a max-heap to keep track of the sequence with the highest probability
in each subset (Line 5, 7, and 14). For a sequence with the highest probability (in a
subset), the algorithm maintains a partition index (i.e., the time instant at which the
sequence diverges from the previous best sequence, Line 9) and an excluding set (i.e.,
a set of states that should be excluded at the time instant indicated by the partition
index when computing the most likely state sequence in the partitioned subset, Line
11). A property of eg (Nilsson and Goldberger, 2001, Theorem 1) has been employed
to efficiently compute the probability of the most likely state sequence in a subset as
well as to identify the state sequence itself (Line 12 to Line 13).

Comparison of LVA variants

We compare three typical variants of the LVA (i.e., parallel LVA, serial LVA and
Algorithm 3) in terms of their time and space complexity.

The parallel LVA (Seshadri and Sundberg, 1994) finds the K best state sequences
simultaneously by computing the K best state sequences in each state at each time
instant. The idea is caching all the K best scores (i.e., probabilities) at each time
instant instead of the best score as that in the Viterbi algorithm. This needs to find
the K best scores among the NK accumulated scores at each state and at each time
instant (Seshadri and Sundberg, 1994, Eq. 6), which can be achieved by sorting the
NK accumulated scores in time O(NK log(NK), or using an order statistics selection
algorithm (Cormen et al., 2009, Chapter 9) with time complexity O(K · NK). Since
the above step is carried out NT times, the time complexity of the parallel LVA is

24 Background

Algorithm 3 The Nilsson and Goldberger (2001) list Viterbi algorithm
1: Input: HMM parameters q, observations O1:T, sequence length T,

the number of most likely sequences K.
2: Initialise max-heap H, result set R = ∆, k = 1.
3: Compute eat(si) (Eq. 2.21), ebt(si) (Eq. 2.30) and egt(si, sj) (Eq. 2.34).
4: Identify a sequence with the highest probability (Eq. 2.23) via back-tracking: let

q[1] = (q[1]1 , . . . , q[1]T) be the sequence and r[1] be the corresponding probability.
5: H.push(r[1], (q[1], nil, ∆))

6: while H 6= ∆ and k K do
7: r[k], (q[k], I, S) = H.pop()

Extract a state sequence with the k-th highest probability from the max-heap
H: r[k] is the probability of q[k] = (q[k]1 , . . . , q[k]T), I is the partition index, and S is
the excluding set.

8: Add q[k] to the result set R.

9: I0 =

8
<

:
1, I = nil

I, otherwise
10: for t = I0 to T do

11: S0 =

8
<

:
S [{q[k]t }, t = I0

{q[k]t }, otherwise

12: qt0 =

8
>>>><

>>>>:

q[k]t0 , t0 = 1 to t�1

argmax
s/2S0

n
egt�1,t(q

[k]
t�1, s)

o
, t0 = t

argmax
s

{egt0�1,t0(qt0�1, s)} , t0 = t+1 to T

13: r = r[k] ·
egt�1,t(q

[k]
t�1, qt)

egt�1,t(q
[k]
t�1, q[k]t)

(Nilsson and Goldberger, 2001, Theorem 1)

14: H.push(r, (q, t, S0))

15: end for
16: k = k + 1
17: end while
18: return result set R

O(N2KT log(NK)) or O(N2K2T). To analyse the space complexity, note that we need
O(NKT) space to store all sequence states, and O(NK) space for the NK accumulated
scores at a time instant. Therefore, the space complexity of parallel LVA is O(NKT).

The serial LVA (Seshadri and Sundberg, 1994) finds the K best state sequences one
at a time. It leverage the insight that the globally second best state sequence diverges
from the globally first best sequence at some time instant, and it merges with the

§2.4 Path decoding in Markov chains 25

globally first best sequence at a later time instant and never diverges again, since any
subsequent divergence will result in a higher cost (lower score) sequence. Similarly,
the third globally best sequence is either the locally third best sequence with respect
to the globally first best sequence (i.e., excluding the globally second best sequence)
or the locally second best sequences with respect to the globally second best sequence.
This reasoning can be generalised to find the K-th best state sequence given the first,
second, . . . , (K�1)-th best state sequences.

To analyse the time complexity of the serial LVA, note that

• computing the globally best sequence using the Viterbi algorithm in time (N2T),
i.e., filling in a table with NT cells where each can be computed in O(N) time.

• computing the locally second best sequences after identifying the globally k-th
(k = 1, . . . , K�1) best sequences. This requires N additions and comparisons
in (Seshadri and Sundberg, 1994, Eq. 9) for each time instant t 2 {1, . . . , T},
which can be upper bounded by O(NT). Thus, for all K best sequences, the
time complexity is O(NKT).

• Suppose we use a priority queue to keep track of the locally best sequences, the
additional cost related to insertion and extracting best operations can be upper
bounded by O(KT log(KT)). In other words, the total number of sequences in
the priority queue is KT at most, and the time for each insertion or extraction
can be upper bounded by log(KT).4

Adding up these terms, the time complexity of the serial LVA is O(N2T + NKT +

KT log(KT)), and the space complexity is W(NT + KT + NTK) i.e., the path matrix
and the “merge” count array (Seshadri and Sundberg, 1994, Eq. 9).

The analysis of the time complexity of Algorithm 3 is similar to that of the serial
LVA. First, the cost of the Viterbi and “backward Viterbi” algorithms is O(N2T), then
the partitioning operations and the computation of the best sequence in each partition
cost O(K · NT). Lastly, the insertion and extraction of sequences cost O(KT log(KT))
if we use a priority queue. This results in O(N2T + NKT + KT log(KT)). The space
complexity of Algorithm 3 is

O(NT + KT · (1 + T + 1 + N)) = O(KT2 + NKT).

As a remark, the parallel LVA needs to specify the value of K as an input of the
algorithm, however, in practice, we usually do not know the value of K beforehand.

4A tighter bound is O
⇣

ÂK
k=1 log(kT)

⌘
= O(K log(T) + log(K !)), which can be further simplified

using the Stirling’s formula (Dutka, 1991).

26 Background

Table 2.2: Time and space complexities of three typical list Viterbi algorithms.

LVA variants Time complexity Space complexity

Parallel LVA O
�

N2KT log(NK)
�

or O
�

N2K2T
�

O(NKT)
Serial LVA O

�
N2T + NKT + KT log(KT)

�
W(NT + KT + NKT)

Nilsson and Goldberger (2001) O
�

N2T + NKT + KT log(KT)
�

O(KT2 + NKT)

In this case, the serial LVA and Algorithm 3 (Nilsson and Goldberger, 2001) are
applicable as both algorithms sequentially find the next-best state sequence.

Table 2.2 summaries the time and space complexity of the three LVA variants.
Although the serial LVA and Algorithm 3 are ostensibly different, it turns out that

these two algorithms are in fact computing the same fundamental quantities (Menon,
2017; Menon et al., 2017). In particular, Menon (2017) showed that, similar to the
forward and backward approaches described in Section 2.4.1, the only difference
between the serial LVA and Algorithm 3 is simply that the former works forwards
and the latter works backwards.

2.4.3 Sub-tour elimination in s-t path TSP

Another technique that can decode paths in Markov chains was developed for the
travelling salesman problem (TSP). Given a complete graph with N nodes, the travel-
ling salesman problem is to find a shortest route that visits each node exactly once
and finishes at the starting node. The s-t path TSP is a variant of TSP that finding a
shortest path with fixed endpoints s and t (Hoogeveen, 1991; An et al., 2015).

Let dij be the distance between node i and node j, the s-t path TSP can be
formulated as an integer linear program (ILP):

max
x,u Â

i,j
cijzij

s.t. zij 2 {0, 1}, zii = 0, ui 2 Z, 8i, j 2 {1, . . . , N}
N

Â
i=1

zi1 = 0,
N

Â
j=1

z1j = 1,
N

Â
i=1

ziN = 1,
N

Â
j=1

zNj = 0, (2.35)

N

Â
j=1

zij =
N

Â
j=1

zji 1, 8i 2 {2, . . . , N � 1} (2.36)

N�1

Â
i=1

N

Â
j=2

zij = N � 1, (2.37)

ui � uj + 1 (N � 1)(1 � zij). 8i, j 2 {1, . . . , N} (2.38)

For brevity, here we index the nodes such that s is node 1 and t is node N. The
binary variables zij are true iff node i is visited immediately after visiting node j;

§2.4 Path decoding in Markov chains 27

integer variable ui tracks the rank of node i in the shortest path.5 Constraint (2.35)
ensures the path starts at node s and ends at t. Further, no self-loops are allowed (i.e.,
zii = 0), and each node should be visited exactly once (Constraints 2.36 and 2.37). In
particular, Constraint (2.38) ensures we do not have (disjoint) cycles (i.e., sub-tours) in
the resulting path, as per Miller et al. (1960).

We can adapt the above ILP formulation to compute the most likely path of states
for a hidden Markov model given the length of path. In particular, we maximise both
the transition likelihood and emission probabilities. However, in order to incorporate
observations O1:T in the objective of the ILP formulation, we need N2(T � 1) binary
variables (instead of N2 variables in the ILP formulation for the s-t path TSP) where
decision variable zijt = 1 represents that qt = si and qt+1 = sj, and constraints (2.35-
2.38) should be adapted accordingly. Similar to the LVA, we can find the K most likely
paths instead of just one most likely path in a sequential manner, i.e., by encoding the
first, the second, . . . , the K�1-th most likely paths in new constraints when computing
the K-th most likely path.

2.4.4 Heuristic algorithms

Besides the list Viterbi algorithm and the approach based on the ILP formulation
of the s-t path TSP, there are many heuristic algorithms that solve the problem of
decoding path in Markov chains, which do not necessarily return the optimal path
but can work efficiently. A straightforward approach is to post-process the sequence
decoded by the Viterbi algorithm, e.g., simply skipping a state when it appears for
the second time; however, this approach will result in a shorter sequence if the one
decoded by the Viterbi algorithm contains duplicate states. To mitigate this problem,
Menon et al. (2017) proposed to decoding a longer sequence than required using the
Viterbi algorithm before the post-processing.

Another heuristic approach is to decode the sequence using a greedy method. At
each decoding step, it can either choose the best state or caching K best states (i.e., the
beam search method) to avoid a state being included more than once in the resulting
path. Alternatively, if the path decoding problem can be formulated as an instance of
the TSP, for example, by fixing a subset of states, then heuristic algorithms of the TSP
can also be applied, e.g., the Christofides algorithm6 which can find a path that has at
most 1.5 times the cost of the optimal path in polynomial time (Christofides, 1976).

5This is easy to observe if we assume the shortest path is ordered from node p1 to node pN , i.e.,
zpt ,pt+1 = 1, t 2 {1, . . . , N � 1}, by Constraint (2.38) we have upt+1 � upt + 1, which means, in the
shortest path, the t+1-th node is ranked higher (with a margin of at least 1) than the t-th node.

6Note that the Christofides algorithm approximately solves the metric-TSP that requires the edge
weights in the complete graph to satisfy the triangle inequality.

28 Background

2.5 Binary classification and bipartite ranking

We have reviewed techniques that form the foundation of efficient path recommen-
dation. In this section, we describe the problems and related techniques that can
help us achieve efficient set recommendation. In particular, we review a few closely
related loss functions for the problem of binary classification and bipartite ranking,
which will be employed in Chapter 5 to enable efficient recommendation of sets in
the context of music playlists.

Given a sample of instances (or examples) with binary labels, binary classification
is the problem of learning a binary-valued function that gives +1 labels for positive
instances and �1 labels for negative instances.7 A related problem is bipartite ranking,
which learns to rank positive instances above negative instances.

Let X be the instance space, and D = S+ [S� denote the binary dataset, where
S+ = {(x+, +1)} is a set of positive examples, and S� = {(x�, �1)} is a set of nega-
tive examples. Examples x+, x� 2 X , e.g., D-dimensional feature vectors. Further, we
use M+ and M� to denote the number of positive and negative examples, respectively.

2.5.1 Loss functions for binary classification

The binary-valued prediction function for a binary classifier is generally not directly
learned, rather, we first learn a real-valued scoring function f : X ! R, then compare
the score of a particular input with a threshold t to get a binary prediction. The
misclassification loss of f on binary dataset D is the number of incorrectly classified
examples. Taking care of ties, we have

Rbc
0/1 = Â

x+2S+

✓
J f (x+) < tK+ 1

2
J f (x+) = tK

◆
+ Â

x�2S�

✓
J f (x�) > tK+ 1

2
J f (x�) = tK

◆
,

(2.39)
where J·K is the indicator function that represents the 0/1 loss.

To practically optimise the misclassification loss Rbc
0/1 we replace the indicator

function in (2.39) with one of the convex surrogate of the 0/1 loss to upper bound
Rbc

0/1, in other words, we have

Rbc
0/1 Â

x+2S+

`(f (x+)� t) + Â
x�2S�

`(t � f (x�)).

For example, let t = 0 and `(z) = max(0, 1 � z) (i.e., the hinge loss), we get the
empirical risk of the support vector machines for binary classification.8 Alternatively,

7The labels for binary classification are also (widely) denoted as {0, 1} or {True, False}.
8As a remark, loss functions for binary classification can be independent of the threshold, a

§2.5 Binary classification and bipartite ranking 29

let t = 0 and `(z) = e�z (i.e., the exponential loss) results in the objective of Ad-
aBoost (Freund and Schapire, 1997), and here we review two generalisations of it. The
first one is known as the Cost-Sensitive AdaBoost (Ertekin and Rudin, 2011)

Rcsa(f ,D) = Â
x+2S+

exp(� f (x+)) + C Â
x�2S�

exp(f (x�)), (2.40)

where C is a weighting parameter. Another generalisation of the AdaBoost is the
P-Classification (Ertekin and Rudin, 2011)

Rpc(f ,D) = Â
x+2S+

exp(� f (x+)) +
1
p Â

x�2S�

exp(p f (x�)), (2.41)

where p 2 R+ is a hyper-parameter.
It turns out that both the Cost-Sensitive AdaBoost (Eq. 2.40) and the P-Classification

(Eq. 2.41) are closely related to the P-Norm Push (Eq. 2.43) (Ertekin and Rudin,
2011). This inspires a more general relation between bipartite ranking and binary
classification, which will be described in the next section.

2.5.2 Loss functions for bipartite ranking

Given an example space X , let f : X ! R be a function that can score an example
x 2 X . The misranking loss of f on binary dataset D is the number of positive
examples that are ranked below any negative example. Accounting for ties, we have

Rbr
0/1(f ,D) = Â

x+2S+

Â
x�2S�

✓
J f (x+) < f (x�)K+

1
2
J f (x+) = f (x�)K

◆
. (2.42)

Since the 0/1 loss is a non-differentiable function, to practically optimise the loss
of the scoring function f on dataset D, one approach is to upper bound the 0/1 loss
with one of its convex surrogates `(z) � Jz 0K (e.g., the exponential loss `(z) = e�z,
the logistic loss `(z) = log(1+ e�z), or the squared hinge loss `(z) = [max(0, 1� z)]2).
In other words, we can upper bound the misranking loss as

Rbr
0/1(f ,D) Â

x+2S+

Â
x�2S�

`(f (x+)� f (x�)).

If we measure the quality of a ranking function by the area under the ROC curve
(AUC), loss functions for bipartite ranking are often variants of the misranking loss,

typical example is the loss function for logistic regression (i.e., the log loss or the cross entropy
loss), where the prediction function f : RD ! [0, 1] outputs a probability and the loss of f on D is
Rlog(f ,D) = �Âx+2S+

log f (x+)� Âx�2S� log(1 � f (x�)).

30 Background

which is related to 1� AUC (Ertekin and Rudin, 2011). For example, the objective of
P-Norm Push is defined as (Rudin, 2009):

Rpn
` (f ,D) = Â

x�2S�

"

Â
x+2S+

`(f (x+)� f (x�))

#p

, (2.43)

where p 2 R+ is a parameter that acts as a soft maximum for the highest scoring neg-
ative example. It reduces to the objective of RankBoost if we employ the exponential
surrogate loss `(z) = e�z and let p = 1 (Freund et al., 2003).

Recalling the definition of infinity norm (or maximum norm)

kzk• = max
i

|zi| = lim
p!+•

Â
i
|zi|p

!1/p

,

we have

R•
` (f ,D) = lim

p!+•

h
Rpn
` (f ,D)

i 1
p
= max

x�2S�

"

Â
x+2S+

`(f (x+)� f (x�))

#
, (2.44)

which is the objective of Infinite Push (Agarwal, 2011). Further,

Rtp
` (f ,D) = Â

x+2S+

`

✓
f (x+)� max

x�2S�
f (x�)

◆
, (2.45)

which is the objective of Top Push, and Rtp
` = R•

` if the convex surrogate of the 0/1
loss `(·) is non-increasing and differentiable (Li et al., 2014).

Intuitively, the Top Push penalises the scenario where any positive example is
ranked below the highest-ranked negative example. If we penalise the scenario where
any negative example is ranked above the lowest-ranked positive example, this results
in the objective of Bottom Push (Rudin, 2009),

Rbp
` (f ,D) = Â

x�2S�

`

✓
min

x+2S+

f (x+)� f (x�)
◆

. (2.46)

It has been shown that the loss functions of binary classification and those of
bipartite ranking are closely related (Ertekin and Rudin, 2011; Menon and Williamson,
2016). In particular, Ertekin and Rudin (2011) showed that the P-Norm Push and
P-Classification share the same minimiser(s) when the scoring function takes the form
of a linear function, and the P-Norm Push employs the exponential surrogate loss
`(z) = e�z. In addition, it also showed the RankBoost and Cost-Sensitive AdaBoost
share the same minimiser(s). These results can be generalised to a parametric family
of bipartite ranking and binary classification losses, see Appendix B for details.

§2.6 Multi-task learning 31

2.6 Multi-task learning

The last technique we review is the multi-task learning paradigm, which will be
employed to jointly learn user representations in Chapter 5. Given a number of
related tasks, a natural approach is to learn each task independently. However, many
work suggest that learning all the related tasks simultaneously can generally enjoy
better generalisation performance (Caruana, 1993, 1997; Ruder, 2017). This paradigm
of learning multiple tasks at the same time is called multi-task learning.

A typical approach to multi-task learning is to optimise the losses of all related
tasks at the same time with shared representations, i.e., hard parameter sharing (Ruder,
2017). In particular, given T related tasks, we optimise the following objective:

min
q

W(q) +
T

Â
t=1

Rt(q), (2.47)

where q is the shared parameters, W(q) is the regularisation term, and Rt(q) is the
empirical risk of the t-th task.

An alternative approach to multi-task learning is to use separate representations
for different tasks, but encourage related tasks to have similar representations, e.g.,
via regularisation, i.e., soft parameter sharing (Ruder, 2017). Suppose we use `2

regularisation to encourage similar parameters for related tasks, we can optimise

min
q1, ..., qT

l

2 Â
t,t0

kqt � qt0 k2 +
T

Â
t=1

Rt(qt), (2.48)

where l 2 R+ is a regularisation constant, tasks t and t0 are related, and qt is the
parameter for task t.

A particular application of the multi-task learning paradigm is to perform multi-
label classification, where we have a set of m class labels {l1, . . . , lm}, and an instance
x 2 RD is associated with a subset of labels, which can be represented with a m
dimensional binary vector y = (y1, . . . , ym) where yj = 1, j 2 {1, . . . , m} if and only if
label lj is associated with the instance x.

Formally, given a set of N instances and their associated labels S = {(xi, yi)}N
i=1

as the training set, multi-label classification is to learn a function f : RD ! {0, 1}m

(from S) that can predict the set of labels for any new instance x0 not seen in S . In
practice, both the hard parameter sharing approach (Huang et al., 2013; Wang et al.,
2016; Li et al., 2017) and the soft parameter sharing approach (Xue et al., 2007; Read
et al., 2009; Dembczyński et al., 2010; Guo et al., 2011; Wu and Zhou, 2017) have been
successfully employed to solve multi-label classification problems.

32 Background

2.7 Summary

This chapter presents the problem of recommending structured objects (Section 2.1)
and reviews the classic techniques for recommender systems (Section 2.2). We focus
on the path and set recommendation problems and review techniques that enable
efficiently training (Section 2.3) and inference (Section 2.4) for structured prediction,
the loss functions of bipartite ranking and binary classification (Section 2.5), as well as
the multi-task learning paradigm (Section 2.6). These techniques form the foundation
of efficient recommendation of paths and sets. In the next chapter, we investigate the
problem of recommending travel trajectories – an instance of path recommendation.

Chapter 3

Feature-based Travel Trajectory
Recommendation

In this chapter, we study the problem of recommending trajectories to travellers. A
travel trajectory (or tour) consists of a sequence of points-of-interest (POIs). Further,
a traveller is unlikely to make multiple visits to the same POI in a tour (in general),
which suggests the recommended trajectory should be a path (Section 2.1.1). We
describe the typical settings of travel recommendation in Section 3.1, and investigate a
number of approaches to recommend paths based on POI ranking and route planning
(Section 3.5), followed by empirical evaluation and discussion (Section 3.6).

3.1 Introduction

A large amount of location traces are becoming available from ubiquitous location
tracking devices. For example, FourSquare has more than 50 million monthly users
who have made 12 billion check-ins (Foursquare, 2019), and Flickr hosts over 5 billion
photos, many with geolocation metadata (Flickr, 2019). This growing trend in rich
geolocation data provides new opportunities for better travel planning traditionally
done with written travel guides. Good solutions to these problems will in turn lead
to better urban experiences for residents and visitors alike, and foster sharing of
even more location-based behavioural data. This work proposes a novel solution to
recommend travel routes in cities.

There are several typical settings of recommendation problems for locations and
routes, as illustrated in Figure 3.1. The first setting can be called POI recommendation
(Figure 3.1a). Each location (A to E) is scored with geographic and behavioural
information such as category, reviews, popularity, spatial information such as distance,
and temporal information such as travel time uncertainty, time of the day or day of the
week. Figure 3.1b illustrates the second setting: next location recommendation, where
the input is a partial trajectory (e.g., started at point A and currently at point B), the

33

34 Feature-based Travel Trajectory Recommendation

A
B

C

D

E

(a) POI Recommendation

A
B

C

D

E

(b) Next Location Recommendation

A
B

C

D

E

(c) Trajectory Recommendation

Figure 3.1: Three settings of travel recommendation problems. Node size: POI score;
edge width: transition score between pairs of POIs; grey: observed; star: starting
location; flag: ending location. See Section 3.1 for details.

task of the algorithm is to score the next candidate location (e.g, C, D and E) based on
the perceived POI score and transition compatibility with input A ! B. It is a variant
of POI recommendation except both the user and locations travelled to date are given.

Here we consider the final setting: trajectory recommendation (Figure 3.1c), where
the input are some factors about the desired route, e.g., starting point A and end
point C, along with auxiliary information such as the desired length of trip. The
algorithm needs to take into account location desirability (as indicated by node
size) and transition compatibility (as indicated by edge width), and compare route
hypotheses such as A-D-B-C and A-E-D-C.

All these settings have been broadly studied (Bao et al., 2015; Zheng, 2015; Zheng
et al., 2014). We note, however, that two desired qualities are still missing from the
current solutions to trajectory recommendation. The first is a principled method to
jointly learn POI ranking (a prediction problem) and optimise for route creation (a
planning problem). The second is a unified way to incorporate various features such
as location, time, distance, user profile and social interactions, as they tend to get
specialised and separate treatments. This work aims to address both challenges. Our
main contributions are as follows:

• We propose a novel algorithm to jointly optimise point preferences and routes.
We find that learning-based approaches generally outperform heuristic route
recommendation (Lim et al., 2015). Incorporating transitions into POI ranking
results in a better sequence of POIs, and avoiding sub-tours further improves
performance of classical Markov chain methods.

• Our approach is feature-driven and learns from past behaviour without having
to design specialised treatment for spatial, temporal or social information. It
incorporates information about location, POI categories and behaviour history,
and can use additional time, user, or social information if available.

§3.2 Problem statement 35

• We show good performance compared to recent results (Lim et al., 2015), and
also quantify the contributions from different components, such as ranking
points, scoring transitions, and routing.

• Lastly, we propose a new metric, pairs-F1, to evaluate trajectories, it captures the
order in which POIs are visited. Pairs-F1 lies between 0 and 1, and achieves 1 if
and only if the recommended trajectory is exactly the same as the ground truth.

3.2 Problem statement
Recall that a travel trajectory or tour is a sequence of POIs. Given a set of POIs P
in a city, and a set of historical travel trajectories from visitors, the travel trajectory
recommendation problem is to suggest a trajectory through the city with regards to
user specified constraints. In this thesis, we use a trajectory query to capture the
constraints and group the tours that satisfy these constraints to form a training
set S = {(q(i), {y(ij)}Ni

j=1)}N
i=1, where q(i) is the i-th query and y(ij) is one of the Ni

trajectories with respect to the constraints specified in q(i). Typically, no POI will be
visited more than once in a tour (i.e., a tour is a path), and therefore we formulate the
problem of recommending travel trajectories as an instance of path recommendation
(Section 2.1.1). In this chapter, we consider the task of recommending one trajectory for
a given query, the problem of recommending multiple trajectories will be addressed
in Chapter 4. Further, we define a trajectory query as q = (ps, pe, L), where ps, pe 2 P
are respectively the start and end locations of a desired trajectory, and L is the number
of POIs (including ps and pe) the user wish to visit.

There have been other formulations of the tour recommendation problem (Gionis
et al., 2014; Lim et al., 2015; Chen et al., 2017b; He et al., 2018), for example, instead of
constraining the number of POIs to visit, Lim et al. (2015) and He et al. (2018) used a
query q = (ps, pe, T) where T is the time budget for a desired trajectory; Gionis et al.
(2014), on the other hand, restricted the maximum distance of a trajectory, i.e., with a
query q = (ps, pe, D) where a recommended trajectory can not have a distance larger
than D. There is also work that omits the end location from the query to accommodate
other recommendation scenarios, which results in a query q = (ps, L) (Chen et al.,
2017b). Further, the query can be generalised to include constraints such as the venue
type, or any restrictions that might be specified by the end user (Gionis et al., 2014).

3.3 Related work
We summarise recent work most related to formulating and solving learning problems
on assembling routes from POIs, and refer the reader to recent surveys (Bao et al.,
2015; Zheng, 2015; Zheng et al., 2014) for general overviews of the area.

36 Feature-based Travel Trajectory Recommendation

3.3.1 Solutions for typical travel recommendation problems

A popular approach for the POI recommendation problem (Figure 3.1a) is to recom-
mend POIs with a collaborative filtering model that learns user-location affinity (Shi
et al., 2011), with additional ways to incorporate spatial (Lian et al., 2014; Liu et al.,
2014), temporal (Yuan et al., 2013; Hsieh and Li, 2014; Gao et al., 2013), or spatial-
temporal (Yuan et al., 2014) information. It can also be in discovery mode, such as
identifying points-of-interest (Zheng et al., 2009; Li et al., 2015) and includes efficient
querying of geographic objects for trips (Hashem et al., 2015).

Current solutions to the next location recommendation problem (Figure 3.1b) include
incorporating Markov chains into collaborative filtering (Rendle et al., 2010; Cheng
et al., 2013; Zhang and Wang, 2015), quantifying tourist traffic flow between points-
of-interest (Zheng et al., 2012), incorporating regional influence of POIs via latent
factors (Lu et al., 2018), formulating a binary decision or ranking problem (Baraglia
et al., 2013), and predicting the next location with sequence models such as recurrent
neural networks (Liu et al., 2016b; Lu et al., 2018).

Existing work on trajectory recommendation (Figure 3.1c) either uses heuristic com-
bination of locations and routes (Lu et al., 2010; Lim et al., 2015; Lu et al., 2012), or
formulates an optimisation problem that is not informed or evaluated by behaviour
history (Gionis et al., 2014; Chen et al., 2015). Joint learning of location preferences
and routes remains an open problem. Motivated by this observation, we formulate a
learning problem to score the whole trajectory by taking into account both individual
POI properties and relationships among different POIs.

3.3.2 Methods for ranking locations and trajectories

The classic collaborative filtering, or the matrix factorisation family of techniques have
been applied to places and trajectories to learn the hidden representations of POI
and trajectory (Shi et al., 2011; Cheng et al., 2013; Zhang and Wang, 2015), which can
then be employed to rank POIs and trajectories. Alternatively, user specific scores
for locations can be assigned according to, e.g., user preference and popularity of
POIs (Debnath et al., 2018). Another type of method regards route recommendation
as a planning problem (Gionis et al., 2014; Lim et al., 2015; He et al., 2018). The
TripBuilder system (Brilhante et al., 2013) first solves a maximum coverage problem for
user preference and then solves the TSP for routing. He et al. (2018) suggest trajectories
using integer programming and local search that leverage user and POI embeddings
jointly learned by the Bayesian Personalized Ranking approach. Anagnostopoulos
et al. (2017) recommend tours for a group of travellers by solving a planning problem
that generalises the orienteering problem. Chen et al. (2018) adopt the Q-learning

§3.4 Query features and POI transition 37

algorithm to successively generate personalised bicycle trips.
The collaborative filtering approaches rank POIs but do not take into account the

sequence that a trip is taken. On the other hand, the planning approaches assume a
fixed objective function that is not directly optimised to predict user behaviour. There
have been a few approaches that jointly consider POI preferences and routes (Lu et al.,
2012; Kurashima et al., 2010; Chen et al., 2015).

3.3.3 Features and information employed

A diverse set of available information have been employed, such as geographic, time,
user properties, and subjective opinions. Approaches for modelling space include
geolocation-informed matrix factorisation (Lian et al., 2014), spatial topic models (Hu
and Ester, 2013), neighbourhood information (Liu et al., 2014), exploiting sequential
information with additive Markov chains (Zhang et al., 2014), and enriching location
with the information for venues (Deveaud et al., 2014, 2015). Important variants
to consider for modelling time include travel time (Gao et al., 2013), constructing
time-aware routes (Yuan et al., 2013; Hsieh and Li, 2014), time-of-day and day-of-
week (Chen et al., 2015), POI availability and uncertainty in travelling time (Zhang
et al., 2015a). There are a number of approaches that jointly consider space and
time (Yuan et al., 2014; Zhang and Wang, 2015), such as modelling the correlation
between check-in time and location (Gao et al., 2013).

Inferring user attributes and preferences has been an important consideration (Liu
et al., 2013). Chen et al. (2013) recommend places to travellers based on user demo-
graphics and travel group types (e.g., couple, family and friends) from online photos.
Ference et al. (2013) tailors the recommendation for out of town users. Subjective
opinion is an important information source for decision making, in addition to past
behaviours. Zhang et al. (2015b) use written reviews for POI recommendation. Le
and Pishva (2016) integrate the weather condition, public transportation and cultural
events in a number of Japanese cities to form tours that account for users’ time and
budget constraints. The novel work from Quercia et al. (2014) crowd-source judge-
ments about the beauty, quietness and happiness of places, and then constructs routes
with these subjective criteria.

3.4 Query features and POI transition

In the tour recommendation problem, the training data consists of a set of tours of
varying length in a particular city. We consider only POIs that have been visited by
at least one user in the past, and construct a graph with POIs as nodes and directed

38 Feature-based Travel Trajectory Recommendation

edges representing the observed transitions between pairs of POIs in tours.

We extract the category, popularity (number of distinct visitors) (De Choudhury
et al., 2010), total number of visits and average visit duration for each POI. POIs are
grouped into 5 clusters using K-means according to their geographical locations to
reflect their neighbourhood. Furthermore, since we are constrained by the fact that
trajectories have to be of length L and start and end at certain points, we hope to
improve the recommendation by using this information. In other words, we use the
query q = (ps, pe, L) to construct new features by contrasting candidate POIs with ps

and pe. For each of the POI features (i.e., category, neighbourhood, popularity, total
visits and average duration), we construct two new features by taking the difference of
the feature in POI p with ps and pe respectively. For the category (or neighbourhood),
we set the feature to 1 when their categories (or cluster identities) are the same and
�1 otherwise. For popularity, total visits and average duration, we take the real
valued difference. Lastly, we compute the distance from POI p to ps (and pe) using the
Haversine formula (Sinnott, 1984), and also include the required length L as a feature.

In addition to information about each individual POI, a tour recommendation
system would benefit from capturing the likelihood of going from one POI to another
different POI. One option would be to directly model the probability of going from any
POI to any other POI, but this has several weaknesses: Such a model would be unable
to handle a new POI (one that has not yet been visited), or pairs of existing POIs
that do not have an observed transition. Furthermore, even if we restrict ourselves to
known POIs and transitions, there may be locations which are rarely visited, leading
to significant challenges in estimating the probabilities from empirical data.

We model POI transitions using a Markov chain with discrete states by factoris-
ing the transition probability P(pj|pi), i, j 2 {1, . . . , |P|} as a product of transition
probabilities between pairs of individual POI features, assuming independence be-
tween these feature-wise transitions. The popularity, total visits and average duration
are discretised by binning them uniformly into 5 intervals on the log scale. These
feature-to-feature transitions are estimated from data using maximum likelihood
principle. The POI-POI transition probabilities can be efficiently computed by taking
the Kronecker product of transition matrices for the individual features, and then
updating it based on appropriate normalisation as well as three additional constraints.
First we disallow self-loops by setting the probability of P(pi|pi), i 2 {1, . . . , |P|} to
zero. Secondly, when a group of multiple POIs have identical (discretised) features, we
distribute the transition probability uniformly among POIs in the group. In particular,
the incoming transition probability (from other POIs or the group itself) is distributed
uniformly among POIs in the group, while taking care of the requirement that no POI
self-loop is allowed. The outgoing transition probability of a POI in the group is set

§3.5 Tour recommendation 39

Figure 3.2: Transition matrices for two POI features from Melbourne: POI category
and neighbourhood.

to equal that of the group. Third, we remove feature combinations that has no POI in
dataset. Figure 3.2 visualises the transition matrices for two POI features, category
and neighbourhood, in Melbourne.

3.5 Tour recommendation

In this section, we first describe methods to recommend points and routes, then
propose an approach to combine them for trajectory recommendation. Lastly, we
propose a method to avoid sub-tours and describe alternative approaches briefly.

3.5.1 POI ranking and route planning

A naive approach would be to recommend trajectories based on the popularity of
POIs only, that is we always suggest the top-k most popular POIs for all visitors given
the start and end location. We call this baseline approach PoiPopularity, and its only
adaptation to a particular query is to adjust k to match the desired length.

On the other hand, we can leverage the whole set of POI-query features (Section 3.4)
to learn a ranking of POIs (with respect to a query). Suppose we use the rankSVM (Lee
and Lin, 2014) with a linear kernel and the squared hinge loss,

min
w

1
2

w>w + C Â
q2Q, yiq>yjq

max
⇣

0, 1 � w>(fiq � fjq)
⌘2

, (3.1)

where w is a parameter vector, C 2 R+ is a regularisation constant, Q denotes the
set of queries from trajectories in the training set, and yiq, i 2 {1, . . . , |P|}, q 2 Q is

40 Feature-based Travel Trajectory Recommendation

the label of the POI-query pair (pi, q), which is the number of occurrences of POI
pi in the set of training trajectories corresponding to query q, without counting the
occurrence of pi when it is the origin or destination of a trajectory. Lastly, fiq is a
vector of POI-query features of (pi, q) as described in Section 3.4.

The ranking score of pi with respect to query q is computed as Riq = w>fiq.
Intuitively, we learn a function that scores the affinity between POI p and query q,
however, only the rank (instead of the real-valued affinity score) of the POI with
respect to the given query matters.

Given a query q = (ps, pe, L), we can recommend a trajectory by first ranking the
set of POIs P \ {ps, pe} (with respect to query q), then take the top ranked L�2 POIs
and connect them according to the ranks. We call this method PoiRank.

In addition to recommending trajectories by ranking POIs, we can leverage the
POI-POI transition probabilities and recommend a trajectory for a particular query
by maximising the transition likelihood. The maximum likelihood of the Markov
chain of transitions can be found using a variant of the Viterbi algorithm (with
uniform emission probabilities). We refer to this approach that only uses the transition
probabilities between POIs as Markov.

3.5.2 Combining ranking and transition

We would like to leverage both point ranking and transitions, i.e., recommending
a trajectory that maximises the points ranking of its POIs as well as its transition
likelihood at the same time.

One option to find a trajectory that simultaneously maximises the ranking proba-
bilities of its POIs and its transition likelihood is to optimise an objective that accounts
for both POI ranking and transition likelihood. Here we consider an instance of this
objective, it aggregates the contributions of POIs ranking and transitions by trading-off
the importance between the two components using a parameter a 2 [0, 1]. In practice,
the value of parameter a is generally tuned using cross validation.

In other words, we optimise the following objective:

argmax
y2P L

a
L�1

Â
k=2

log PR(pk|q) + (1 � a)
L�1

Â
k=1

log P(pk+1|pk), (3.2)

where y = (p1, . . . , pL) is any possible trajectory, and we transform the ranking scores
of POIs with respect to a query to a probability distribution using the softmax function,

PR(pi|q) =
exp(Riq)

Âpj2P\{ps,pe} exp(Rjq)
, pi 2 P \ {ps, pe}. (3.3)

§3.5 Tour recommendation 41

Algorithm 4 Rank+Markov: recommend trajectory with POI ranking and transition
1: Input: P , ps, pe, L
2: Output: Trajectory y = (ps, · · · , pe) with L POIs
3: Initialise score matrix A and backtracking-point matrix B
4: for p 2 P do
5: A[2, p] = S(p; ps, q), B[2, p] = ps
6: end for
7: for l = 2 to L � 1 do
8: for p 2 P do
9: A[l + 1, p] = maxp02P{A[l, p0] + S(p; p0, q)}

10: B[l + 1, p] = argmaxp02P{A[l, p0] + S(p; p0, q)}
11: end for
12: end for
13: y = (pe), l = L, p = pe
14: repeat
15: Prepend B[l, p] to y
16: l = l � 1, p = B[l, p]
17: until l < 2
18: return y

To maximise the objective in (3.2), let S(p; p0, q) be a convex combination of point
ranking and transition (from p0 to p),

S(p; p0, q) = a log PR(p|q) + (1 � a) log P(p|p0), (3.4)

we can then find the best path (or walk) using the Viterbi algorithm. We call this
approach that uses both the point ranking and transitions Rank+Markov.

Algorithm 4 shows the pseudo code of this method, where A is the score matrix,
and entry A[l, p] stores the maximum value associated with the (partial) trajectory
that starts at ps and ends at p with l POI visits; B is the backtracking-point matrix,
and entry B[l, p] stores the predecessor of p in that (partial) trajectory. The maximum
objective value can be found in A[L, pe], and the corresponding trajectory can be built
by tracing back from B[L, pe].

3.5.3 Avoiding sub-tours

Trajectories recommended by Markov (Section 3.5.1) and Rank+Markov (Section 3.5.2)
are found using the maximum likelihood approach, and may contain multiple visits
to the same POI. This is because the best solution from Viterbi decoding may have
circular sub-tours (where a POI already visited earlier in the tour is visited again).
We propose a method for eliminating sub-tours by finding the best path using an

42 Feature-based Travel Trajectory Recommendation

integer linear program (ILP), with sub-tour elimination constraints adapted from
the ILP formulation of the s-t path TSP (Section 2.4.3). In particular, we recommend
a trajectory for query q = (ps, pe, L) by solving the ILP with objective (3.5) and
constraints (3.6)-(3.10), where M = |P| is the number of available POIs and binary
variable zij determines whether the transition from pi to pj is in the resulting trajectory.

max
z,u

M�1

Â
i=1

M

Â
j=2

zij log P(pj|pi) (3.5)

s.t. zij 2 {0, 1}, zii = 0, ui 2 Z, 8i, j 2 {1, · · · , M} (3.6)
M

Â
j=2

z1j =
M�1

Â
i=1

ziM = 1,
M

Â
i=2

zi1 =
M�1

Â
j=1

zMj = 0 (3.7)

M�1

Â
i=1

zik =
M

Â
j=2

zkj 1, 8k 2 {2, · · · , M � 1} (3.8)

M�1

Â
i=1

M

Â
j=2

zij = L � 1, (3.9)

ui � uj + 1 (M � 1)(1 � zij), 8i, j 2 {2, · · · , M} (3.10)

For brevity, we arrange the POIs such that p1 = ps and pM = pe. Firstly, the desired
trajectory should start from ps and end at pe (Constraint 3.7). In addition, any POI
could be visited at most once (Constraint 3.8), and only L�1 transitions between
POIs are permitted (Constraint 3.9), i.e., the number of POI visits should be exactly L
(including both ps and pe). The last constraint (3.10), where ui is an auxiliary variable,
enforces that only a single sequence of POIs without sub-tours is permitted in the
trajectory (Miller et al., 1960).

We can solve this ILP using off-the-shelf ILP solvers such as the CPLEX optimiser1

or the Gurobi optimisation package2. The resulting trajectory can be constructed by
tracing the non-zeros in binary variables x. We call the method that uses the POI-POI
transition matrix to recommend paths without circular sub-tours MarkovPath.

Note that the sub-tours in trajectories recommended by the Rank+Markov method
can be eliminated in a similar manner. In particular, we can retain the constraints (3.6)-
(3.10) but modify the objective of the ILP as

max
z,u

M�1

Â
i=1

M

Â
j=2

zij S(pj; pi, q), (3.11)

where S(pj; pi, q) is defined in Equation (3.4). In the experiments, this method is
referred to as Rank+MarkovPath.

1https://www.ibm.com/analytics/cplex-optimizer
2http://www.gurobi.com

https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com

§3.5 Tour recommendation 43

3.5.4 Incorporating time constraints

The ILP formulation (3.5)-(3.10) can be adapted to deal with time constraints (e.g.,
time budget for a desired trajectory, time-of-the-day constraints on POIs), which
could sometimes be more readily available than the number of POIs to be visited. In
particular, let ci denote the time to be spent at POI pi and tij be the time to travel from
pi to pj, and suppose both ci and tij, i, j 2 {1, . . . , M} are available before we make
recommendations. Further, if we have a query with time constraints q = (ps, pe, T)
where T is the time budget for a desired trajectory, we can create a constraint that
incorporates these information:

M�1

Â
i=1

M

Â
j=2

zij

✓
tij +

1
2
(ci + cj)

◆
+

1
2
(c1 + cM) T, (3.12)

where the scaling factor 1/2 prevents the time to be spent at POIs from being counted
twice. Constraint (3.12) restricts that the total time to be spent in a desired trajectory
should not exceed the specified time budget.

Note that optimising objective (3.5) by simply replacing the trip length con-
straint (3.9) with (3.12) could result in trivial recommendations (i.e., suggesting the
user to visit only the start and end locations specified in query), this is because the
(log) transition likelihood of a trajectory that objective (3.5) maximises generally be-
comes smaller as the trajectory gets longer, which forces the ILP to prefer the shortest
trajectory that satisfies all specified constraints, i.e., a trajectory with the (given) start
and end POIs only. One approach to avoid such trivial recommendations is restricting
the least amount of time that shall be spent, for example, via the following constraint

gT
M�1

Â
i=1

M

Â
j=2

zij

✓
tij +

1
2
(ci + cj)

◆
+

1
2
(c1 + cM) T, (3.13)

where 0 g 1 is a parameter that controls the lower bound of time actually
spent in the time budget. We therefore create two additional methods that optimise
objectives (3.5) and (3.11) by replacing constraint (3.9) with (3.13). We call these
methods MarkovPath-T and Rank+MarkovPath-T respectively in experiment.

We remark that one can also employ both the trip length constraint and the time
constraint in the above approach to further restrict a desired trajectory. In addition,
this approach can be extended to incorporate other time-related constraints, e.g.,
time-of-the-day constraints on POIs (i.e., POIs might be only available in a limited
time frame in a day), and we present such a method in Appendix C.

3.5.5 Discussion

Instead of ranking POIs and modelling transition patterns separately, one can directly
learn sequence models from historical travel trajectories in a city. In particular, struc-

44 Feature-based Travel Trajectory Recommendation

tured prediction methods (Section 2.3) such as structured support vector machines
(SSVMs) (Tsochantaridis et al., 2004; Taskar et al., 2004) and conditional random fields
(CRFs) (Lafferty et al., 2001), have been widely adopted for such tasks (Joachims et al.,
2009b; Tsochantaridis et al., 2005; Wallach, 2004; Sutton et al., 2012). In Chapter 4, we
explore this approach for path recommendation.

In recent years, recurrent neural networks (RNNs) and one dimensional convolu-
tional neural networks (1D-CNNs) that can capture long-term dependences or spatial
patterns in sequences have been successfully applied to sequential data (Abdel-Hamid
et al., 2014; Liu et al., 2016a,b; Yang et al., 2017), it is likely that these methods can
also be effective for the task of tour recommendation. However, we want to remark
that the outputs of these approaches are not naturally paths, therefore the inference
procedures may need extra processing.

3.5.6 Measuring performance

A commonly used metric for evaluating the recommended POIs and trajectories is
the F1 score on points, which is the harmonic mean of precision and recall of the set
of POIs in a recommended trajectory versus that in the observed ground truth (Lim
et al., 2015). While being good at measuring how well the set of observed POIs are
correctly recommended, F1 score on points ignores the visiting order between POIs.

We propose a new metric, pairs-F1 (or F1 score on pairs), that considers both the
POI identity and the visiting order in a trajectory. It measures the F1 score of (the set
of) all possible pairs of POIs (whether they are adjacent or not) in a recommended
trajectory versus those in the observed tour,

pairs-F1 =
2PpairRpair

Ppair + Rpair
,

where Ppair and Rpair are the precision and recall of ordered POI pairs, respectively:

Ppair =
Nc

|Pŷ|(|Pŷ|� 1)/2
, Rpair =

Nc

|Py|(|Py|� 1)/2
,

here ŷ is the recommended trajectory and y is the observed ground truth, Py denotes
the set of POIs in trajectory y, and Nc is the number of ordered POI pairs3 (pi, pj) that
appear in both the ground-truth and the recommended trajectory, i.e.,

Nc =
���(pi, pj) : pi �y pj, pi, pj 2 Py

\
�
(pi, pj) : pi �ŷ pj, pi, pj 2 Pŷ

 �� ,

where pi �y pj denotes that POI pi was visited before pj in trajectory y.

3We define pairs-F1 = 0 when Nc = 0.

§3.6 Experiments 45

(a) Left: F1=1.0, pairs-F1=0.83
(b) Right: F1=1.0, pairs-F1=0.71

Figure 3.3: Examples of F1 versus pairs-F1 as evaluation metric. Solid grey: ground
truths; dashed blue: recommended trajectories. See Section 3.5.6 for details.

Pairs-F1 takes values between 0 and 1 (higher is better). A perfect pairs-F1 is
achieved if and only if both the POIs and their visiting order in the recommended
trajectory are exactly the same as those in the ground truth trajectory. On the other
hand, pairs-F1 equals 0 means none of the recommended POI pairs was actually
visited (in the designated order) in the real trajectory.

Figure 3.3 illustrates the difference between F1 score on points and F1 score on
pairs, where the solid grey lines represent the ground truth transitions that actually
visited by travellers, and the dashed blue lines are the transitions in a recommended
trajectory. Both examples have a perfect F1 score, but not a perfect pairs-F1 score due
to the difference in POI sequencing.

3.6 Experiments

In this section, we empirically evaluate the proposed path recommendation ap-
proaches for recommending travel trajectories, and compare them with a number of
baselines as well as cutting-edge methods.

3.6.1 Photo trajectories from five cities

We experiment on trajectory datasets from five cities, namely, Edinburgh, Glasgow,
Osaka, Toronto and Melbourne. The first four datasets are provided by Lim et al.
(2015) and the Melbourne dataset is built using the same approach introduced in
earlier work (De Choudhury et al., 2010; Lim et al., 2015) and briefly described below.

Trajectories are extracted using geo-tagged photos in the Yahoo! Flickr Creative
Commons 100M (YFCC100M) dataset (Thomee et al., 2016) as well as the Wikipedia
web-pages of corresponding points-of-interest. Photos are mapped to POIs according
to their distances calculated using the Haversine formula (Sinnott, 1984), the time a
user arrived at a POI is approximated by the time the first photo taken by the user at

46 Feature-based Travel Trajectory Recommendation

Table 3.1: Statistics of trajectory datasets.

Dataset Photos Visits Trajectories Users POIs

Edinburgh 82,060 33,944 5,028 1,454 28
Glasgow 29,019 11,434 2,227 601 27
Osaka 392,420 7,747 1,115 450 27
Toronto 157,505 39,419 6,057 1,395 29
Melbourne 94,142 23,995 5,106 1,000 85

Table 3.2: Information captured by different trajectory recommendation methods.

Method Query POI Transition No sub-tours

Random ⇥ ⇥ ⇥ ⇥
PersTour ⇥

p
⇥

p

PersTour-L ⇥
p

⇥
p

PoiPopularity ⇥
p

⇥ ⇥
PoiRank

p p
⇥ ⇥

Markov ⇥
p p

⇥
MarkovPath ⇥

p p p

MarkovPath-T ⇥
p p p

Rank+Markov
p p p

⇥
Rank+MarkovPath

p p p p

Rank+MarkovPath-T
p p p p

that POI, similarly, the time a user left a POI is approximated by the time the last photo
taken by the user at that POI. Further, the sequence of POI visits by a particular user
are divided into several segments according to the time gap (e.g., 8 hours) between
consecutive POI visits, and the POI visits in each segment are connected in temporal
order to form a trajectory. Table 3.1 summaries the datasets used in the experiments.

3.6.2 Experimental setup

We use leave-one-out cross validation to evaluate different trajectory recommendation
methods, i.e., when testing on a trajectory, all other trajectories are used for training.
We compare the trajectory recommendation methods described in Section 3.5 with
a number of baselines from recent literature, these recommendation approaches are
summarised below, with an overview in Table 3.2.

Baselines The Random method naively chooses POIs uniformly at random (without
replacement) from the set of POIs P \ {ps, pe} to form a trajectory. It does not utilise
any features related to POI or query, as shown in Table 3.2. Among the related

§3.6 Experiments 47

approaches, PersTour (Lim et al., 2015) is the most similar work and it explores both
POI features and the sub-tour elimination constraints described in Section 3.5.3, in
addition, the recommended trajectory is constrained by a time budget. A variant of
PersTour that applies the trajectory length instead of the time budget to constrain
the recommended trajectory, which is denoted as PersTour-L in Table 3.2. Another
baseline is PoiPopularity described at the beginning of Section 3.5; it only employs
POI popularity when recommending a trajectory.

Variants of point- and route-ranking approaches The PoiRank method presented
in Section 3.5.1 employs both POI and query features; Markov (Section 3.5.1) recom-
mends trajectories uses only transition probabilities between POIs, and its variant
MarkovPath incorporates additional constraints to eliminate sub-tours. Both the
Rank+Markov and Rank+MarkovPath methods (Section 3.5.2) utilise POI and query
features as well as transition probabilities between POIs, with the latter approach ex-
ploits additional sub-tour elimination constraints. Lastly, we have MarkovPath-T and
Rank+MarkovPath-T (Section 3.5.4) that replace the trip length constraint with time
constraints in their corresponding variants MarkovPath and Rank+MarkovPath.
We remove the trip length from the POI-query features, and use the average visit
duration at POI pi as a proxy for ci, i.e., the time to be spent at pi. In addition,
we follow (Lim et al., 2015) to use a speed of 4 km per hour (i.e., walking) when
computing the time needed to travel between POIs.

Hyper-parameters The trade-off parameter for PersTour and PersTour-L used in
experiments is 0.5, which was found to be the best weighting in Lim et al. (2015). We
set the regularisation constant in rankSVM (used in PoiRank, Rank+Markov and
Rank+MarkovPath) to 10.0, which is determined by cross-validation. The trade-off
parameter (i.e., a in Equation 3.4) for both Rank+Markov and Rank+MarkovPath is
set to 0.5 (tuned by cross-validation). We use g = 0.5 in the time constraint (3.13) for
both MarkovPath-T and Rank+MarkovPath-T.

3.6.3 Results

Table 3.3 and Table 3.4 summarise the performance of various trajectory recommen-
dation approaches, in terms of F1 and pairs-F1 scores, respectively. We remark the
performance values consist of the mean and standard error of the corresponding metric.

It is unsurprising that methods which capture (some type of) information about
the recommendation problem (as summarised in Table 3.2) outperform the Random
baseline in terms of both metrics on all five datasets.

48 Feature-based Travel Trajectory Recommendation

Table 3.3: Performance comparison on five datasets in terms of F1 scores. The best
method for each dataset is shown in bold, the second best is shown in italic.

Method Edinburgh Glasgow Melbourne Osaka Toronto

Random .570 ± .006 .632 ± .012 .558 ± .008 .621 ± .017 .621 ± .007

PersTour .656 ± .009 .801 ± .020 .483 ± .010 .686 ± .034 .720 ± .012

PersTour-L .651 ± .006 .660 ± .010 .576 ± .007 .686 ± .020 .643 ± .006

PoiPopularity .701 ± .006 .745 ± .016 .620 ± .007 .663 ± .018 .678 ± .007

PoiRank .700 ± .006 .768 ± .016 .637 ± .007 .745 ± .025 .754 ± .009

Markov .645 ± .007 .725 ± .016 .577 ± .008 .697 ± .022 .669 ± .008

MarkovPath .678 ± .006 .732 ± .016 .595 ± .007 .706 ± .022 .688 ± .008

MarkovPath-T .677 ± .006 .691 ± .013 .615 ± .007 .702 ± .019 .673 ± .008

Rank+Markov .659 ± .007 .754 ± .016 .613 ± .008 .715 ± .024 .723 ± .010

Rank+MarkovPath .697 ± .006 .762 ± .016 .639 ± .007 .732 ± .024 .751 ± .009

Rank+MarkovPath-T .671 ± .006 .683 ± .013 .625 ± .007 .700 ± .021 .680 ± .008

Table 3.4: Performance comparison on five datasets in terms of pairs-F1 scores. The
best method for each dataset is shown in bold, the second best is shown in italic.

Method Edinburgh Glasgow Melbourne Osaka Toronto

Random .261 ± .006 .320 ± .016 .248 ± .007 .304 ± .021 .310 ± .009

PersTour .417 ± .014 .643 ± .035 .216 ± .013 .468 ± .055 .504 ± .019

PersTour-L .359 ± .008 .352 ± .015 .266 ± .007 .406 ± .035 .333 ± .009

PoiPopularity .436 ± .010 .507 ± .028 .316 ± .009 .365 ± .028 .384 ± .011

PoiRank .432 ± .010 .548 ± .030 .339 ± .010 .511 ± .045 .518 ± .016

Markov .417 ± .010 .495 ± .028 .288 ± .010 .445 ± .039 .407 ± .013

MarkovPath .400 ± .009 .485 ± .028 .294 ± .009 .442 ± .038 .405 ± .013

MarkovPath-T .366 ± .007 .388 ± .019 .287 ± .008 .410 ± .032 .363 ± .011

Rank+Markov .444 ± .010 .545 ± .029 .351 ± .011 .486 ± .042 .512 ± .017

Rank+MarkovPath .428 ± .010 .533 ± .029 .344 ± .010 .489 ± .042 .514 ± .016

Rank+MarkovPath-T .358 ± .007 .369 ± .017 .297 ± .008 .407 ± .035 .368 ± .010

Is ranking POIs with respect to query helpful? We can see that methods based
on ranking POIs (i.e., PoiRank, Rank+Markov, Rank+MarkovPath) yield strong
performance in terms of both metrics. In particular, PoiRank improves notably upon
PoiPopularity and PersTour by leveraging POI-query features. Further, methods
incorporating POI ranking information (i.e., Rank+Markov and Rank+MarkovPath)
always perform better than their respective counterparts with transition information
alone (i.e., Markov and MarkovPath). This suggest that ranking POIs with respect
to query is helpful for recommending trajectories.

§3.6 Experiments 49

Is incorporating transitions between POIs helpful? Table 3.3 shows that Markov
which leverages only POI transitions does not perform particularly well in terms of F1

score on points. However, we can see from Table 3.4 that most Markov chain entries
have better performance in terms of F1 score on pairs, specifically, the performance
of Rank+Markov is either comparable or better than that of PoiRank across the
five datasets, which indicates the Markov chain approaches generally respect the
transition patterns between POIs.

Is avoiding sub-tours important? We can see from Table 3.3 that MarkovPath
and Rank+MarkovPath outperform their corresponding variants without the path
constraints in terms of F1 score on points, which demonstrates that eliminating sub-
tours improves point recommendation. This is not unexpected, since sub-tours worsen
the proportion of correctly recommended POIs as a length constraint is imposed.

Is incorporating time constraints helpful? PersTour (Lim et al., 2015) always per-
forms better than its variant PersTour-L, in terms of both metrics, especially on
Glasgow and Toronto datasets. This indicates the time budget constraint is more
helpful than length constraint for recommending trajectories. Surprisingly, we ob-
served that PersTour is outperformed by Random baseline on Melbourne dataset.
It turns out that on this dataset, many of the ILP problems which PersTour needs
to solve to get the recommendations are difficult ILP instances. In the leave-one-out
evaluation, although we employed a large scale computing cluster with modern
hardware, 12% of evaluations failed as the ILP solver was unable to find a feasible
solution after 2 hours. In addition, many recommendations were suboptimal solutions
of the corresponding ILPs due to the time limit. These factors lead to the inconsistent
performance of PersTour on the Melbourne dataset.

In contrast, the performance of MarkovPath-T is comparable to that of Markov-
Path in terms of F1 score on points (Table 3.3), except slight variations on the Glasgow
and Melbourne datasets. However, MarkovPath-T performs consistently worse
than MarkovPath in terms of F1 score on pairs (Table 3.4). On the other hand,
Rank+MarkovPath outperforms Rank+MarkovPath-T in terms of both metrics on
all five datasets. These interesting results might suggest that time constraints are not
always more helpful than constraining the trip length for travel trajectory recommen-
dation, and further investigation is likely required for a better understanding.

3.6.4 An illustrative example
Figure 3.4 illustrates an example from Edinburgh. The ground truth is a trajectory
of length 4 that starts at a POI of category Structures, visits two intermediate POIs
of category Structures and Cultural and terminates at a POI of category Structures.

50 Feature-based Travel Trajectory Recommendation

(a) PersTour (b) PoiRank (c) Markov (d) Best

Cultural

Historical

Museums

Parks

Structures

Figure 3.4: Example of recommendations from different methods. See the main text
in Section 3.6.4 for description.

The trajectory recommended by PersTour is a tour with 11 POIs, as shown in
Figure 3.4a, with none of the desired intermediate POIs visited. PoiRank (Figure 3.4b)
recommended a tour with correct POIs, but with completely different routes. On
the other hand, Markov (Figure 3.4c) missed one POI but one of the intermediate
routes is consistent with the ground truth. The best recommendation, as shown in
Figure 3.4d, with exactly the same points and routes as the ground truth, which in
this case is achieved by Rank+MarkovPath.

3.7 Summary

We propose approaches that jointly optimising point preferences and routes to recom-
mend trajectories. This is in contrast to related work which looks at only POI or next
location recommendation. Point preferences are learned by ranking according to POI
and query features, and factorised transition probabilities between POIs are learned
from previous trajectories extracted from social media. We investigate the maximum
likelihood sequence approach (which may recommend sub-tours) and propose an
improved method. Our feature driven approach naturally allows learning the combi-
nation of POI ranks and routes. We argue that one should measure performance with
respect to the visiting order of POIs, and suggest a new pairs-F1 metric. We empiri-
cally evaluate our tour recommendation approaches on five datasets extracted from
Flickr photos, and demonstrate that our methods improves on prior work, in terms of
both the traditional F1 metric and our proposed performance measure. Our promising
results from learning points and routes for trajectory recommendation suggests that
research in this domain should consider both information sources simultaneously.

Chapter 4

Structured Recommendation for
Travel Trajectories

We investigated the path recommendation problem for travel trajectories in Chapter 3.
Here, we continue the study of this problem. In contrast to the feature-driven approach
that independently learns POI preferences and transition patterns (Section 3.5.2), we
propose methods that systematically incorporate both of these information sources
by leveraging a substantially modified SSVMs (Section 2.3). Section 4.2 casts path
recommendation as a structured prediction problem, and analyses the fundamental
challenges in recommending trajectories. Section 4.3 presents a structured recommen-
dation approach, which is based on the SSVMs, but with a loss function that accounts
for the existence of multiple ground truths, as well as updated training and prediction
procedures for recommending paths. Empirical results demonstrate the effectiveness
of the proposed approach for travel trajectory recommendation (Section 4.4).

4.1 Introduction

Established techniques for recommendation have focused on a fixed set of individual
items such as books or movies (Linden et al., 2003; Koren, 2010; Agarwal et al.,
2013; Amatriain and Basilico, 2015; Gomez-Uribe and Hunt, 2015). This does not
however capture scenarios where the content is naturally organised with structures
(e.g., sequence, graph or set). For example, consider recommending linked websites
for e-commerce (Antikacioglu et al., 2015), a chemical compound (Dehaspe et al., 1998;
Agrafiotis et al., 2007), or a playlist of songs (McFee and Lanckriet, 2011; Chen et al.,
2012; Hidasi et al., 2015; Choi et al., 2016). Recall that the problem of recommending
travel trajectories is to suggest a trajectory of points-of-interest (POIs) in a city to a
visitor (Lu et al., 2010, 2012; Lim et al., 2015; Chen et al., 2016; He et al., 2018), i.e., a
sequence of POIs without repeats, which is also known as a path.

51

52 Structured Recommendation for Travel Trajectories

Table 4.1: Challenges of travel trajectory recommendation and the proposed solutions.

Challenge Solution

C1. Global cohesion Structured support vector machines (§4.3.2)
C2. Multiple ground truths Ground truths aggregation in structured hinge loss (§4.3.3)
C3. Loop elimination The list Viterbi algorithm or integer linear programming (§4.3.4)

4.2 Problem statement

Suppose we have a set of points-of-interest (POIs) P in a city and historical trajectories
visited by travellers S = {(x(i), {y(ij)}Ni

j=1)}N
i=1, where each x(i) is a distinct query with

{y(ij)}Ni
j=1 an associated set of observed trajectories. Here we define a trajectory query

as x = (ps, L) that comprises the start point ps 2 P as well as the trip length L (i.e.,
the desired number of POIs, including ps). Similar to Chapter 3, our task is to learn
a recommender from S that can suggest trajectories for a new query not seen in
S . Compared to the definition of trajectory query in Section 3.2, the end location is
omitted here, with the aim of accommodating broader scenarios of travel trajectory
recommendation in practice. As a remark, we expect most queries to have several
distinct trajectories; minimally, for example, there may be two nearby POIs that are
visited in interchangeable order by different travellers.

Travel trajectory recommendation brings several challenges, the most immediate of
which is the need to ensure global cohesion of recommendations. To illustrate, consider
a naïve approach which ignores all sequential structure: we could learn a user’s
preference for individual POIs, and create a trajectory based on the top ranked items.
Such an approach may be sub-optimal, as it is unlikely e.g., a user will want to visit
three restaurants in a row; more generally, while a user’s two favourite songs might
be in the metal and country genres, a playlist featuring these songs in succession
may be jarring. To effectively ensure such global cohesion, we propose to attack the
travel trajectory recommendation problem via structured prediction, in particular,
leveraging the toolkit of the SSVMs (Section 2.3.1).

However, a vanilla application of such methods does not suffice, owing to two
additional challenges: in trajectory recommendation, each input can have multiple
ground truths, since multiple trajectories may be reasonable for a single query; and
further, one needs to constrain predictions to avoid repeated elements, since users are
unlikely to wish to visit the same POI twice. We nonetheless show how to extend the
SSVMs to address these challenges, via a novel application of the list Viterbi algorithm
(Section 2.4.2), or alternatively, by adapting an integer linear programming formulation
of the s-t path TSP (Section 2.4.3). Table 4.1 summaries the three challenges of travel
trajectory recommendation and the solutions proposed in this chapter.

§4.3 A structured recommendation approach 53

4.3 A structured recommendation approach

In this section, we first cast travel trajectory recommendation as a structured prediction
problem, then develop methods to address the three challenges for this task, followed
by an extensive discussion of different design variants and practical choices.

4.3.1 Trajectory recommendation as structured prediction

Recall that structured prediction is to predict a structured label y 2 Y according to
a learned score function f (x, y) for an input x 2 X (Section 2.3). We observe that
the task of recommending a travel trajectory can be cast as a structured prediction
problem: given query x, and a suitable scoring function f , we wish to find

y⇤ = argmax
y2Y

f (x, y), (4.1)

where Y is the space of all possible trajectories with POIs in P that conform to the
constraints imposed by the query x. In particular, y = (y1, y2, . . . , yL) is a trajectory
with L POIs and y1 = ps.

We remark that one cannot naïvely compute argmaxy f (x, y) as in typical recom-
mender systems, since it is often intractable to enumerate all possible trajectories in
a city. Further, the inability to efficiently enumerate y in (4.1) also poses a challenge
in designing a suitable score function f (x, y), e.g., matrix factorisation would require
associating a latent feature with each y, which will be infeasible.

We suppose the scoring function f (x, y) takes the form of a linear function, i.e.,
f (x, y) = w>Y(x, y), where w is a weight vector, and Y(x, y) is a joint feature map of
query x and trajectory y. To specify the joint feature map, we consider the unary terms
for each POI in y, i.e., y1, . . . , yL, as well as pairwise interactions between adjacent
POIs in y, i.e., yl and yl+1 for l 2 {1, . . . , L�1}. Subsequently, f (x, y) decomposes into
a weighted sum of each of these features:1

f (x, y) = w>Y(x, y) =
L

Â
l=1

w>
l yl(x, yl) +

L�1

Â
l=1

w>
l,l+1yl,l+1(x, yl , yl+1), (4.2)

where yl is a feature map between the input query x and one output label element
yl , with a corresponding weight vector wl ; and yl,l+1 is a pairwise feature vector that
captures the interactions between consecutive labels yl and yl+1, with a corresponding
weight vector wl,l+1. In practice, to deal with data sparsity, we could share the weights
among POIs as well as the weights among POI-POI interactions, i.e., wl = wunary

where l 2 {1, . . . , L} and wl,l+1 = wpairwise for l 2 {1, . . . , L�1}.

1Appendix D.1 details the feature maps.

54 Structured Recommendation for Travel Trajectories

4.3.2 Global cohesion and the SP model

Trajectory recommendation can be plausibly solved with approaches that do not
exploit the structure inherent in the outputs. While such approaches can certainly
be useful, their modelling power is inherently limited, as they cannot ensure the
global cohesion of the corresponding recommendations. For example, a ranking based
approach might find three restaurants to be the highest scoring POIs; however, it is
unlikely that most travellers will enjoy this.

We propose to address challenge C1 by learning an SSVMs from the historical
trajectories. To temporarily mitigate the challenge of multiple ground truths, i.e., there
is a set of trajectories {y(ij)}Ni

j=1 for query x(i), we adopt a straightforward approach

that creates Ni examples {(x(i), y(ij))}Ni
j=1, and then feed this to the standard SSVMs:

min
w, x�0

1
2

w>w +
C
N0

N0

Â
i=1

x(i)

s.t. f (x(i), y(i))� f (x(i), ȳ) � D(y(i), ȳ)� x(i), i 2 {1, . . . , N0}, 8ȳ 2 Y .

(4.3)

Here N0 = ÂN
i0=1 Ni0 and D(y, ȳ) measures the discrepancy between ȳ and y; slack vari-

able x(i) is the structured hinge loss of the i-th example (Equation 2.7). Alternatively,
we can use one slack variable to represent the sum of the N0 hinge losses in (4.3), as
described in Section 2.3.1, We call this method the structured prediction (SP) model.

Note that the loss-augmented inference of the SP model is

argmax
ȳ2Y

n
D(y(i), ȳ) + f (x(i), ȳ)

o
, (4.4)

when the underlying graph of the SSVMs is a sequence or tree, the loss-augmented
inference may be solved efficiently if D is decomposable with respect to individual
and pairs of label elements, e.g., using the Viterbi algorithm (Joachims et al., 2009b).

The naïve approach of generating a labelled example for each observed trajectory
of a query will result in contradictory constraints during training, i.e., each of the
observed trajectories of the same query is required to have a larger score than others.
This limitation will be addressed in the next section.

4.3.3 Multiple ground truths and the SR model

The SP model is appealing due to its simplicity. However, it is sub-optimal: the result
of loss-augmented inference on (x(i), y(ij)) could be a ground truth label y0 2 {y(ij)}Ni

j=1,
which means we would incorrectly penalise predicting y0 for query x(i). To overcome
this limitation of the SP model, we modify the structured hinge loss of the SSVMs to

§4.3 A structured recommendation approach 55

explicitly exclude the set of ground truths for the i-th example,

`sr(y(i), f (x(i), ·)) =max
⇣

0, D(y(i), ȳ(i))�
⇣

f (x(i), y(i))� f (x(i), ȳ(i))
⌘⌘

,

ȳ(i) 2 Y \ {y(ij)}Ni
j=1.

(4.5)

The modified structured hinge loss (4.5) results in the following “n-slack” SSVMs:

min
w, x�0

1
2

w>w +
C
N0

N

Â
i=1

Ni

Â
j=1

x(ij)

s.t. f (x(i), y(ij))� f (x(i), ȳ(i)) � D(y(ij), ȳ(i))� x(ij),

ȳ(i) 2 Y \ {y(ij)}Ni
j=1, i 2 {1, . . . , N}, j 2 {1, . . . , Ni}.

(4.6)

where N0 = ÂN
i=1 Ni, and the “1-slack” SSVMs of (4.6) can be formed accordingly.

Intuitively, the loss function of this approach (Equation 4.5) resembles a ranking
objective, as the constraint for ȳ(i) enforces that the positively labelled items (those
that the user likes) are scored higher than all other unseen items. Such objectives
have been proven useful in classic unstructured recommendation (Rendle et al., 2009).
Compared to the SP model (4.3), the key distinction is that (4.6) explicitly aggregates
all the ground truth labels for each input when generating constraints, and we call
this method that addresses challenge C2 the structured recommendation (SR) model.

As a remark, the loss-augmented inference of the SR model is

argmax
ȳ(i)2 Y\{y(ij)}Ni

j=1

n
D(y(ij), ȳ(i)) + f (x(i), ȳ(i))

o
. (4.7)

In this way, we do not have contradictory constraints where two ground truth labels
are each required to have larger score than the other.

4.3.4 Eliminating loops in recommendation

This section addresses challenge C3, i.e., eliminate loops for trajectory recommenda-
tion, since it is desirable that the recommended sequence consists of distinct POIs, or
be a path in the candidate space (e.g., locations). In particular, for a learned SP or SR
model, we make a recommendation for query x by computing

y⇤ = argmax
y2Ypath

f (x, y), (4.8)

where Ypath ✓ Y comprises all elements of Y that are paths. However, classic
structured prediction does not constrain the output sequence, and having such a

56 Structured Recommendation for Travel Trajectories

path constraint makes both inference and learning harder. Suppose the underlying
sequence model of the learned SP and SR model satisfy the Markov assumption (Sec-
tion 2.4.1), we can leverage the list Viterbi algorithm or the integer linear programming
formulation of the s-t path TSP to recommend paths.

Given a score function that can be decomposed into unary and pairwise scores
such as (4.2), the list Viterbi algorithm (LVA) finds the K highest scoring sequences
(Section 2.4.2). Here we employ the variant of LVA that can sequentially find the
k-th best scoring sequence given the best, second best, . . . , (k�1)-th best scoring
sequences (Seshadri and Sundberg, 1994; Nilsson and Goldberger, 2001), which ideally
resolves the scenario when the number of sequences to find is unknown a priori. This
is the case when recommending a path given a trained SP or SR model, since we have
to keep searching the next-best scored sequence until a path is discovered.

Alternatively, we can adapt the ILP formulation of the s-t path TSP (Section 2.4.3)
and leverage highly optimised off-the-shelf ILP solvers to find a highest scored path.
In particular, we first modify the constraints (2.35)-(2.38) by introducing additional
binary variables vi, i 2 {1, . . . , M} where M = |P| is the number of POIs in a city, to
indicate if a POI is the end point of a path, then optimise an objective that incorporates
both the unary and pairwise scores:

max
z,u,v

M

Â
k=1

w>
k yk(x, pk)

M

Â
j=1

zjk +
M

Â
j,k=1

zjkw>
jkyjk(x, pj, pk),

s.t.
M

Â
k=2

z1k = 1,
M

Â
j=2

zj1 = v1 = 0,

M

Â
j=1

M

Â
k=1

zjk = L � 1,
M

Â
j=1

zjj = 0,

M

Â
j=1

zji = vi +
M

Â
k=2

zik 1, i 2 {2, · · · , M}

uj � uk + 1 (M � 1)(1 � zjk), j, k 2 {2, · · · , M}.

(4.9)

Note the binary variable zjk indicates whether pk will be immediately visited following
the visit of pj, and integer variables u track the ranks of POIs in a trajectory, which
are employed to eliminate sub-tours (Miller et al., 1960).

4.3.5 SP and SR model training

We have described how one can recommend a trajectory (which is a path) given a
trained SP or SR model, a natural follow up question is how one can efficiently train
them. A major challenge in learning the SP and SR model is performing the loss-

§4.3 A structured recommendation approach 57

augmented inference. Note that the SP model can be trained as per the vanilla SSVMs,
where the loss-augmented inference2 (Equation 4.4) may be solved with the classic
Viterbi algorithm. However, this approach is not applicable to the loss-augmented
inference of the SR model (Equation 4.7), since the best-scoring sequence from the
above approach could be in the ground-truth set.

One approach to solve the loss-augmented inference of the SR model involves
the use of the LVA. In particular, for query x(i) and an associated trajectory y(ij), we
solve argmaxȳ(i)2Y

n
D(y(ij), ȳ(i)) + f (x(i), ȳ(i))

o
using the LVA by keeping decoding

the next best sequence until we find one that is not in {y(ij)}Ni
j=1. Note that the LVA

can be used for loss-augmented inference with D be the Hamming loss, the most
common loss function for sequence prediction tasks, since LVA only requires D be
decomposable with respect to the individual elements of a structured label.

As a remark, we have not required the result of loss-augmented inference to be
a path for both the SP and the SR model, we discuss how one can enforce the path
constraint for training in the next section.

4.3.6 Discussion

We have shown how one can train the SP and SR models, as well as make recommenda-
tions using a learned model. In this section, we discuss many alternative approaches
that might be plausible for the SP and SR models training and recommendation.

Eliminating loops for training: SPpath and SRpath

The list Viterbi algorithm can also enforce that loss-augmented inference only con-
siders sequences that are paths, e.g., by checking if each of the next-best sequences
has a loop. This idea can be applied to both the SP and SR models, as enforcing path
constraints is independent of excluding multiple ground truths. We call the resulting
models SPpath and SRpath respectively.

Eliminating multiple ground truths with ILP?

A natural question is whether one can use the ILP approach to exclude observed
trajectories when training an SR model, i.e., solving the loss-augmented inference (4.7).
In fact, this can be done as long as the loss D(y, ȳ) can be represented as a linear
function of variables z and u in (4.9). One example is the number of mis-predicted
POIs disregarding the order D(y, ȳ) = ÂL

l=2(1 � ÂM
k=1 zk,yl). However, we note that

2We again assume the underlying sequence model satisfies the Markov assumption.

58 Structured Recommendation for Travel Trajectories

Hamming loss is not applicable here, as D(y, ȳ) = ÂL
l=1(1 � Jyl = ȳlK) cannot be

expressed as a linear function of variables z and u.

Recommending more than one trajectory

Since multiple possible trajectories can start at the same POI, it is desirable to predict
multiple trajectories for a query. The LVA is naturally fitted for this problem. It turns
out that the ILP approach can also be applied to this task, the idea is to incorporate
those decoded paths into additional constraints and then find the top-K scored paths
in a sequential manner. In particular, given the K�1 top scored paths {y(k)}K�1

k=1 , the
K-th best scored path can be found by solving the ILP (4.9) but with the following
additional constraints:

L�1

Â
l=1

zyl ,yl+1 L � 2, 8y 2 {y(k)}K�1
k=1 . (4.10)

Practical choices: ILP vs LVA vs other heuristics

When performing recommendations for SP and SR model, we found that state-of-the-
art ILP solvers converge to a solution faster than the LVA if the trajectory length L
is large. The reason is, while the LVA is a polynomial time algorithm given the list
depth K (Nilsson and Goldberger, 2001), in reality K is unknown a priori and can be
very large for long trajectories. We therefore use ILP for very long (L � 10) trajectories
in the experiments (otherwise the LVA is employed).

One might also consider the well-known Christofides algorithm (Christofides,
1976) for recommending paths, as this is known to generate a solution within a factor
of 3/2 of the optimal solution for the TSP. However, the resulting path will have less
than the desired number of POIs, and its score will not be optimal.

Incorporating time constraints

We can adapt the ILP formulation (4.9) to incorporate time constraints (e.g., time
budget for a desired trajectory, time-of-the-day constraints on POIs) by employing an
approach similar to the one presented in Section 3.5.4. In particular, we can specify a
time budget T in a trajectory query instead of the number of desired POIs L. As a
result, we can replace the trip length constraint in (4.9) with the following inequality
that constrains the time budget of a desired trajectory

M

Â
j=1

M

Â
k=2

zjk

✓
tjk +

1
2
(cj + ck)

◆
+

1
2

c1 +

M

Â
j=2

vjcj

!
 T, (4.11)

§4.4 Experiments 59

Table 4.2: Summary of challenges considered in different methods.

Global Cohesion Multi-GTs Loop Elim. (Train) Loop Elim. (Test)

SP
p

⇥ ⇥
p

SPpath
p

⇥
p p

SR
p p

⇥
p

SRpath
p p p p

where cj, j 2 {1, . . . , M} denotes the time to be spent at POI pj and tjk, j, k 2
{1, . . . , M} is the travelling time from pj to pk, which can either be specified by
users or can be computed from existing travel data.

In addition, this method can be further extended to incorporate the time-of-the-day
constraints on POIs (i.e., a POI can only be visited in a limited time frame in a day),
e.g., by employing an approach similar to the one presented in Appendix C.

4.3.7 Summary of proposed methods

Table 4.2 summarises the methods proposed in this chapter for path recommendation.
The SP method employ the standard SSVMs to recommend paths, without accounting
for multiple ground truths for each input query; the SR method, on the other hand,
incorporates this fact. Both SP and SR eliminate loops when making recommendations,
and their path variants, SPpath and SRpath, further eliminate loops in training.

4.4 Experiments

We present empirical evaluations for the trajectory recommendation task on real-
world datasets of photo tours, created from the publicly available YFCC100M cor-
pus (Thomee et al., 2016) as described below.

4.4.1 Photo trajectory datasets

We used the trajectory data extracted from Flickr photos for the cities of Osaka,
Glasgow, Toronto, Edinburgh and Melbourne (Lim et al., 2015; Chen et al., 2016;
De Choudhury et al., 2010). Each dataset comprises of a list of trajectories, being a
sequence of points-of-interest (POIs), as visited by various Flickr users and recorded
by the geotags in photos. Table 4.3 summarises the profile of each dataset. We see
that most queries have more than one ground truth, making our recommendation
setting relevant. Further, each query has an average of 4-9, and a maximum of 30-100
trajectories, as shown in Figure 4.1. The histograms of trajectory length are shown

60 Structured Recommendation for Travel Trajectories

Figure 4.1: Histograms of the number of trajectories per query.

Figure 4.2: Histograms of trajectory length.

Table 4.3: Statistics of trajectory datasets. Including the number of trajectories, POIs,
users and queries; the number of queries with a single, 2 to 5, and more than 5 ground
truths; profile of trajectory length, i.e., less than 5 (short trajectories) and more than 5
POIs (long trajectories).

Osaka Glasgow Toronto Edinburgh Melbourne

Trajectories 186 351 977 1,412 1,018
POIs 26 25 27 28 84
Users 130 219 454 677 456
Queries 47 64 99 147 280
Ground Truths (1) 17 23 30 43 141
Ground Truths (2 to 5) 22 22 33 50 88
Ground Truths (> 5) 8 19 36 54 51
Short Trajectories 178 336 918 1,224 879
Long Trajectories 8 15 59 188 139

in Figure 4.2. In all datasets, each user has on average about two trajectories. This
makes user-specific recommendation impractical, and also undesirable because a user
would want different recommendations given different starting locations, and not a
static recommendation no matter where she is. The sparsity of this dataset presents a
barrier for large-scale evaluations.

4.4.2 Evaluation setting

We compare the propose methods to the following four baselines:

• The Random baseline recommends a sequence of POIs by sampling uniformly
at random from the whole set of POIs (without utilising any POI or query
related features).

§4.4 Experiments 61

• The stronger Popularity baseline recommends the top-L most popular POIs,
i.e., the POIs visited by the most number of users in the training set, which is
independent of query.

• PoiRank (Section 3.5.1) augments Popularity with a number of POI-query
features (see Appendix D.1.1), and trains a RankSVM to learn a score for each
POI for a given query. A trajectory is constructed from the top-L scored POIs.

• Markov (Section 3.5.1) learns a Markov chain by factorising the transition
probabilities between POIs according to pairwise features (see Appendix D.1.2).

We consider four variants of path recommendation, starting with a structured
prediction model, then incorporating multiple ground truths, and finally enforcing
path constraints for training:

• The SP and SR methods, using both POI-query features and pairwise features
(see Appendix D.1).

• SPpath and SRpath, using the same features as SP and SR, but with path
constraints for model learning.

We reiterate that irrespective of the training procedure, the SP, SR, SPpath and
SRpath all recommend paths. Among the baseline approaches, the Random, Popu-
larity, PoiRank recommend paths; the Markov, which leverages the vanilla Viterbi
algorithm, may recommend sequences with repeated POI visits (i.e., walks).

We evaluate each algorithm using leave-one-query-out cross validation. That is,
holding out all the relevant trajectories for each query x(i) (i.e., {y(ij)}Ni

j=1) in each
round. The regularisation constant C is tuned using Monte Carlo cross validation
on the training set. We use three performance measures for POIs, sequences and
ordered lists. The F1 score on points (Lim et al., 2015) computes the F1 score on the
predicted versus seen points without considering their relative order. The F1 score on
pairs (Chen et al., 2016) mitigate this by computing the F1 score on all ordered pairs
in the predicted versus ground truths. The well-known rank correlation Kendall’s
t (Agresti, 2010) computes the ratio of concordant (correctly ranked) minus discordant
pairs, over all possible pairs after accounting for ties. See Appendix D.2 for details.

Path recommendation methods perform ranking on a very large label set (of size
|P|L). We report results on the best of top k (Russakovsky et al., 2015): for all methods,
we predict the top k trajectories and then report the best match of any in the top
k to any trajectory in the ground truth set. To obtain top-k recommendations with
Random, we independently repeat it k times. To perform top-k recommendation
with Popularity, PoiRank and Markov, we employ the list Viterbi algorithm. For

62 Structured Recommendation for Travel Trajectories

Popularity, the score of a path is the accumulated popularity of all POIs in the path;
for PoiRank and Markov, the score of a path is the likelihood (the ranking scores for
POIs are first transformed into a probability distribution using the softmax function,
as described in Section 3.5.2).

4.4.3 Results and discussion

Table 4.4, 4.5 and 4.6 summarises the performance of all methods for top-10 recom-
mendations in terms of the three evaluation metrics respectively. We remark the
performance values consist of the mean and standard error of the corresponding metric.
We also compare the performance for all values of top-k with k = 1, . . . , 10, a selection
of the curves for Glasgow is shown in Figure 4.3, 4.4 and 4.5. Additional experimental
results across all five datasets are available in Appendix D.3.

Is exploiting structure helpful? We can observe from the results in Table 4.4 – 4.6
that POIRank, Markov and SP methods that convert the trajectory recommendation
task into data that is amenable to off-the-shelf methods (ranking, Markov chains and
structured prediction respectively) performs better than Random and Popularity
baselines but are not the best performing methods. Although Markov achieves the
best performance on the smallest Osaka dataset, the best results on other (larger)
datasets are obtained using our proposed methods SR and SRpath, especially for long
trajectories (Figure 4.3 – 4.5).

Is imposing the path constraint helpful? Recall that the SP, SR methods and their
path variants impose the path constraint for recommendation. We observe that these
methods perform better than other baselines (except on the smallest Osaka dataset),
which suggest that it is beneficial to impose path constraint for recommendation.

However, the situation is rather different for training. SPpath and SRpath take
significantly more time (to train) than their non-path variants, since the repeated
invoked loss-augmented inference procedures (Eq. 4.4 and Eq. 4.7) have to search
for paths. Further, the cost of training SPpath and SRpath is exacerbated when
trajectories (in the training set) become longer. This is the main reason that we do not
have results for SPpath and SRpath on the Edinburgh and Melbourne datasets,
since we cannot train these two methods in reasonable time due to a significantly
larger portion of long trajectories in these two datasets, as shown in Table 4.3.

On the other hand, the overall performances of SPpath and SRpath are comparable
to those of their non-path variants (Table 4.4 – 4.6), and this is also the case for
recommending short trajectories (Figure 4.3a – 4.5a).

§4.4 Experiments 63

Table 4.4: F1 score on points of trajectory recommendation methods on best of top-10.
The best method for each dataset is shown in bold, the second best is shown in italic.

Osaka Glasgow Toronto Edinburgh Melbourne

Random .703 ± .032 .731 ± .026 .696 ± .021 .689 ± .014 .511 ± .012

Popularity .786 ± .034 .771 ± .033 .746 ± .022 .768 ± .017 .587 ± .016

PoiRank .804 ± .034 .847 ± .025 .807 ± .020 .754 ± .017 .609 ± .017

Markov .840 ± .029 .800 ± .028 .819 ± .019 .679 ± .021 .508 ± .017

SP .770 ± .039 .810 ± .027 .733 ± .023 .796 ± .016 .622 ± .016

SPpath .809 ± .033 .807 ± .026 .755 ± .022 N/A N/A

SR .793 ± .033 .883 ± .023 .828 ± .019 .809 ± .015 .628 ± .016

SRpath .820 ± .031 .868 ± .023 .823 ± .020 N/A N/A

Table 4.5: F1 score on pairs of trajectory recommendation methods on best of top-10.
The best method for each dataset is shown in bold, the second best is shown in italic.

Osaka Glasgow Toronto Edinburgh Melbourne

Random .451 ± .057 .495 ± .046 .438 ± .034 .411 ± .024 .205 ± .018

Popularity .626 ± .055 .623 ± .051 .546 ± .036 .561 ± .027 .341 ± .023

PoiRank .661 ± .056 .726 ± .043 .646 ± .034 .557 ± .027 .388 ± .023

Markov .693 ± .051 .635 ± .048 .644 ± .033 .472 ± .030 .268 ± .023

SP .620 ± .061 .658 ± .046 .530 ± .037 .588 ± .027 .390 ± .023

SPpath .664 ± .055 .648 ± .045 .552 ± .036 N/A N/A

SR .637 ± .055 .770 ± .039 .660 ± .033 .608 ± .026 .403 ± .023

SRpath .671 ± .053 .746 ± .041 .656 ± .034 N/A N/A

Table 4.6: Kendall’s t of trajectory recommendation methods on best of top-10.
The best method for each dataset is shown in bold, the second best is shown in italic.

Osaka Glasgow Toronto Edinburgh Melbourne

Random .685 ± .035 .703 ± .029 .652 ± .024 .616 ± .018 .488 ± .013

Popularity .768 ± .038 .748 ± .036 .719 ± .024 .718 ± .020 .567 ± .017

PoiRank .787 ± .037 .830 ± .029 .784 ± .023 .712 ± .020 .601 ± .017

Markov .824 ± .031 .781 ± .031 .789 ± .022 .739 ± .018 .541 ± .016

SP .749 ± .043 .790 ± .030 .697 ± .027 .741 ± .020 .602 ± .017

SPpath .791 ± .036 .787 ± .029 .719 ± .026 N/A N/A

SR .777 ± .036 .868 ± .026 .802 ± .022 .761 ± .018 .610 ± .017

SRpath .803 ± .034 .853 ± .026 .797 ± .022 N/A N/A

64 Structured Recommendation for Travel Trajectories

(a) Short Trajectories (b) Long Trajectories

Figure 4.3: F1 score on points over k=1 :10 for short and long trajectories on Glasgow.

(a) Short Trajectories (b) Long Trajectories

Figure 4.4: F1 score on pairs over k=1 :10 for short and long trajectories on Glasgow.

(a) Short Trajectories (b) Long Trajectories

Figure 4.5: Kendall’s t over k=1 :10 for short and long trajectories on Glasgow.

§4.4 Experiments 65

Figure 4.6: Example of a recommended trajectory with POI sequence (S, 1, 2, 3, 4, 5)
(left); Radar charts that compare scores of two POIs (red chart for POI 1, green
chart for POI 3) decomposed according to eight features (right): Popularity and
Distance contribute the most to the unary score of POI 1; Distance, Visits and Popularity
Difference dominate the contribution to the unary score of POI 3.

When recommending long trajectories, SPpath demonstrates advantages over SP,
however, the significantly better performance achieved by SR, which is comparable to
that of SRpath, as shown in Figure 4.3b – 4.5b, makes SR the best practical choice for
path recommendation.

Is it important to account for multiple ground truths? We observe that SR always
performs better than SP, and similarly for the path variants of both methods. This
indicates that our first extension – explicitly modelling multiple ground truths – is
important to achieve good performance. We can also see that the advantages of SR
and SRpath are salient for longer trajectories (Figure 4.3b – 4.5b), where pairwise and
sequential information play a larger role.

Overall, path recommendation methods have shown superior performance in
travel trajectory recommendation tasks on a public benchmark. Most notably, taking
into account multiple ground truths in structured prediction and modelling path
constraints are important; and the effects are more pronounced in longer trajectories.

4.4.4 A qualitative example

Figure 4.6 shows a trajectory recommended by the SR model in Melbourne, the
trajectory (S, 1, 2, 3, 4, 5) includes six POIs and is visualised on a map (left); the unary
scores of two POIs (Eq. 4.2) are decomposed according to eight POI features (right),
in particular, the red radar chart shows the decomposition of the unary score of POI
1 (red marker on map), and the green chart shows the decomposition of the unary
score of POI 3 (green marker on map). We can see that popularity and distance

66 Structured Recommendation for Travel Trajectories

related features (i.e., Popularity and Visits difference, Distance and Same area) are the
main contributors to POI 1; and POI 3 is largely supported by distance and visits
related features (i.e., Distance, Visits and Popularity difference).

4.5 Related work

We summarise recent work most related to the recommendation of structured objects,
in particular the problem of recommending travel trajectories, predicting items in the
next basket and generating music playlist.

A classic approach for travel trajectory recommendation is ranking locations with
latent factors learned by collaborative filtering (Zhang and Wang, 2015; Cheng et al.,
2013), such approaches suggest top-ranked places but ignore the sequential structure.
Another approach regards route recommendation as a planning problem (Brilhante
et al., 2013; Gionis et al., 2014; Lim et al., 2015; Anagnostopoulos et al., 2017; Chen
et al., 2018; He et al., 2018), which generally assume a fixed objective function that is
not directly optimised to predict user behaviour.

The problem of next basket prediction suggests the set of next items a user might
like to purchase, given the sequence of their shopping basket purchases (Rendle et al.,
2010; Wang et al., 2015). The canonical approach for this problem is to apply matrix
factorisation to the Markov chain of transitions between items, or modelling high
quality transitions using recurrent neural networks (RNNs) (Yu et al., 2016). These
methods are feasible because one is only interested in predicting a single element at a
time, instead of suggesting an entire sequence given the initial item.

The problem of music playlist generation considers recommending a playlist of
songs to users, given a query such as a seed song or artist (McFee and Lanckriet,
2011; Chen et al., 2012; Hariri et al., 2012; Bonnin and Jannach, 2014; Hidasi et al.,
2015; Ben-Elazar et al., 2017). A canonical approach is to learn a latent representation
of songs from historical playlists, and exploit a Markovian assumption on the song
transitions; or to learn high quality transitions using RNNs (Choi et al., 2016). We
investigate this problem in more detail in Chapter 5.

As a remark, the unary terms in our sequence scoring function (4.2) can be replaced
with personalised terms to each user, such as from a recommender system (Koren et al.,
2009; Rendle et al., 2009). We also note that the trajectory recommendation problem
suits RNNs based techniques. However, these techniques generally require much more
training data than available in our problem. It is also not clear how to recommend a
path (or even sequence) as a whole instead of recommending the next best location
as proposed in recent RNNs based work (Liu et al., 2016b). We leave this and
personalising path recommendation as future work.

§4.6 Summary 67

4.6 Summary

We cast the problem of recommending travel trajectories as a special case of path
recommendation, which we solve by augmenting the SSVMs. This approach ensures
global cohesion of recommended trajectories. The list Viterbi algorithm that was origi-
nally invented to decode digital signals corrupted by noise or to find more than one
candidate sentence in speech recognition, is employed to account for the existence of
multiple ground truths for a given input, as well as recommending trajectories without
loops. Experiments on real-world trajectory datasets show that path recommendation
approaches outperform existing, non-structured approaches. Our viewpoint also
enables researchers to bring recent advances in structured prediction to bear on the
problem of recommending structured objects, including further improving the effi-
ciency of inference and learning. In the other direction, techniques from recommender
systems to capture latent user- and POI-representations, in sufficiently rich domains,
may improve the predictive power of structured prediction models.

68 Structured Recommendation for Travel Trajectories

Chapter 5

Music Playlist Recommendation
with Multi-task Learning

In this chapter, we study the problem of recommending a set of songs from a music
library, which is a typical task involved in playlist recommendation. In particular,
we investigate this recommendation task in cold-start scenarios (Section 5.2), and
propose a set recommendation approach that optimises a bipartite ranking loss which
encourages songs in a playlist to be ranked higher than those that are not in it
(Section 5.4.3). Further, our approach jointly learns user representations by employing
the multi-task learning paradigm (Section 5.4.1), and an equivalence between bipartite
ranking and binary classification is exploited for efficient optimisation (Section 5.4.4).
Lastly, we present empirical evidences that show the effectiveness of the proposed set
recommendation approach (Section 5.5).

5.1 Introduction

Online music streaming services (e.g., Spotify, Pandora and Apple Music) play an
increasingly important role in the digital music industry. A key ingredient of these
services is the ability to automatically recommend songs to help users explore large
collections of music. Such recommendation is often in the form of a playlist, which
involves a subset of songs in a large music library.

We study the problem of recommending a set of songs to form personalised
playlists in cold-start scenarios, where there is no historical data for either users or
songs. Conventional recommender systems for books or movies (Sarwar et al., 2001;
Netflix, 2006) typically learn a score function via matrix factorisation (Koren et al.,
2009), and recommend the item that achieves the highest score. This approach is
not directly suited to cold-start settings due to the lack of interaction data. Further,
in playlist recommendation, one has to recommend a subset of a large collection of

69

70 Music Playlist Recommendation with Multi-task Learning

Figure 5.1: Illustration of the three cold-start settings in playlist recommendation. In
each setting, we recommend a set of songs (shown in the green box); (a) Cold Playlist:
recommending a personalised playlist for a user given her existing playlists; (b) Cold
User: recommending a playlist for a new user; (c) Cold Song: recommending a set of
newly released songs to extend an existing playlist.

songs instead of only one top ranked song. Enumerating all possible such subsets is
intractable; additionally, it is likely that more than one playlist is satisfactory, since
users generally maintain more than one playlist when using a music streaming service,
which leads to challenges in standard supervised learning.

5.2 Problem statement

A music playlist is a list of songs that can be listened either in a particular order or in a
random order (e.g., shuffle mode). In this thesis, we follow the later case and formulate
a music playlist as a set of songs (for further discussion, see Section 5.6). Therefore,
the problem of recommending music playlists is an instance of set recommendation
(Section 2.1.2). We investigate three cold-start settings in playlist recommendation:
cold playlist, cold user and cold song, as illustrated in Figure 5.1. In the cold playlist
setting, a target user (i.e., the one for whom we recommend playlist) maintains a

§5.2 Problem statement 71

number of playlists that can be learned by the recommendation algorithm to suggest
a new personalised playlist. In the cold user setting, however, we may only know
a few simple attributes of a new user (e.g., age, gender and country) or nothing
except her user identifier. The recommendation algorithm leverages the playlists from
existing users to suggest a new playlist for the new user. In the cold song setting,
the recommendation algorithm suggests songs from a collection of newly released
songs to extend an existing playlist. We assume the algorithm has access to content
information and metadata (e.g., artist, genre and audio data) of the newly released
songs as well as all playlists from existing users.

Suppose we have a dataset S with N playlists from U users, where songs in
every playlist are from a music collection C with M songs. Content information and
metadata (e.g., artist, genre and audio data) of all songs in C are available, and we
extract a D dimensional vector of features for each song. Depending on the playlist
dataset, a few simple attributes of users (e.g., age, gender and country) could be
provided, or nothing except the identifiers of users are known. We assume each user
has at least one playlist, and each song in the collection C appears in at least one
playlist. Recall that in set recommendation (Section 2.1.2), one learns a function that
maps a query to a group of sets. We remark that the target user acts as the query
in the cold playlist and cold user settings, and both the target user and songs in the
specified playlist serve as the query in the cold song setting. In the cold playlist setting,
although no contextual information about the new playlist is available besides the
target user, her existing playlists could implicitly provide her preference. On the other
hand, a new user without any listening history in the cold user setting poses more
challenges than in the other two settings.

In this thesis, we propose a method to address the problem of recommending
playlists in the three cold-start settings. It ranks songs by optimising a bipartite ranking
loss (Freund et al., 2003; Agarwal and Niyogi, 2005; Clémençon et al., 2008; Kotlowski
et al., 2011), and learns the representations of all users jointly by adopting the multi-
task learning paradigm (Section 2.6). We then present how a key equivalence between
bipartite ranking and binary classification can make the learning of parameters
more efficient. Compared to a straightforward approach that learns a classifier from
historical playlists and recommends songs by leveraging the classification results,
the proposed approach optimises the top of a ranked list of songs, with a tunable
parameter that controls how much emphasis should be put on the top. Observing
that the number of songs in a playlist is typically much smaller than the total number
of songs in a music library, it makes sense to concentrate only at the top-ranked songs.
Before detailing the proposed method (Section 5.4), we review recent work related to
the problems and techniques presented in this chapter.

72 Music Playlist Recommendation with Multi-task Learning

Table 5.1: Glossary of frequently used symbols in this chapter.

Symbol Meaning Definition

S Playlist dataset §5.2
C Music library §5.2
D Number of features for a song in C §5.2
M Number of songs in C §5.2
Mi

+ Number of songs in playlist i Eq. (5.12)
Mi

� Number of songs not in playlist i Eq. (5.5)
N Number of playlists in dataset S §5.2
U Number of users in dataset S §5.2
Pu The set of indices of playlists from user u in dataset S §5.4.1

au Weights of user u, au 2 RD §5.4.1
bi Weights of playlist i, bi 2 RD §5.4.1
µ Weights shared by all users (and playlists), µ 2 RD §5.4.1
q The collection of all parameters: {{au}U

u=1, {bi}N
i=1, µ} §5.4.1

xm Feature vector of song m, xm 2 RD §5.4.1
yi

m A binary label indicates whether song m is in playlist i Eq. (5.5)
wu,i Weights of playlist i from user u, i 2 Pu, wu,i 2 RD Eq. (5.2)
xi Slack variable for playlist i Eq. (5.8)
p Hyper-parameter of multi-task classification, p 2 R+ §5.4.4
l1, l2, l3 Regularisation constants Eq. (5.4)

f (m, u, i) Affinity score between user u, playlist i and song m Eq. (5.1)
r(a)

m , r(b)m , r(c)m Score of song m in cold-start settings Table 5.2
Rq(f ,S) Empirical risk of f on dataset S (a placeholder) Eq. (5.3)
W(q) Regularisation term in the multi-task learning objective Eq. (5.4)
`(f , u, i) Loss of f for playlist i from user u Eq. (5.5)
è(f , u, i) Another loss of f for playlist i from user u Eq. (5.11)
Rrank

q (f ,S) Empirical risk with loss `(f , u, i) Eq. (5.6)
eRrank

q (f ,S) Empirical risk with loss è(f , u, i) Eq. (5.10)
Rmtc

q (f ,S) Empirical risk of multi-task classification Eq. (5.12)

We remark that this chapter introduces quite a few symbols, and the frequently
used ones can be found in Table 5.1.

5.3 Related work
We summarise recent work most related to playlist recommendation and music
recommendation in cold-start scenarios, as well as work on the connections between
bipartite ranking and binary classification.

§5.3 Related work 73

5.3.1 Playlist recommendation

There is a rich set of recent literature on playlist recommendation, which can be sum-
marised into two typical settings: playlist generation and next song recommendation.
Playlist generation is to produce a complete playlist given some seed. For example,
the AutoDJ system (Platt et al., 2001) generates playlists given one or more seed
songs; Groove Radio can produce a personalised playlist for the specified user given
a seed artist (Ben-Elazar et al., 2017); or a seed location in hidden space (where all
songs are embedded) can be specified in order to generate a complete playlist (Chen
et al., 2012). There are also works that focus on evaluating the learned playlist model,
without concretely generating playlists (McFee and Lanckriet, 2011, 2012). See this
survey (Bonnin and Jannach, 2014) for more details.

Next song recommendation predicts the next song a user might play after observ-
ing some context. For example, the most recent sequence of songs with which a user
has interacted were used to infer the contextual information, which was then em-
ployed to rank the next possible song via a topic-based sequential model learned from
users’ existing playlists (Hariri et al., 2012). Context can also be the artists in a user’s
listening history, which has been employed to score the next song together with the
frequency of artist collocations as well as song popularity (McFee et al., 2012; Bonnin
and Jannach, 2013). It is straightforward to produce a complete playlist using next
song recommendation techniques, i.e., by picking the next song sequentially (Bonnin
and Jannach, 2013; Ben-Elazar et al., 2017).

5.3.2 Cold-start recommendation

In the collaborative filtering literature, the cold-start setting has primarily been ad-
dressed through suitable regularisation of matrix factorisation parameters based on
exogenous user- or item-features (Ma et al., 2008; Agarwal and Chen, 2009; Cao et al.,
2010). Regularisation techniques for deep neural networks (e.g., dropout) have also
been shown to help cold-start recommendation (Volkovs et al., 2017). The novel idea of
jointly factorising a document-term matrix and a document-user matrix (Saveski and
Mantrach, 2014) achieved promising cold-start document recommendations, especially
with regularisation that encourages local smoothness in the learned embeddings.

Content-based approaches can handle the recommendation of new songs, typically
by making use of content features of songs extracted either automatically (Seyerlehner
et al., 2010; Eghbal-Zadeh et al., 2015) or manually by musical experts (John, 2006).
Further, content features can also be combined with other approaches, such as those
based on collaborative filtering (Yoshii et al., 2006; Donaldson, 2007; Shao et al., 2009),
which is known as the hybrid recommendation approach (Burke, 2002; Aggarwal,

74 Music Playlist Recommendation with Multi-task Learning

2016). Another popular approach for cold-start recommendation involves explicitly
mapping user- or item- content features to latent embeddings (Gantner et al., 2010).
This approach can be adopted to recommend new songs, e.g., by learning a convolu-
tional neural network to map audio features of new songs to the corresponding latent
embeddings (Oord et al., 2013), which were then used to score songs together with
the latent embeddings of playlists. The problem of recommending music for new
users can also be tackled using a similar approach, e.g., by learning a mapping from
user attributes to user embeddings.

A slightly different approach to deal with music recommendation for new users is
learning hierarchical representations for genre, sub-genre and artist. By adopting an
additive form with user and artist weights, it can fall back to using only artist weights
when recommending music to new users; if the artist weights are not available (e.g.,
a new artist), this approach further falls back to using the weights of sub-genre or
genre (Ben-Elazar et al., 2017). However, the requirement of seed information (e.g.,
artist, genre or a seed song) restricts its direct applicability to the cold playlist and
cold user settings. Further, encoding song usage information as features makes it
unsuitable for recommending new songs directly.

5.3.3 Connections between bipartite ranking and binary classification

It has been established that bipartite ranking and binary classification are closely
related (Ertekin and Rudin, 2011; Narasimhan and Agarwal, 2013; Menon and
Williamson, 2016). In particular, Ertekin and Rudin (2011) showed that the objective of
the P-Norm Push and that of the P-Classification share the same minimiser(s). Further,
the P-Norm Push objective is an approximation of the Infinite-Push objective (Agarwal,
2011), or equivalently, the objective of Top-Push (Li et al., 2014), which focuses on the
highest ranked negative example instead of the lowest ranked positive example in the
Bottom-Push objective (Rudin, 2009) adopted in this work.

Compared to the Bayesian Personalised Ranking (BPR) approach (Rendle et al.,
2009; McFee et al., 2012) that requires all positive items to be ranked higher than those
unobserved ones, the adopted approach only penalises unobserved items that are
ranked higher than the lowest ranked positive item, which can be optimised more
efficiently when only the top ranked items are of interest (Rudin, 2009; Li et al., 2014).

5.4 Multi-task learning for playlist recommendation

We first introduce a multi-task learning objective and then show how the playlist rec-
ommendation problem can be handled in the three cold-start settings. We discuss the

§5.4 Multi-task learning for playlist recommendation 75

challenges in optimising the multi-task learning objective via convex constrained opti-
misation when a bipartite ranking loss is adopted, and show how one can efficiently
approximate an optimal solution by minimising an unconstrained objective.

5.4.1 Multi-task learning objective

Let Pu denote the set of (indices of) playlists from user u 2 {1, . . . , U}. We aim to
learn a function f (m, u, i) that measures the affinity between song m 2 {1, . . . , M}
and playlist i 2 Pu from user u. Given the feature vector xm 2 RD of song m, suppose
the affinity function f : RD ! R takes the form of a linear function, i.e.,

f (m, u, i) = w>
u,ixm, (5.1)

where wu,i 2 RD are the weights of playlist i from user u.
Inspired by Ben-Elazar et al. (2017) where the weights of a playlist are decomposed

into user weights and artist weights, we decompose wu,i into three components1

wu,i = au + bi + µ, (5.2)

where au 2 RD are weights for user u, bi 2 RD are weights specific for playlist i, and
µ 2 RD are the weights shared by all users (and playlists). This decomposition allows
us to learn the user weights au using all her playlists, and exploit all training playlists
when learning the shared weights µ.

Let q denote all parameters in
�
{au}U

u=1, {bi}N
i=1, µ

. The learning task is to

minimise the empirical risk of affinity function f on dataset S over parameters q, i.e.,

min
q

W(q) + Rq(f ,S), (5.3)

where W(q) is a regularisation term and Rq(f ,S) denotes the empirical risk of f on
S (Vapnik, 1992), which will be discussed in the later part of this section.

For each user u, u 2 {1, . . . , U}, we can define a machine learning task which
recommends playlists for the user by learning from her historical playlists, and the
above formulation allows us to jointly learn the parameters from the U tasks. We
therefore call the objective in problem (5.3) the multi-task learning objective.2

We further assume that playlists from the same user have similar weights and the
shared weights µ are sparse (i.e., users only share a small portion of their weights). To
impose these assumptions, we apply `1 regularisation to encourage sparse parameters

1This method is also related to random effects models (Laird et al., 1982; Diggle et al., 2002).
2We also adopt a shared representation µ in the formulation, which is typical in multi-task learn-

ing (Caruana, 1997; Ruder, 2017).

76 Music Playlist Recommendation with Multi-task Learning

Table 5.2: Methods to rank songs in three cold-start settings.

Cold-start Setting Song Scoring Method

(a) Cold Playlist r(a)
m = (au + µ)>xm

(b) Cold User r(b)m =

1
|U | Â

u2U
au + µ

!>

xm or r(b)m = µ>xm

(c) Cold Song r(c)m = (au + bi + µ)>xm

in bi and µ. The regularisation term in our multi-task learning objective is

W(q) = l1

U

Â
u=1

kauk2
2 + l2

N

Â
i=1

kbik1 + l3kµk1, (5.4)

where constants l1, l2, l3 2 R+, and the `2 regularisation term is to penalise large
values in user weights. We specify the empirical risk Rq(f ,S) in Section 5.4.3.

5.4.2 Cold-start playlist recommendation

Once parameters q have been learned, we make a recommendation by first scoring each
song according to available information (e.g., an existing user or playlist), then form
or extend a playlist by either taking the set of top-K scored songs or sampling a set of
songs with probabilities proportional to their scores. Specifically, in the cold playlist
setting where the target user u is known, we score song m as r(a)

m = (au + µ)>xm.

Further, in the cold user setting where simple attributes of the new user are
available, we first approximate the weights of the new user using the average weights
of similar existing users (i.e., users whose attribute vectors are similar to that of
the new user in terms of e.g., the cosine similarity), then we can score song m as

r(b)m =
⇣

1
|U | Âu2U au + µ

⌘>
xm, where U is the set of (e.g., 10) existing users that are

most similar to the new user. On the other hand, if we know nothing about the
new user except her identifier, we can simply score song m as r(b)m = µ>xm where
µ is the shared weights that can be interpreted as a prior from a Bayesian point of
view (Ben-Elazar et al., 2017).

Lastly, in the cold song setting where we are given a specific playlist i from user
u, we therefore can score song m using both user weights and playlist weights, i.e.,
r(c)m = (au + bi + µ)>xm. Table 5.2 summaries the methods presented above for
ranking songs in the three cold-start settings.

We now specify the empirical risk Rq(f ,S) in problem (5.3) and develop methods
to efficiently optimise the multi-task learning objective.

§5.4 Multi-task learning for playlist recommendation 77

5.4.3 Ranking songs via Bottom-Push

We aim to rank songs that are likely to be in a playlist above those that are unlikely
to be chosen when making a recommendation. To achieve this, we optimise the
multi-task learning objective by minimising a bipartite ranking loss. In particular, we
minimise the number of songs that are not in a training playlist but are ranked above
the lowest ranked song in it. This is known as the Bottom-Push objective (Rudin,
2009), and the penalty of the affinity function f for playlist i from user u is

`(f , u, i) =
1

Mi
�

Â
m0 :yi

m0=0

s
min

m:yi
m=1

f (m, u, i) f (m0, u, i)
{

, (5.5)

where Mi
� is the number of songs not in playlist i, binary variable yi

m denotes whether
song m appears in playlist i, and indicator function J·K represents the 0/1 loss.

The empirical risk when employing the bipartite ranking loss `(f , u, i) is

Rrank
q (f ,S) = 1

N

U

Â
u=1

Â
i2Pu

`(f , u, i). (5.6)

There are two challenges to optimise the multi-task learning objective with the
empirical risk Rrank

q , namely, the non-differentiable 0/1 loss and the min function in
`(f , u, i). To address these challenges, we first upper-bound the 0/1 loss with one of
its convex surrogates, e.g., the exponential loss Jz 0K e�z,

`(f , u, i) 1
Mi

�
Â

m0 :yi
m0=0

exp
✓

f (m0, u, i)� min
m:yi

m=1
f (m, u, i)

◆
. (5.7)

One approach to deal with the min function in `(f , u, i) is introducing slack
variables xi to lower-bound the scores of songs in playlist i and transform problem
(5.3) with empirical risk Rrank

q into a convex constrained optimisation problem

min
q

W(q) +
1
N

U

Â
u=1

Â
i2Pu

1
Mi

�
Â

m0 :yi
m0=0

exp
�

f (m0, u, i)� xi
�

s.t. xi f (m, u, i),

u 2 {1, . . . , U}, i 2 Pu, m 2 {1, . . . , M} \ {m : yi
m = 1}.

(5.8)

Note that the number of constraints in problem (5.8) is ÂU
u=1 Âi2Pu ÂM

m=1 Jyi
m =1K,

i.e., the accumulated playcount of all songs, which is of order O(LN) asymptotically,
where L is the average number of songs in playlists (typically less than 100). How-
ever, the total number of playlists N can be enormous in production systems (e.g.,

78 Music Playlist Recommendation with Multi-task Learning

Spotify hosts more than 2 billion playlists (Spotify, 2018)) which imposes a significant
challenge in optimisation. This issue could be alleviated by applying the cutting-
plane method (Avriel, 2003) or the sub-gradient method. Unfortunately, we find both
methods converge extremely slowly for this problem in practice. In particular, the
cutting-plane method is required to solve a constrained optimisation problem with at
least N constraints in each iteration, which remains challenging.

5.4.4 Efficient optimisation

Alternatively, we can approximate the min function in `(f , u, i) using the well known
Log-sum-exp function (Boyd and Vandenberghe, 2004), i.e.,

min
j

zj = �max
j

(�zj) = � lim
p!+•

1
p

log Â
j

exp(�pzj), (5.9)

which allows us to approximate the empirical risk Rrank
q (with the exponential surro-

gate) by eRrank
q defined as

eRrank
q (f ,S) = 1

N

U

Â
u=1

Â
i2Pu

1
Mi

�

è(f , u, i)

� 1
p

, (5.10)

where hyper-parameter p 2 R+ and

è(f , u, i) = Â
m:yi

m=1

2

4 Â
m0 :yi

m0=0

exp(�(f (m, u, i)� f (m0, u, i)))

3

5
p

. (5.11)

We further observe that è(f , u, i) can be transformed into the objective of the
standard P-Norm Push (Rudin, 2009) by simply swapping the positives {m : yi

m = 1}
and negatives {m0 : yi

m0 = 0}. Inspired by the connections between bipartite ranking
and binary classification (Ertekin and Rudin, 2011; Narasimhan and Agarwal, 2013;
Menon and Williamson, 2016), we swap the positives and negatives in the objective of
the P-Classification (Ertekin and Rudin, 2011) while taking care of signs. This results
in an empirical risk with a classification loss:

Rmtc
q (f ,S) = 1

N

U

Â
u=1

Â
i2Pu

1

pMi
+

Â
m:yi

m=1
exp(�p f (m, u, i)) +

1
Mi

�
Â

m0 :yi
m0=0

exp(f (m0, u, i))

!
,

(5.12)
where Mi

+ is the number of songs in playlist i.

Lemma 1. Let q⇤ 2 argminq Rmtc
q (assuming minimisers exist), then q⇤ 2 argminq

eRrank
q .

§5.5 Experiments 79

Proof. See Appendix E for a complete proof. Alternatively, we can use the proof of the
equivalence between the P-Norm Push and the P-Classification (Ertekin and Rudin,
2011) if we swap the positives and negatives in Rmtc

q and eRrank
q .

By Lemma 1, we can optimise the parameters of the multi-task learning objective
by solving a (convex) unconstrained optimisation problem:3

min
q

W(q) + Rmtc
q (f ,S). (5.13)

Problem (5.13) can be efficiently optimised using the Orthant-Wise Limited-
memory Quasi-Newton (OWL-QN) algorithm (Andrew and Gao, 2007), an L-BFGS
variant that can address `1 regularisation effectively. We refer to the approach that
solves problem (5.13) as Multi-task Classification (MTC). As a remark, optimal solutions
of problem (5.13) are not necessarily the optimal solutions of minq W(q) + eRrank

q due
to regularisation. However, when parameters q are small (which is generally the case
when using regularisation), optimal solutions of the two objectives can nonetheless
approximate each other well.

5.5 Experiments

We present empirical evaluations for cold-start playlist recommendation on two real
playlist datasets, and compare the proposed multi-task classification approach to a
number of well known baseline approaches.

5.5.1 Dataset

We evaluate on two publicly available playlist datasets: the 30Music (Turrin et al., 2015)
and the AotM-2011 (McFee and Lanckriet, 2012) datasets. The Million Song Dataset
(MSD) (Bertin-Mahieux et al., 2011) serves as an underlying dataset where songs in
all playlists are intersected (i.e., filtering out songs not in the MSD); additionally, song
and artist information in the MSD are used to compute song features.

30Music Dataset is a collection of listening events and user-generated playlists
retrieved from Last.fm.4 We first intersect the playlists data with songs in the MSD,
then filter out playlists with less than 5 songs. This results in about 17K playlists over
45K songs from 8K users.

3We choose not to directly optimise the empirical risk eRrank
q , which involves the objective of P-Norm

Push, since classification loss can be optimised more efficiently here (Ertekin and Rudin, 2011).
4https://www.last.fm

80 Music Playlist Recommendation with Multi-task Learning

Table 5.3: Statistics of music playlist datasets.

30Music AotM-2011

Playlists 17,457 84,710
Users 8,070 14,182
Avg. Playlists per User 2.2 6.0

Songs 45,468 114,428
Avg. Songs per Playlist 16.3 10.1

Artists 9,981 15,698
Avg. Artists per Playlist 11.5 9.0
Avg. Songs per Artist 4.6 7.1

AotM-2011 Dataset is a collection of playlists shared by Art of the Mix5 users
during the period from 1998 to 2011. Songs in playlists have been matched to those
in the MSD. It contains roughly 84K playlists over 114K songs from 14K users after
filtering out playlists with less than 5 songs.

Table 5.3 summarises the two playlist datasets used in this work. The histograms
of the number of playlists per user as well as song popularity (i.e., the accumulated
playcount of the song in the training set) of the two datasets are shown in Figure 5.2
and Figure 5.3, respectively. We can see that both the number of playlists per user
(Figure 5.2) and song popularity (Figure 5.3) follow a long-tailed distribution, which
imposes further challenge to the learning task as the amount of data is very limited
for users (or songs) at the tail.

5.5.2 Features
Song metadata, audio data, genre and artist information, as well as song popularity
and artist popularity (i.e., the accumulated playcount of all songs from the artist
in the training set) are encoded as features. The metadata of songs (e.g., duration,
year of release) and pre-computed audio features (e.g., loudness, mode, tempo) are
from the MSD. We use genre data from the Top-MAGD genre dataset (Schindler
et al., 2012) and tagtraum genre annotations for the MSD (Schreiber, 2015) via one-hot
encoding. If the genre of a song is unknown, we apply mean imputation using genre
counts of songs in the training set. To encode artist information as song features, we
create a sequence of artist identifiers for each playlist in the training set, and train
a word2vec model (Mikolov et al., 2013) that learns embeddings of artists. We also
assume no popularity information is available for newly released songs, and therefore
song popularity is not a feature in the cold song setting. Finally, we add a constant
feature (with value 1.0) for each song to account for bias.

5http://www.artofthemix.org

§5.5 Experiments 81

Figure 5.2: Histogram of the number of playlists per user.

Figure 5.3: Histogram of song popularity.

5.5.3 Experimental setup

In each of the three cold-start settings, we first split the two playlist datasets into
training and test sets, then evaluate the performance of the proposed method (on the
test set), and compare it against several baseline approaches.

Dataset split In the cold playlist setting, we hold a portion of the playlists from about
20% of users in both datasets for testing, and all other playlists are used for training.
The test set is formed by sampling playlists where each song has been included in at
least four other playlists among the whole dataset. We also make sure each song in
the test set appears in the training set, and all users in the test set have a few playlists
in the training set. In the cold user setting, we sample 30% of users and hold all of
their playlists for testing in both datasets. Similarly, we require songs in the test set to
appear in the training set, and a user will thus not be used for testing if holding all of
her playlists breaks this requirement. Lastly, in the cold song setting, we hold 5K of

82 Music Playlist Recommendation with Multi-task Learning

Table 5.4: Statistics of datasets in three cold-start settings.

Training Set Test Set

Users Playlists Songs Users Playlists Songs

Cold Playlist 30Music 8,070 15,262 45,468 1,644 2,195 45,468
AotM-2011 14,182 75,477 114,428 2,722 9,233 114,428

Cold User 30Music 5,649 14,067 45,468 2,420 3,390 45,468
AotM-2011 9,928 76,450 114,428 4,254 8,260 114,428

Cold Song 30Music 8,034 17,342 40,468 8,034 8,215 5,000
AotM-2011 14,177 84,646 104,428 14,177 19,504 10,000

the latest released songs in the 30Music dataset, and 10K of the latest released songs
in the AotM-2011 dataset where more songs are available. We remove a playlist from
the training set if all songs in it have been held for testing.

Table 5.4 summaries the dataset splits in three cold-start settings.

Baselines We compare the performance of our proposed method (i.e., MTC) with
the following baseline approaches in each of the three cold-start settings:

• The Popularity Ranking (PopRank) method scores a song using only its popularity
in the training set. In the cold song setting where song popularity is not available,
a song is scored by the popularity of the corresponding artist.

• The Same Artists - Greatest Hits (SAGH) (McFee et al., 2012) method scores a song
by its popularity if the artist of the song appears in the given user’s playlists (in
the training set); otherwise the song is scored zero. In the cold song setting, this
method only considers songs from artists that appear in the given playlist, and
scores a song using the popularity of the corresponding artist.

• The Collocated Artists - Greatest Hits (CAGH) (Bonnin and Jannach, 2013) method
is a variant of SAGH. It scores a song using its popularity, but weighted by the
frequency of the collocation between the artist of the song and artists that appear
in the given user’s playlists (in the training set). In the cold user setting, we
use the 10 most popular artists instead of artists in the user’s listening history
(which is not available), and the cold song setting is addressed in the same way
as in SAGH (i.e., considering only those artists that appear in the given playlist).

We also compare with a variant of Matrix Factorisation (MF) in each setting, which
first learns the latent factors of songs, playlists or users, then scores each song by the
dot product of the corresponding latent factors. Recommendations are made as per
the proposed method. To be specific,

§5.5 Experiments 83

• In the cold playlist setting, we factorise the song-user playcount matrix using the
weighted matrix factorisation (WMF) algorithm (Hu et al., 2008), which learns
the latent factors of songs and users. We call this method WMF.

• In the cold user setting, we first learn the latent factors of songs and users by
factorising the song-user playcount matrix using WMF, then approximate the
latent factors of a new user by the average latent factors of the k (e.g., 100)
nearest neighbours (in terms of the cosine similarity between user attribute
vectors) in the training set. We call this method WMF+kNN.6

• In the cold song setting, we factorise the song-playlist matrix to learn the latent fac-
tors of songs and playlists, which are further employed to train a fully-connected
neural network that maps the content features of a song to its corresponding
latent factors (Gantner et al., 2010; Oord et al., 2013). We can then obtain the
latent factors of a new song as long as its content features are available. We call
this method MF+MLP.

Evaluation We first evaluate all approaches using two accuracy metrics that have
been widely adopted in playlist recommendation tasks: HitRate@K and Area under
the ROC curve (AUC).

HitRate@K (Hariri et al., 2012), which is also known as Recall@K (Jurafsky and
Martin, 2009), is the number of correctly recommended songs amongst the top-K
recommendations over the number of songs in the observed playlist. It has been
widely employed to evaluate playlist generation and next song recommendation
methods (Hariri et al., 2012; Bonnin and Jannach, 2013, 2014; Jannach et al., 2015).

Area under the ROC curve (AUC) (Manning et al., 2008), which is the probability
that a positive instance is ranked higher than a negative instance (on average). AUC
has been primarily used to measure the performance of classifiers. It has been applied
to evaluate playlist generation methods when the task has been cast as a sequence of
classification problems (Ben-Elazar et al., 2017).

It is believed that useful recommendations need to include previously unknown
items, and this ability can be measured by Novelty (Herlocker et al., 2004; Zhang et al.,
2012; Schedl et al., 2017),

Novelty@K =
1
U

U

Â
u=1

1
|Ptest

u | Â
i2Ptest

u

Â
m2Si

K

� log2 popm

K
, (5.14)

where Ptest
u is the (indices of) test playlists from user u, Si

K is the set of top-K recom-
mendations for test playlist i and popm is the popularity of song m. Intuitively, the
more popular a song is, the more likely a user is to be familiar with it, and therefore
the less likely to be novel.

6The WMF+kNN method does not apply to the AotM-2011 dataset in the cold user setting, since
such user attributes (e.g., age, gender and country) are not available in the dataset.

84 Music Playlist Recommendation with Multi-task Learning

We also adopt another beyond-accuracy metric called Spread (Kluver and Konstan,
2014), which measures the ability of a recommender system to spread its attention
across all possible items. It is defined as the entropy of the distribution of all songs,

Spread = �
M

Â
m=1

P(m) log P(m), (5.15)

where P(m) denotes the probability of song m being recommended, which is com-
puted from the scores of all possible songs using the softmax function in this work.

Novelty and Spread are two of the beyond-accuracy metrics that are specifically
tailored to recommender systems. Unlike the AUC and Hit Rate, where higher values
indicate better performance, here moderate values are usually preferable for these two
beyond-accuracy metrics (Kluver and Konstan, 2014; Schedl et al., 2017). However,
when comparing the performance of various recommendation methods in terms of
Novelty and Spread, it is generally unclear which one achieves a moderate value, and
this is unfortunately a reflection of current literature (Schedl et al., 2017).

To make these beyond-accuracy metrics consistent with the accuracy metrics em-
ployed in this work (i.e., higher values indicate better performance), we observe that
the lower- and upper-bound of both Novelty and Spread can be obtained straightfor-
wardly. If an optimal value can be further specified, we can map the values of these
two metrics into scores in range [0, 1] such that the optimal value is mapped to 1, and
other values are mapped to lower scores that could reflect how far away they are from
the optimal value. Let vL and vU be the lower- and upper-bound, respectively. One
example of such transformation is the following non-linear function

f (v) =

8
<

:
0, v 2 {vL, vU}

2s (g(v)(v � v⇤)) , v 2 (vL, vU)
(5.16)

where s(x) = (1 + e�x)�1 is the sigmoid function, v⇤ 2 (vL, vU) is the specified
optimal value, function

g(v) =

8
<

:
C(v⇤ � vL)�1, v v⇤

C(v⇤ � vU)�1, v > v⇤
(5.17)

and constant C 2 R+ is a scaling parameter. Figure 5.4 illustrates that function f (·)
can map values uniformly distributed on the horizontal axis to scores in [0, 1], with a
higher resolution near the optimal value.

In experiment, we specify7 that v⇤ = (vU + vL)/2 and C = (vU � vL)/2, which
results in f (v) = 2s(�|v � v⇤|) when v 2 (vL, vU). Note that PopRank scores songs
by their popularity, which, by definition (5.14), will achieve the lowest Novelty. In
contrast, the highest Novelty can be obtained by recommending the set of least
popular songs, which we call LeastPop in Figure 5.6. In particular, let novPopRank

K

7If additional domain information is available, we can choose the values of v⇤ and C accordingly.

§5.5 Experiments 85

Figure 5.4: Illustration of a non-linear transformation for Novelty and Spread. A
non-linear function that maps a set of real numbers into scores in [0, 1] such that a
moderate value is mapped to a high score and low/high values to low scores.

Table 5.5: AUC for playlist recommendation in three cold-start settings. Higher values
indicate better performance.

Cold Playlist Cold User Cold Song

Method 30Music AotM-2011 Method 30Music AotM-2011 Method 30Music AotM-2011

PopRank 94.0 93.8 PopRank 88.3 91.8 PopRank 70.9 76.5
CAGH 94.8 94.2 CAGH 86.3 88.1 CAGH 68.0 77.4
SAGH 64.5 79.8 SAGH 54.5 53.7 SAGH 51.5 53.6
WMF 79.5 85.4 WMF+kNN 84.9 N/A MF+MLP 81.4 80.8
MTC 95.9 95.4 MTC 88.8 91.8 MTC 86.6 84.3

and novLeastPop
K denote the Novelty@K of PopRank and LeastPop, respectively. The

transformation for Novelty@K is f Novelty(novPopRank
K) = f Novelty(novLeastPop

K) = 0, and

f Novelty(novK) = 2s (� |novK � nov⇤K|) , novK 2 (novPopRank
K , novLeastPop

K) (5.18)

where we specify the optimal value nov⇤K = 1
2

⇣
novPopRank

K + novLeastPop
K

⌘
. In addition,

we know from the definition (5.15) that Spread s 2 [0, log2 M], where M is the number
of songs in consideration. Therefore, by specifying the optimal value s⇤ = (log2 M)/2,
the Spread can be transformed using f Spread(0) = f Spread(log2 M) = 0, and

f Spread(s) = 2s(�|s � s⇤|), s 2 (0, log2 M). (5.19)

5.5.4 Results

We analyse the empirical results of the proposed method (i.e., MTC) as well as many
baselines in terms of both accuracy metrics (i.e., HitRate and AUC) and beyond
accuracy metrics (i.e., Novelty and Spread).

Accuracy Table 5.5 shows the performance of all methods in terms of AUC. We can
see that PopRank achieves good performance in all three cold-start settings. This is
in line with results reported in (Bonnin and Jannach, 2013, 2014). Artist information,

86 Music Playlist Recommendation with Multi-task Learning

(a) Cold Playlist

(b) Cold User

(c) Cold Song

Figure 5.5: Hit Rate of playlist recommendation in three cold-start settings. Higher
values indicate better performance.

§5.5 Experiments 87

particularly the frequency of artist collocations that is exploited in CAGH, improves
recommendation in the cold playlist and cold song settings. Further, PopRank is one of
the best performing methods in the cold user setting, which is consistent with previous
discoveries (McFee et al., 2012; Bonnin and Jannach, 2013, 2014). The reason is believed
to be the long-tailed distribution of songs in playlists (Cremonesi et al., 2010; Bonnin
and Jannach, 2013). The MF variant does not perform well in the cold playlist setting,
but it performs reasonably well in the cold user setting when attributes of new users
are available (i.e., in the 30Music dataset), and it works particularly well in the cold
song setting where both song metadata and audio features of new songs are provided.

Lastly, MTC is the best performing method in all three cold-start settings on both
datasets. Interestingly, it is the tied best on the AotM-2011 dataset in the cold user
setting (recall that this dataset does not provide user attributes such as age, gender
and country), and it achieves the same performance as PopRank in the cold user setting
on the AotM-2011 dataset, which suggests that MTC might degenerate to simply
ranking songs according to the popularity when making recommendations for new
users; however, when simple attributes of new users are available, it can improve the
recommendations by exploiting information learned from existing users.

Figure 5.5 shows the Hit Rate of all methods in three cold-start settings when the
number of recommended songs K varies from 5 to 1000. As expected, the performance
of all methods improves when the number of recommendations increases. We can
see from Figure 5.5a that SAGH and CAGH perform better than PopRank (except for
SAGH on the 30Music dataset when K is larger than 300) in the cold playlist setting,
which confirms that artist information is helpful in retrieving songs in ground truth
playlists (i.e., improving recall). It is interesting to observe that the performance of
WMF is always between SAGH and CAGH on both datasets, although the performance
of both SAGH and CAGH vary significantly across datasets. This might suggest that
this variant of matrix factorisation is more robust than approaches based on ranking
according to song popularity and artist information.

It is challenging to improve upon simply ranking by song popularity in the cold
user setting, as shown in Figure 5.5b, which is in line with previous discoveries (McFee
et al., 2012; Bonnin and Jannach, 2013, 2014). In contrast, learning-based approaches
(i.e., MTC and MF+MLP) always perform better than other baselines that use only
artist information in the cold song setting (Figure 5.5c). PopRank works surprisingly
well; it even outperforms CAGH which exploits artist collocations on the 30Music
dataset. The fact that CAGH always performs better than SAGH confirms that artist
collocation is helpful for music recommendation.

In summary, MTC outperforms all other methods by a big margin on both datasets
in the cold song setting (Figure 5.5c). It performs as well as PopRank in the cold user

88 Music Playlist Recommendation with Multi-task Learning

Table 5.6: Raw Spread for playlist recommendation in three cold-start settings.
Moderate values are preferable.

Cold Playlist Cold User Cold Song

Method 30Music AotM-2011 Method 30Music AotM-2011 Method 30Music AotM-2011

PopRank 9.8 10.5 PopRank 9.8 10.5 PopRank 7.4 7.8
CAGH 5.8 2.3 CAGH 4.2 5.3 CAGH 4.3 4.6
SAGH 10.3 10.4 SAGH 10.0 10.7 SAGH 6.5 5.9
WMF 10.7 11.6 WMF+kNN 10.7 N/A MF+MLP 8.5 9.2
MTC 9.4 10.4 MTC 9.9 11.4 MTC 7.9 8.3

Table 5.7: Transformed Spread for playlist recommendation in three cold-start settings.
Higher values indicate better performance.

Cold Playlist Cold User Cold Song

Method 30Music AotM-2011 Method 30Music AotM-2011 Method 30Music AotM-2011

PopRank .225 .219 PopRank .225 .219 PopRank .833 .708
CAGH .252 .004 CAGH .057 .086 CAGH .062 .044
SAGH .143 .239 SAGH .188 .183 SAGH .450 .151
WMF .098 .078 WMF+kNN .098 N/A MF+MLP .636 .621
MTC .319 .239 MTC .206 .095 MTC .918 .949

setting; however, MTC can improve the recommendations when simple attributes of
new users are available (Figure 5.5b). We also observe that MTC outperforms other
baselines in the cold playlist setting (Figure 5.5a), although the margin is not as big
as that in the cold song setting. This demonstrates the effectiveness of the proposed
approach for cold-start playlist recommendation.

Beyond accuracy Table 5.6 shows the performance of all recommendation ap-
proaches in terms of Spread. In the cold song setting, CAGH and SAGH focus on
songs from artists in users’ listening history (and similar artists), which explains the
relative low Spread. However, in the cold playlist and cold user settings, SAGH improves
its attention spreading due to the set of songs it focuses on is significantly bigger (i.e.,
songs from all artists in users’ previous playlists and songs from the 10 most popular
artists, respectively). Surprisingly, CAGH remains focusing on a relatively small set
of songs in both settings. Lastly, in all three cold-start settings, the MF variants have
the highest Spread, while both PopRank and MTC have (similar) moderate Spread.

Table 5.7 summaries the Spread of all methods after the non-linear transforma-
tion (5.19). We can see that PopRank achieves very good performance in all three
cold-start settings, in particular, it is the best method in the cold user setting. Further,
MTC performs the best in both the cold playlist and cold song settings. These observa-
tions are consistent with the results in Table 5.6 which indicates PopRank and MTC
generally perform better than other methods in terms of Spread.

§5.5 Experiments 89

(a) Cold Playlist

(b) Cold User

(c) Cold Song

Figure 5.6: Raw Novelty of playlist recommendation in three cold-start settings.
Moderate values are prefereable.

90 Music Playlist Recommendation with Multi-task Learning

Table 5.8: The mean of transformed Novelty for playlist recommendation in three
cold-start settings. Higher values indicate better performance.

Cold Playlist Cold User Cold Song

Method 30Music AotM-2011 Method 30Music AotM-2011 Method 30Music AotM-2011

PopRank .000 .000 PopRank .000 .000 PopRank .000 .000
CAGH .234 .102 CAGH .131 .103 CAGH .591 .648
SAGH .454 .117 SAGH .294 .161 SAGH .890 .923
WMF .413 .184 WMF+kNN .088 N/A MF+MLP .594 .750
MTC .109 .108 MTC .053 .031 MTC .664 .845

Figure 5.6 shows the Novelty of all methods in three cold-start settings. The values
of Novelty of all methods raise as the number of recommendations increases (except
those of LeastPop which we shall discuss later). We can see from Figure 5.6a that
PopRank has the lowest Novelty in the cold playlist setting, which is not surprising
given its definition (Equation 5.14). Both SAGH and CAGH start with low Novelty
and grow as the number of recommended songs increases, but the Novelty of CAGH
saturates much earlier than that of SAGH. The reason could be that, when the number
of recommendations is larger than the total number of songs from artists in a user’s
existing playlists, SAGH will simply recommend songs randomly (which are likely to
be novel) while CAGH will recommend songs from artists that are similar to those in
the user’s existing playlists (which could be comparably less novel). Further, MTC
achieves lower Novelty than WMF and CAGH, which indicates that MTC tends to
recommend popular songs to form new playlists.

It is interesting to observe that MTC and PopRank perform identically in the cold
user setting, as shown in Figure 5.6b. SAGH has the largest Novelty on both datasets,
likely for similar reasons to those in the cold playlist setting. The performance of
different methods (in terms of Novelty) in the cold song setting (Figure 5.6c) are similar
to those in the cold playlist setting (Figure 5.6b); however, we note that there are two
differences: (i) The Novelty of SAGH saturates after the number of recommendations
reaches a certain value (roughly 60), the reason could be that, on average, the total
number of songs from the set of artists in a playlist is about 60, as shown in Table 5.3;
(ii) MTC achieves higher Novelty than both WMF and CAGH, which might suggest
that MTC tends to recommend new songs that will be (comparably) less popular.

Table 5.8 shows the transformed Novelty averaged over different values of K (i.e.,
the number of recommendations). The transformed Novelty of both PopRank and
LeastPop should be 0 by definition (5.18), and we observe that SAGH achieves the
overall highest transformed Novelty in all settings (except in the cold playlist setting
on the AotM-2011 dataset where the MF variant performs best). This is consistent
with the results in Figure 5.6, where the raw Novelty of SAGH is generally “moderate”

§5.6 Discussion 91

considering that the lower- and upper-bound of Novelty are attained by PopRank and
LeastPop respectively. In addition, CAGH achieves decent performance in all three
cold-start settings. Interestingly, although MTC and the MF variants attain respectable
performance in both the cold playlist and cold song settings (on at least one dataset),
they do not perform well in the cold user setting in terms of transformed Novelty.

To conclude, for the task of recommending playlists in cold-start scenarios, the
proposed method MTC performs best in terms of accuracy metrics Hit Rate and AUC.
Despite being outperformed by a comparatively simpler method SAGH in terms of
the beyond-accuracy metric Novelty, MTC produces the overall best recommendations
in terms of another beyond-accuracy metric Spread.

5.6 Discussion

We discuss the relationship between multi-task learning, bipartite ranking and binary
classification (from the perspective of loss function). In addition, we also remark
several design choices adopted in this work and compare our problem setup with a
closely related setting considered in a recent RecSys challenge.

5.6.1 Multi-task learning, bipartite ranking and binary classification

Multi-task learning is a method that learns more than one tasks in parallel by using a
shared representation to achieve inductive transfer between tasks, it could improve
generalisation accuracy of a particular task by leveraging additional signals from
related tasks (Caruana, 1993, 1997). Sharing representation among multiple tasks
allows us to jointly learn the parameters of users and playlists, as well as the shared
parameters from multiple recommendation tasks, which further enables us to deal
with the problem of recommending a set of songs in three cold-start settings.

The bipartite ranking loss adopted in this work (i.e., the Bottom-Push) guides the
learning process such that the learned parameters will (generally) reflect our intention
to rank the set of songs in a playlist higher than those that are not in it. Ideally, we can
directly optimise this loss function using training data; unfortunately, this is infeasible
due to the enormous number of constraints in the involved optimisation problem, we
therefore resort to minimise an approximation of the constrained objective. It turns
out that the approximation transforms the Bottom-Push objective to (a variant of) the
P-Norm Push objective. Although one can optimise the objective of the P-Norm Push
using standard techniques (e.g., gradient descent), more efficient optimisation can
be achieved if we make use of an equivalence between bipartite ranking and binary
classification, which results in an unconstrained objective with a classification loss.

92 Music Playlist Recommendation with Multi-task Learning

5.6.2 Cold-start playlist recommendation versus playlist continuation

In the cold playlist setting, we recommend more than one playlists for a given user;
however, all these recommendations are identical as the ranking of songs for a specific
user is the same (Table 5.2). This is due to the fact that no other contextual information
for a recommendation is available except the user identity. Similarly, in the cold user
setting, the same set of songs will always be suggested no matter how many times
the recommendation have been made because of the lack of contextual information
in each recommendation. A more plausible and perhaps more realistic setting is to
provide one or more seed songs for each task,8 and the recommended playlist should
be cohesive with the given seed. This setup is known as playlist continuation (Schedl
et al., 2017), which has been explored in a recent RecSys challenge.9 One may notice
that the setup of playlist continuation is similar to the cold song setting, except that
the set of songs to be added to a playlist are not necessarily newly released songs.

5.6.3 Information of songs, playlists and users

In this thesis, we assume that content features of songs (e.g., metadata, audio data)
are provided, even for newly released songs. On the other hand, no user (or playlist)
feature is available. We may have a few simple attributes of users (e.g., age, gender
and country) or only user identifiers are known. In practice, users might reveal their
preferences in profiles, and playlist metadata (e.g., title, description and created time)
might also be available, which could be leveraged by the learning algorithm.

Further, we treat a playlist as a set of songs by discarding the sequential order.
It turns out that the sequential order of songs in a playlist has not been well under-
stood (Schedl et al., 2017), some work suggest that the order of songs and song-to-song
transitions are important for the quality of the recommended playlist (McFee and
Lanckriet, 2012; Kamehkhosh et al., 2018), while other work discover that the order
of songs seems to be negligible, but the ensemble (i.e., set) of songs in a playlist do
matter (Tintarev et al., 2017; Vall et al., 2017).

As a remark, in the cold user setting, we approximate the weights (or latent factors)
of a new user using the average weights (or latent factors) of similar users in the
training set in MTC (or WMF+kNN). One could also use a weighted average (e.g.,
weighted by the normalised cosine similarity between user attribute vectors) of those
similar users’ weights (or latent factors), however, we did not find any significant
difference in performance compared to the arithmetic mean in the experiments.

8The seed information can also be an artist or a genre, as considered in Ben-Elazar et al. (2017).
9http://www.recsyschallenge.com/2018/

§5.7 Summary 93

5.7 Summary

We study the problem of recommending a set of songs to form playlists in three cold-
start settings: cold playlist, cold user and cold song. We adopt the multi-task learning
paradigm that learns user- and playlist-specific weights as well as shared weights
from user-curated playlists, which allows us to form new personalised playlists for
an existing user, and to produce playlists for a new user, or to extend users’ playlists
with newly released songs. We optimise the parameters by minimising a bipartite
ranking loss that ranks the set of songs in a playlist above songs that are not in it.
An equivalence between bipartite ranking and binary classification further enables
efficient approximation of optimal parameters. Empirical evaluations on two real
playlist datasets demonstrate the effectiveness of the proposed method for cold-start
playlist recommendation. For future work, we would like to explore auxiliary data
sources (e.g., music information shared on social media) and additional features of
songs and users (e.g., lyrics, user profiles) to make better recommendations.

94 Music Playlist Recommendation with Multi-task Learning

Chapter 6

Conclusion

In this chapter, we first summarise the work presented in previous chapters, then
discuss the limitations of the proposed approaches for recommending structured
objects. We end this chapter by presenting a few potential directions for future work.

6.1 Research summary

Efficient recommendation of structured objects has been a challenge for recommender
system research. We developed techniques for recommending structured objects, in
particular, for paths and sets.

We studied the problem of recommending travel trajectories, an instance of path
recommendation, in Chapter 3 and Chapter 4. Learning to rank and route planning
techniques have been utilised to combine POI preferences and transition patterns in
Chapter 3. Our experiments on trajectory datasets in five cities suggested that both
POI preferences and transition patterns were helpful in recommending trajectories,
and taking advantage of both information sources results in better recommendations.

Chapter 4 continued the study of this problem but from a structured prediction
perspective. We extended the structured support vector machines framework and
proposed a structured recommendation approach for suggesting paths. A list vari-
ant of the classic Viterbi algorithm has been employed for efficient learning and
recommendation. Empirically evaluation demonstrated the proposed structured
recommendation approach achieved improvement over previous approaches.

We investigated an example of set recommendation in Chapter 5, i.e., the problem
of recommending a set of songs from a music library to form a new playlist or extend
an existing playlist. A bipartite ranking loss was adopted to encourage songs in
a playlist to be ranked above those that are not in it. We employed the multi-task
learning paradigm to jointly learn the representations of multiple users, and leveraged
an equivalence between bipartite ranking and binary classification to achieve efficient
learning. We compared the proposed set recommendation approach with many

95

96 Conclusion

well-known playlist recommendation methods, and experimental results on two real
playlist datasets suggested our approach based on multi-task learning and bipartite
ranking can recommend better playlists.

Overall, the work on path and set recommendation in this thesis demonstrates
the promising potential of employing machine learning and planning techniques for
recommendation tasks.

6.2 Future work

There are a few limitations of our work on recommending structured objects, which
could motivate a number of potential research work in this area. In particular, the
underlying model of our structured recommendation approach is a sequence model
based on the Markov assumption, which can be violated in many practical scenarios.
Addressing these limitations could result in better path recommendation techniques
that can be more widely useful in practice.

One of the fundamental techniques for set recommendation is bipartite ranking,
in particular, a loss function that encourages any element in the desired set to be
ranked above the highest ranked undesired element. Relying on a single highest
ranked element could result in a recommendation method that is fragile to noise.
Since it is highly likely that data records contain noise in practice, methods that are
robust to noise in data are highly desired. On the other hand, the set recommendation
techniques could be helpful to path recommendation, e.g., a two-stage approach that
first fixes the set of elements then determines a particular order to form a path.

At last, there are many other types of important structures besides path and set,
for example, the tree structure used in natural language processing (Jurafsky and
Martin, 2009) and evolutionary genetics analysis (Charlesworth and Charlesworth,
2010); the graph (i.e., network) structure widely employed in representing interac-
tions between entities in biological and technological systems (Newman, 2010). The
tasks of recommending such structures would likely to bring both challenges and
opportunities to the study of recommendation systems.

Appendix A

Cutting-plane Methods

The goal of cutting-plane methods is to find or localise a point in a convex target set
Z 2 Rn, or determine that Z is empty in some cases. The method does not assume
any direct access to the description of Z, such as the objective or constraint functions
in an optimisation problem, except through a cutting-plane oracle.

The cutting-plane methods work by generating a query point q and pass it to the
oracle, the oracle either tells us that q 2 Z (in which case we are done), or it returns
a hyperplane which separates q from Z. This hyperplane is called a cutting-plane, or
cut, since it eliminates a half-space from our search, as illustrated in Figure A.1. The
procedure is repeated until we find a point in Z or determine that Z is empty. Cutting-
plane methods are also known as localisation methods (Boyd and Vandenberghe, 2008).
Algorithm 5 shows a conceptual description of cutting-plane methods.

A.1 Overview of cutting-plane methods

Consider a convex optimisation problem with M constraints,

min
z

f0(z)

s.t. fi(z) 0, i 2 {1, . . . , M}
(A.1)

where f0, . . . , fM are convex and differentiable, and the target set Z is the optimal (or
#-suboptimal) set. For a query point q, the oracle first checks for its feasibility. If q
is not feasible, this means that at least one constraint in problem (A.1) is violated.
Suppose constraint f j(z) 0 is violated by q, then we have f j(q) > 0. In addition, as
f j(z) is convex and differentiable, we have the following inequality1

f j(z) � f j(q) +r f j(q)>(z � q), (A.2)

1Intuitively, the RHS of (A.2) is a tangent hyperplane at point q, and a convex function lies above its
tangent hyperplanes.

97

98 Cutting-plane Methods

Pk

1

Z q(k+1)

1

ak+1

1

Figure A.1: Illustration of cutting-plane methods. The inequality (i.e., cutting-plane)
a>k+1z bk+1 separates the query point q(k+1) in polyhedron Pk from the target set Z.

and we conclude that if f j(q) +r f j(q)>(z � q) > 0, then f j(z) > 0, which violated
the constraint f j(z) 0 in problem (A.1). Thus, any feasible point should satisfy the
following inequality

f j(q) +r f j(q)>(z � q) 0. (A.3)

Equation (A.3) is called a feasibility cut for problem (A.1), since it cuts away the
half-space {z | f j(q) +r f j(q)>(z � q) > 0} with infeasible points. If more than one
constraint is violated by q, we can generate a feasibility cut for each violated constraint.

On the other hand, if q is feasible, and suppose r f0(q) 6= 0 (otherwise q is optimal
and we are done), by the inequality (A.2) we have

f0(z) > f0(q), if r f0(q)>(z � q) > 0.

In other words, any point that satisfies inequality r f0(q)>(z � q) > 0 has an objective
value larger than f0(q) and hence cannot be optimal. We can exclude these points by
forming the following cutting-plane

r f0(q)>(z � q) 0, (A.4)

which is called an objective cut for problem (A.1), and it cuts out the half-space
{z | r f0(q)>(z � q) > 0} with non-optimal points.

Further, if we keep track of the best objective value for all feasible query points

fbest = f0(qbest) = min{ f0(q(t)) | q(t) is feasible},

§A.2 Methods to generate query points 99

Algorithm 5 The cutting-plane algorithm
1: Given: an initial polyhedron P0 that contains target set Z.
2: k = 0
3: repeat
4: Generate a query point q(k+1) in Pk
5: Query the oracle at q(k+1)

6: if The oracle determines that q(k+1) 2 Z then
7: return q(k+1)

8: else if The oracle returns a cutting-plane a>k+1z bk+1 then
9: Update constraints: Pk+1 = Pk \ {z | a>k+1z bk+1}

10: end if
11: k = k + 1
12: until Convergence or Pk+1 = ∆

since the optimal point has an objective value which is at most fbest, we can cut away
the half-space of points {z | f0(z) > fbest} with an additional (convex) constraint
f0(z) fbest. By inequality (A.2) we have

f0(q) +r f0(q)>(z � q)� fbest 0, (A.5)

which is known as a deep objective cut (Boyd and Vandenberghe, 2008). Here q is a
feasible query point, if q = qbest, the cut (A.5) reduces to the objective cut (A.4).

As a remark, for non-differentiable objective or constraints, the gradients r f j(z), j 2
{0, . . . , M} can generally be replaced with sub-gradients.

A.2 Methods to generate query points

Recall that in cutting-plane methods, we would like to generate a query point q(k+1)

in the current polyhedron Pk such that the cut returned by the oracle can reduce
the size of Pk+1 as much as possible. However, when we query the oracle at point
q(k+1), we do not know in which direction of the generated cut that will be excluded
from the current polyhedron Pk. If we measure the informativeness of the k-th cut
using the volume reduction ratio V(Pk+1)

V(Pk)
, we seek a point q(k+1) such that, no matter

which direction to cut, we can obtain a certain guaranteed volume reduction. Here
we describe four typical methods to generate query points, i.e., the method of Kelley-
Cheney-Goldstein, the Chebyshev centre method, the analytic centre method, and the
centre of gravity method.

100 Cutting-plane Methods

A.2.1 Method of Kelley-Cheney-Goldstein

Given query points q(1), . . . , q(k), the method of Kelley-Cheney-Goldstein generates the
next query point q(k+1) by solving a linear program (LP) (Wulff and Ong, 2013):

min
z, q

q

s.t. q � f0(q(i)) +r f0(q(i))>(z � q(i)), 8i k

A>
k z bk,

(A.6)

where A>
k z bk are the set of constraints that define polyhedron Pk.

Intuitively, the method of Kelley-Cheney-Goldstein greedily chooses the vertex
of the current polyhedron Pk that maximises the convex objective f0(z) as the next
query point. To see this, let

ti(z) = f0(q(i)) +r f0(q(i))>(z � q(i)),

then ti(z) is a hyperplane tangent to f0(z) at point q(i). We can rewrite LP (A.6) as

min
z, q

q

s.t. q � max
z2Pk

ti(z), i 2 {1, . . . , k}.

Further, let z⇤i = argmax
z2Pk

ti(z), i 2 {1, . . . , k}, we can see that z⇤i is either a vertex or

a point lies on an edge of polyhedron Pk (this can be shown intuitively when Pk is
a 2-dimensional region), and the optimal solution of LP (A.6) is z⇤ = argmaxi ti(z⇤i),
it follows that the next query point q(k+1) = z⇤ is either a vertex or a point lies on
an edge of Pk. In fact, if we solve LP (A.6) using the simplex algorithm, the optimal
solution is guaranteed to be a vertex of Pk.

A.2.2 Chebyshev centre method

If we rescale the gradients r f0(q(i)) to unit length in (A.6), it results in finding the
centre of the largest Euclidean ball that lies inside the current polyhedron Pk (Elzinga
and Moore, 1975), in other words, we find the next query point q(k+1) by solving

min
z, q

q

s.t. q � f0(q(i)) +
r f0(q(i))

kr f0(q(i))k

> ⇣
z � q(i)

⌘
, 8i k

A>
k z bk.

(A.7)

§A.2 Methods to generate query points 101

This variant is called the Chebyshev centre method, which has been shown to
possess significantly better convergence properties than the method of Kelley-Cheney-
Goldstein (Goffin and Vial, 2002).

A.2.3 Analytic centre cutting-plane method

Given a linear constraint a>i z bi, we define a slack variable si = bi � a>i z, that is, si

measures how far the current solution is from the constraint. The analytic centre is
defined as the unique maximiser of the function ’i si (Wulff and Ong, 2013), i.e.,

argmax
z

’
i

si = argmax
z

k

Â
i=1

log(bi � a>i z) +
M0

Â
j=1

log(dj � c>j z), (A.8)

where we use M0 linear constraints to represent the initial polyhedron P0 and explicitly
write them as c>j z dj, j 2 {1, . . . , M0}. The unique maximiser of (A.8) can be
efficiently found using Newton iterations (Goffin and Vial, 2002).

Let polyhedron

Pk = {z | c>j z dj, j 2 {1, . . . , M0} and a>i z bi, i 2 {1, . . . , k}},

the analytic centre cutting plane method (ACCPM) chooses the analytic centre of Pk

to query the oracle, which is a good trade-off between simplicity and practical
performance (Boyd and Vandenberghe, 2008).

A.2.4 Centre of gravity or Bayes point method

Assume set C ✓ Rn is bounded and has non-empty interior. The centre of gravity
(CG) of C is defined as

cg(C) =
R
C zdzR
C dz

. (A.9)

The centre of gravity method chooses the point q(k+1) = cg(Pk) to query the
oracle (Louche and Ralaivola, 2015). It turns out that this method has a very good
convergence property in terms of the worst-case volume reduction factor, in particular,
we always have

V(Pk+1)
V(Pk)

 1 � 1
e
⇡ 0.63, (A.10)

in other words, the volume of the localisation polyhedron is reduced by at least
37% at each iteration, and this guarantee is completely independent of all problem
parameters, including the dimension n. However, it is extremely difficult to compute the
centre of gravity of a polyhedron in Rn that is described by a set of linear inequalities,

102 Cutting-plane Methods

which makes this method impractical. Variants that compute an approximate centre
of gravity have been developed, and some of these approximations can be used to
create a practical CG method (Boyd and Vandenberghe, 2008).

Appendix B

Linking Losses for Bipartite
Ranking and Binary Classification

We generalise the results in Ertekin and Rudin (2011) and show a parametric family
of bipartite ranking losses share minimiser(s) with a parametric family of binary
classification losses. Let function f : X ! R be

f (x; w, b) := g(x; w) + b, (B.1)

where x is an input vector, w is a parameter vector, b is a bias parameter, and
real-valued function g(x; w) is bounded and is differentiable with respect to w.

Let D = S+ [S� denote a binary dataset with a set of positive instances S+ as
well as a set of negative instances S�. Suppose a, b, g, C 2 R+ are finite positive
numbers, we define Rbr be the following parametric family of bipartite ranking risk:

Rbr(f ,D) =

2

4 Â
x+2S+

"

Â
x�2S�

e�b(f (x+;w,b)� f (x�;w,b))

a
b

3

5
g

. (B.2)

Note that Rbr is independent of b, since f (x+; w, b)� f (x�; w, b)= g(x+; w)� g(x�; w).
Further, let Rbc be the following parametric family of binary classification risk:

Rbc(f ,D) =
1
a Â

x+2S+

e�a f (x+;w,b) +
C
b Â

x�2S�

eb f (x�;w,b). (B.3)

Theorem 1 presents the relation between Rbr and Rbc.

Theorem 1. Suppose minimiser(s) of the two risks Rbr(f ,D) and Rbc(f ,D) exist, given

w⇤ and b⇤ =
1

a + b

ln Â

x+2S+

exp(�ag(x+; w⇤))� ln Â
x�2S�

exp(bg(x�; w⇤))� ln C

!
,

if w⇤ 2 argmin
w

Rbr(f ,D), then (w⇤, b⇤) 2 argmin
w,b

Rbc(f ,D). In addition, if (w⇤, b̃) 2

103

104 Linking Losses for Bipartite Ranking and Binary Classification

argmin
w,b

Rbc(f ,D), then w⇤ 2 argmin
w

Rbr(f ,D) and b̃ = b⇤.

Proof. Let s(w) = Â
x+2S+

exp(�ag(x+; w)) and t(w) = Â
x�2S�

exp(bg(x�; w)), we note

that Rbr(f ,D) = [s(w)]g [t(w)]
ag
b , and b⇤ =

1
a + b

ln
s(w⇤)

t(w⇤)C
.

First, we compute derivatives of Rbr and Rbc with respect to the parameters.

∂ Rbc

∂ b
=

�a

a Â
x+2S+

exp(�a(g(x+; w) + b)) +
bC
b Â

x�2S�

exp(b(g(x�; w) + b))

= � exp(�ab)s(w) + C exp(bb)t(w).
(B.4)

∂ Rbr

∂ wk
= g [s(w)]g�1

"

Â
x+2S+

exp(�ag(x+; w))(�a)
∂ g(x+; w)

∂ wk

#

[t(w)]
ag
b

+ [s(w)]g
ag

b
[t(w)]

ag
b �1

"

Â
x�2S�

exp(bg(x�; w))b
∂ g(x�; w)

∂ wk

#

= ag [s(w)]g�1 [t(w)]
ag
b �1

"
�t(w) Â

x+2S+

exp(�ag(x+; w))
∂ g(x+; w)

∂ wk

+s(w) Â
x�2S�

exp(bg(x�; w))
∂ g(x�; w)

∂ wk

#
,

8k 2 {1, . . . , d}.

(B.5)

∂ Rbc

∂ wk
=

�a

a Â
x+2S+

exp(�a(g(x+; w) + b))
∂ g(x+; w)

∂ wk

+
bC
b Â

x�2S�

exp(b(g(x�; w) + b))
∂ g(x�; w)

∂ wk

= � exp(�ab) Â
x+2S+

exp(�ag(x+; w))
∂ g(x+; w)

∂ wk

+ C exp(bb) Â
x�2S�

exp(bg(x�; w))
∂ g(x�; w)

∂ wk

= � exp(�ab)

"

Â
x+2S+

exp(�ag(x+; w))
∂ g(x+; w)

∂ wk

�C exp((a + b)b) Â
x�2S�

exp(bg(x�; w))
∂ g(x�; w)

∂ wk

#

8k 2 {1, . . . , d}.

(B.6)

105

Let w⇤ 2 argmin
w

Rbr, then 0 =
∂ Rbr

∂ wk

����
w=w⇤

, 8k 2 {1, . . . , d}, by Eq. (B.5), we have

t(w) Â
x+2S+

exp(�ag(x+; w))
∂ g(x+; w)

∂ wk

����
w=w⇤

= s(w) Â
x�2S�

exp(bg(x�; w))
∂ g(x�; w)

∂ wk

����
w=w⇤

, 8k 2 {1, . . . , d}.
(B.7)

Note that s(w⇤) = C exp((a + b)b⇤)t(w⇤), by Eq. (B.4) we have

∂ Rbc

∂ b

����
w=w⇤,b=b⇤

= � exp(�ab⇤)s(w⇤) + C exp(bb⇤)t(w⇤)

= � exp(�ab⇤)C exp((a + b)b⇤)t(w⇤) + C exp(bb⇤)t(w⇤)

= 0.

(B.8)

Further, note that exp((a + b)b⇤) = s(w⇤)
t(w⇤)C , by Eq. (B.7) we have

C exp((a + b)b⇤) Â
x�2S�

exp(bg(x�; w))
∂ g(x�; w)

∂ wk

����
w=w⇤

=
s(w)
t(w) Â

x�2S�

exp(bg(x�; w))
∂ g(x�; w)

∂ wk

����
w=w⇤

= Â
x+2S+

exp(�ag(x+; w))
∂ g(x+; w)

∂ wk

����
w=w⇤

, 8k 2 {1, . . . , d}.

(B.9)

By Eq. (B.6) and (B.9), we have

∂ Rbc

∂ wk

����
w=w⇤,b=b⇤

= 0, 8k 2 {1, . . . , d}. (B.10)

Lastly, by Eq. (B.8) and (B.10), we have (w⇤, b⇤) 2 argminw,b Rbc(f ,D).

On the other hand, suppose (w⇤, b̃) 2 argminw,b Rbc(f ,D), by Eq. (B.4) we have

0 =
∂ Rbc

∂ b

����
w=w⇤,b=b̃

= � exp(�ab̃)s(w⇤) + C exp(bb̃)t(w⇤),

or equivalently

b̃ =
1

a + b
ln

s(w⇤)
t(w⇤)C

= b⇤. (B.11)

106 Linking Losses for Bipartite Ranking and Binary Classification

In addition, we have 0 =
∂ Rbc

∂ wk

����
w=w⇤,b=b⇤

, and by Eq. (B.6)

Â
x+2S+

exp(�ag(x+; w))
∂ g(x+; w)

∂ wk

����
w=w⇤

= C exp((a + b)b⇤) Â
x�2S�

exp(bg(x�; w))
∂ g(x�; w)

∂ wk

����
w=w⇤

=
s(w)
t(w) Â

x�2S�

exp(bg(x�; w))
∂ g(x�; w)

∂ wk

����
w=w⇤

, 8k 2 {1, . . . , d}.

Thus,

s(w) Â
x�2S�

exp(bg(x�; w))
∂ g(x�; w)

∂ wk

����
w=w⇤

= t(w) Â
x+2S+

exp(�ag(x+; w))
∂ g(x+; w)

∂ wk

����
w=w⇤

, 8k 2 {1, . . . , d}.
(B.12)

By Eq. (B.6) and (B.12), we have

∂ Rbr

∂ wk

����
w=w⇤

= 0, 8k 2 {1, . . . , d}. (B.13)

Finally, by Eq. (B.13), w⇤ 2 argmin
w

Rbr(f ,D).

Appendix C

Time Constraints for Travel
Trajectory Recommendation

We have discussed how to adapt our proposed travel trajectory recommendation
methods in Chapters 3 and 4 to incorporate time constraints such as the time budget
for a desired trajectory. It turns out we can further extend these methods to incorporate
time-of-the-day constraints on POIs (i.e., a POI shall be visited in its available time
frame in a day). Here, we detail this approach formally.

Let M be the number of POIs in a city, and si, ei be the earliest and latest available
time of POI pi, i 2 {1, . . . , M} in a day, respectively, in other words, one can only visit
pi in the time frame [si, ei]. Further, let ci denote the time to be spent at POI pi and tij

be the time to travel from pi to pj, and assume ci (ei � si).
Suppose a user would like to start travelling at time T0, and assuming a recom-

mended trajectory will not span more than one day. Given a query q = (ps, pe, T)
where ps is the start place and pe the end location, and we require the total travelling
time shall not exceed the time budget T. Below, we detail an approach to incorporate
these constraints in an ILP formulation similar to the one presented in Chapter 3.

Let zmij, i, j 2 {1, . . . , M}, m 2 {2, . . . , M} be binary variables, and zmij = 1
indicates that pi is the (m � 1)-th visited POI and pj the m-th visited POI in a
suggested trajectory. First, we shall avoid self-loops at any POI,

M

Â
m=2

M

Â
i=1

zmii = 0. (C.1)

For brevity, POIs are rearranged such that p1 = ps and pM = pe. Therefore, we can
restrict that p1 is the first POI to be visited via

M

Â
m=2

M

Â
i=1

zmi1 = 0, (No in-coming transitions)

M

Â
j=1

z21j = 1. (One out-going transition when m = 2)
(C.2)

107

108 Time Constraints for Travel Trajectory Recommendation

We further constrain that pM is the last POI to be visited via

M

Â
m=2

M

Â
i=1

zmiM = 1, (One in-coming transition only)

M

Â
m=2

M

Â
j=1

zmMj = 0. (No out-going transitions)
(C.3)

In addition, each POI shall be visited at most once

M

Â
m=2

M

Â
i=1

zmik =
M

Â
m=2

M

Â
j=1

zmkj 1, 8k 2 {2, . . . , M � 1}. (C.4)

Note that the definition of variables zmij implies that we shall visit at most one
POI at step m

M

Â
i=1

M

Â
j=1

zmij 1, 8m 2 {2, . . . , M} (C.5)

and further, the step m � 1 and step m in a desired trajectory should be coherent, i.e.,

M

Â
i=1

zm�1,i,k =
M

Â
j=1

zmkj, 8m 2 {3, . . . , M}, 8k 2 {2, . . . , M � 1}. (C.6)

Suppose s1 � T0, and assume that POI pk is the m0-th visited POI in a desired
trajectory, where k 2 {2, . . . , M} and m0 2 {2, . . . , M}, we have ÂM

i=1 zm0ik = 1. The
time before visiting pk can be represented as

Tk = T0 +
c1

2
+

m0

Â
m=2

M

Â
i=1

M

Â
j=1

zmij

✓
tij +

ci
2
+

cj

2

◆
� ck

2
,

k 2 {2, . . . , M}, m0 2 {2, . . . , M}.

(C.7)

To account for the time-of-the-day constraints on pk, we have sk Tk ek. To
create a linear constraint that incorporates sk Tk when ÂM

i=1 zm0ik = 1, we first
rearrange sk Tk into an inequality

m0

Â
m=2

M

Â
i=1

M

Â
j=1

zmij
�
2tij + ci + cj

�
� 2(sk � T0) + ck � c1, (C.8)

we can then multiply the RHS of (C.8) by ÂM
i=1 zm0ik, which results in

m0

Â
m=2

M

Â
i=1

M

Â
j=1

zmij
�
2tij + ci + cj

�
� [2(sk � T0) + ck � c1]

M

Â
i=1

zm0ik. (C.9)

109

Note that ÂM
i=1 zm0ik 2 {0, 1} by constraint (C.5), and the linear constraint (C.9) is

identical to inequality (C.8) when ÂM
i=1 zm0ik = 1. If ÂM

i=1 zm0ik = 0, inequality (C.9)
degrades to a trivial constraint, since the LHS of (C.9) is non-negative. Similarly, we
can rearrange Tk ek into an inequality

m0

Â
m=2

M

Â
i=1

M

Â
j=1

zmij
�
2tij + ci + cj

�
 2(ek � T0) + ck � c1, (C.10)

and observe that if we replace the RHS of (C.10) with the following linear expression

[2(ek � T0) + ck � c1]
M

Â
i=1

zm0ik + C ·

1 �
M

Â
i=1

zm0ik

!
,

where constant C 2 R is a big number. We thus have a linear constraint

m0

Â
m=2

M

Â
i=1

M

Â
j=1

zmij
�
2tij + ci + cj

�
 [2(ek � T0) + ck � c1]

M

Â
i=1

zm0ik + C ·

1 �
M

Â
i=1

zm0ik

!
.

(C.11)

Note that constraint (C.11) is identical to inequality (C.10) when ÂM
i=1 zm0ik = 1,

and if ÂM
i=1 zm0ik = 0, the RHS of (C.11) becomes C. If C is big enough, (C.11) degrades

to a trivial constraint.

We can summarise the above discussion by the following ILP formulation. It
optimises the linear objective f (z, u) and also takes care of the time budget constraint
(i.e., TM + cM � T0 T) as well as avoiding sub-tours (Miller et al., 1960).

max
z,u

f (z, u)

s.t. zmij 2 {0, 1}, 8i, j 2 {1, . . . , M}, 8m 2 {2, . . . , M}
M

Â
m=2

M

Â
i=1

zmii = 0,
M

Â
i=1

M

Â
j=1

zmij 1, 8m 2 {2, . . . , M}

M

Â
m=2

M

Â
i=1

zmi1 = 0,
M

Â
j=1

z21j = 1,

M

Â
m=2

M

Â
i=1

zmiM = 1,
M

Â
m=2

M

Â
j=1

zmMj = 0,

M

Â
m=2

M

Â
i=1

zmik =
M

Â
m=2

M

Â
j=1

zmkj 1, 8k 2 {2, . . . , M � 1}

M

Â
i=1

zm�1,i,k =
M

Â
j=1

zmkj, 8m 2 {3, . . . , M}, 8k 2 {2, . . . , M � 1}

110 Time Constraints for Travel Trajectory Recommendation

m0

Â
m=2

M

Â
i=1

M

Â
j=1

zmij
�
2tij + ci + cj

�
� [2(sk � T0) + ck � c1]

M

Â
i=1

zm0ik,

8k 2 {2, . . . , M}, 8m0 2 {2, . . . , M}
m0

Â
m=2

M

Â
i=1

M

Â
j=1

zmij
�
2tij + ci + cj

�
 [2(ek � T0) + ck � c1]

M

Â
i=1

zm0ik + C

1 �

M

Â
i=1

zm0ik

!
,

8k 2 {2, . . . , M}, 8m0 2 {2, . . . , M}
M

Â
m=2

M

Â
i=1

M

Â
j=1

zmij
�
2tij + ci + cj

�
 2T � cM � c1,

ui 2 Z, 8i 2 {1, . . . , M}

ui � uj + 1 (M � 1)

1 �

M

Â
m=2

zmij

!
, 8i, j 2 {1, . . . , M}.

One example of the objective function is

f (z, u) =
M

Â
m=2

M�1

Â
i=1

M

Â
j=2

zmij log P(pj|pi),

which is an extension of (3.5) that optimises the transition likelihood of the suggested
trajectory.

Similarly, the above ILP formulation can be adapted to the setting in Chapter 4,
where a query specifies a start location ps and the time budget T. However, the end
point of a desired trajectory needs particular care.

Lastly, we want to remark that the number of decision variables in the ILP (3.5)-
(3.10) is on the order of O(M2) while that of the ILP formulation here is on the order
of O(M3), and the latter could be significantly harder to optimise in general.

Appendix D

Details of Travel Trajectory
Recommendation Experiments

D.1 Features

D.1.1 POI-query features

Table D.1 presents the features used to rank POIs with respect to a query. If the
query includes the start and end points as well as the required number of POIs, i.e.,
(ps, pe, L), all features in Table D.1 are used to represent a POI-query pair; otherwise,
if no end point is provided, i.e., a query is described as the start point ps and trajectory
length L, all features related to the end point in Table D.1 will be excluded.

The POI-query features are scaled to range [�1.0, 1.0] using the approach that
employed by libsvm,1 i.e., fitting a linear function f (x) = ax + b for feature x such
that the maximum value of x maps to 1.0 and the minimum value maps to �1.0.

D.1.2 Transition features

We describe transitions among POIs using transition probabilities, in particular, we
compute the POI-POI transition probabilities by first grouping POIs according to
many POI features, as listed in Table D.2. For each feature in Table D.2, if the value
of the feature is not categorical, it is discretised as described in Section 3.4, we then
compute a transition matrix for the feature using maximum likelihood estimation, i.e.,
counting the number of POI transitions between the (discretised) feature values then
normalising each row, while taking care of zeros by adding a small number e (e.g.,
e = 1) to each count before normalisation.

In Chapter 3, the POI-POI transition matrix is computed by taking the Kronecker
product of the transition matrices for the individual features, and then updating

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/

111

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

112 Details of Travel Trajectory Recommendation Experiments

Table D.1: Features of POI p with respect to query q = (ps, pe, L).

Feature Description

category one-hot encoding of the category of p
neighbourhood one-hot encoding of the POI cluster that p resides in
popularity logarithm of POI popularity of p
nVisit logarithm of the total number of visits by all users at p
avgDuration logarithm of the average visit duration at p
trajLen trajectory length L, i.e., the number of POIs required
sameCatStart 1 if the category of p is the same as that of ps, �1 otherwise
sameNeighbourhoodStart 1 if p resides in the same POI cluster as ps, �1 otherwise
distStart distance between p and ps, calculated using the Haversine formula
diffPopStart real-valued difference in POI popularity of p from that of ps
diffNVisitStart real-valued difference in the total number of visits at p from that at ps
diffDurationStart real-valued difference in average duration at p from that at ps

sameCatEnd 1 if the category of p is the same as that of pe, �1 otherwise
sameNeighbourhoodEnd 1 if p resides in the same POI cluster as pe, �1 otherwise
distEnd distance between p and pe, calculated using the Haversine formula
diffPopEnd real-valued difference in POI popularity of p from that of pe
diffNVisitEnd real-valued difference in the total number of visits at p from that at pe
diffDurationEnd real-valued difference in average visit duration at p from that at pe

Table D.2: POI features used to capture POI-POI transitions.

Feature Description

category category of a POI
neighbourhood the cluster that a POI resides in
popularity (discretised) popularity of a POI
nVisit (discretised) total number of visits at a POI
avgDuration (discretised) average visit duration at a POI

it with three constraints (Section 3.4), which is based on our assumption that the
transition probability from POI pi to POI pj can be factorised into the product of the
transition probabilities between pairs of individual POI features, which are shown in
Table D.2. In Chapter 4, the transition probabilities for each feature in Table D.2 are
employed as pairwise features between consecutive POIs in a trajectory.

D.2 Evaluation metrics

Metrics used to evaluate the performance of trajectory recommendation methods
including F1 score on points (Lim et al., 2015), F1 score on pairs (i.e., pairs-F1) (Chen
et al., 2016), and the well-known rank correlation Kendall’s t (Agresti, 2010).

§D.2 Evaluation metrics 113

D.2.1 F1 score on points

F1 score on points is the harmonic mean of precision and recall of POIs in trajectory,

F1(y, ŷ) =
2PpointRpoint

Ppoint + Rpoint
,

where Ppoint, Rpoint are respectively the precision and recall for points in ŷ and y,

Ppoint =
|Py \ Pŷ|

|Pŷ|
, Rpoint =

|Py \ Pŷ|
|Py|

.

A perfect F1 (i.e., F1 = 1) means the set of POIs in the recommended trajectory are
exactly the same as the set of POIs in the ground truth, and F1 = 0 means that none
of the POIs in the real trajectory was recommended.

While F1 score on points is good at measuring whether POIs are correctly rec-
ommended, it ignores the visiting order between POIs. If |ŷ| = |y|, this metric is
the same as the unordered Hamming loss, i.e., Hamming loss between two binary
indicator vectors of size |P|.

D.2.2 F1 score on pairs

The F1 score on pairs (i.e., pairs-F1) takes into account both the point identity and the
visiting orders in a trajectory. This is done by measuring the F1 score of every pair of
ordered POIs, whether they are adjacent or not in a trajectory,

pairs-F1(y, ŷ) =
2PpairRpair

Ppair + Rpair
,

where Ppair and Rpair are respectively the precision and recall for POI pairs in ŷ and y,

Ppair =
Nc

|Pŷ|(|Pŷ|� 1)/2
, Rpair =

Nc

|Py|(|Py|� 1)/2
,

and Nc is the number of ordered POI pairs (pi, pj) that appear in both the ground-truth
and the recommended trajectories, i.e.,

Nc = |{(pi, pj) : pi �y pj, pi, pj 2 Py} \ {(pi, pj) : pi �ŷ pj, pi, pj 2 Pŷ}|,

where pi �y pj denotes that POI pi was visited before pj in trajectory y. We define
pairs-F1 = 0 when Nc = 0.

Pairs-F1 takes values between 0 and 1. A perfect pairs-F1 (1.0) is achieved if
and only if both the POIs and their visiting orders in the recommended trajectory

114 Details of Travel Trajectory Recommendation Experiments

are exactly the same as those in the ground truth. Pairs-F1 = 0 means none of the
recommended POI pairs was actually visited in the real trajectory.

D.2.3 Kendall’s t with ties

Alternatively, we can cast a trajectory y = y1:L as a ranking of POIs in P , where yj

has a rank |P|� j + 1 and any other POI p /2 y has a rank 0 (0 is an arbitrary choice),
then we can make use of ranking evaluation metrics such as Kendall’s t, while taking
care of ties in ranks. In particular, given a prediction ŷ = ŷ1:L and ground truth
y = y1:L, we produce two ranks for y and ŷ with respect to a specific ordering of POIs
(p1, . . . , p|P|):

ri =
l

Â
j=1

(|P|� j + 1)Jpi = yjK, i = 1, . . . , |P|

r̂i =
l

Â
j=1

(|P|� j + 1)Jpi = ŷjK, i = 1, . . . , |P|

where POIs not in y will have a rank of 0. Then we compute the following metrics:

• the number of concordant pairs C = 1
2 Âi,j

�
Jri < rjKJr̂i < r̂jK+ Jri > rjKJr̂i > r̂jK

�

• the number of discordant pairs D = 1
2 Âi,j

�
Jri < rjKJr̂i > r̂jK+ Jri > rjKJr̂i < r̂jK

�

• the number of ties in ground truth y: Ty = 1
2 Âi 6=jJri = rjK = 1

2 (|P|� L) (|P|� L � 1)

• the number of ties in prediction ŷ: Tŷ = 1
2 Âi 6=jJr̂i = r̂jK = 1

2 (|P|� L) (|P|� L � 1)

• the number of ties in both y and ŷ: Ty,ŷ = 1
2 Âi 6=jJri = rjKJr̂i = r̂jK

Kendall’s t (version b) (Agresti, 2010) is defined as

tb(y, ŷ) =
C � Dp

(C + D + T)(C + D + U)
,

where T = Ty � Ty,ŷ and U = Tŷ � Ty,ŷ.

D.3 Additional empirical results

The performance of baselines and structured recommendation methods for top-k
(k = 1, 3, 5, 10) recommendations are shown in Tables D.3, D.4, D.5 and D.6. Higher
scores are better, The best method for each dataset (i.e., each row in table) is shown in
bold, the second best is shown in italic.

§D.3 Additional empirical results 115

Table D.3: Performance of trajectory recommendation on best of top-1.

Random Popularity PoiRank Markov SP SPpath SR SRpath

F1 score on points

Osaka .459 ± .027 .601 ± .031 .678 ± .037 .630 ± .034 .555 ± .034 .558 ± .036 .638 ± .039 .645 ± .040
Glasgow .478 ± .027 .681 ± .032 .764 ± .027 .654 ± .027 .604 ± .026 .653 ± .031 .741 ± .028 .743 ± .028
Toronto .461 ± .020 .671 ± .021 .756 ± .021 .676 ± .021 .594 ± .023 .623 ± .023 .753 ± .023 .757 ± .022
Edinburgh .495 ± .016 .730 ± .017 .707 ± .017 .515 ± .020 .715 ± .017 N/A .718 ± .017 N/A

Melbourne .344 ± .009 .512 ± .013 .508 ± .013 .362 ± .012 .494 ± .013 N/A .510 ± .013 N/A

F1 score on pairs

Osaka .104 ± .037 .281 ± .051 .428 ± .059 .331 ± .053 .243 ± .052 .254 ± .055 .375 ± .059 .401 ± .060
Glasgow .154 ± .035 .426 ± .051 .545 ± .046 .368 ± .045 .289 ± .042 .389 ± .048 .506 ± .048 .516 ± .048
Toronto .143 ± .025 .381 ± .034 .503 ± .036 .391 ± .034 .299 ± .033 .340 ± .035 .530 ± .037 .533 ± .037
Edinburgh .177 ± .019 .451 ± .026 .426 ± .026 .250 ± .026 .435 ± .027 N/A .428 ± .026 N/A

Melbourne .034 ± .007 .192 ± .017 .198 ± .017 .065 ± .011 .176 ± .016 N/A .202 ± .018 N/A

Kendall’s t

Osaka .420 ± .030 .566 ± .034 .644 ± .040 .600 ± .036 .525 ± .037 .525 ± .039 .608 ± .042 .613 ± .044
Glasgow .430 ± .031 .644 ± .036 .733 ± .030 .623 ± .030 .564 ± .029 .615 ± .034 .708 ± .031 .712 ± .031
Toronto .394 ± .025 .626 ± .023 .714 ± .024 .629 ± .023 .543 ± .026 .572 ± .026 .714 ± .026 .717 ± .026
Edinburgh .394 ± .020 .663 ± .020 .645 ± .021 .580 ± .019 .642 ± .021 N/A .648 ± .020 N/A

Melbourne .315 ± .011 .489 ± .013 .495 ± .014 .388 ± .011 .469 ± .014 N/A .487 ± .014 N/A

Table D.4: Performance of trajectory recommendation on best of top-3.

Random Popularity PoiRank Markov SP SPpath SR SRpath

F1 score on points

Osaka .587 ± .034 .691 ± .035 .750 ± .039 .740 ± .037 .656 ± .040 .724 ± .037 .735 ± .038 .723 ± .039
Glasgow .598 ± .028 .722 ± .033 .803 ± .027 .711 ± .029 .698 ± .030 .716 ± .029 .825 ± .026 .829 ± .026
Toronto .577 ± .022 .704 ± .023 .776 ± .021 .748 ± .021 .674 ± .023 .693 ± .023 .784 ± .022 .780 ± .021
Edinburgh .590 ± .017 .745 ± .017 .732 ± .017 .632 ± .021 .754 ± .017 N/A .778 ± .016 N/A

Melbourne .406 ± .011 .545 ± .014 .544 ± .015 .426 ± .015 .577 ± .016 N/A .568 ± .015 N/A

F1 score on pairs

Osaka .288 ± .055 .448 ± .058 .578 ± .060 .538 ± .060 .425 ± .062 .511 ± .059 .549 ± .060 .520 ± .059
Glasgow .300 ± .043 .524 ± .053 .625 ± .046 .465 ± .048 .464 ± .049 .481 ± .048 .666 ± .045 .678 ± .045
Toronto .281 ± .032 .473 ± .036 .572 ± .035 .517 ± .035 .429 ± .037 .461 ± .037 .592 ± .036 .583 ± .036
Edinburgh .301 ± .025 .502 ± .027 .507 ± .027 .402 ± .029 .504 ± .027 N/A .536 ± .026 N/A

Melbourne .090 ± .012 .259 ± .020 .270 ± .021 .159 ± .018 .315 ± .022 N/A .297 ± .021 N/A

Kendall’s t

Osaka .556 ± .037 .666 ± .039 .726 ± .042 .718 ± .039 .630 ± .044 .698 ± .040 .711 ± .042 .697 ± .042
Glasgow .563 ± .031 .693 ± .036 .781 ± .030 .684 ± .032 .666 ± .033 .688 ± .032 .803 ± .029 .808 ± .030
Toronto .521 ± .026 .670 ± .025 .746 ± .023 .712 ± .023 .629 ± .027 .650 ± .027 .753 ± .025 .749 ± .024
Edinburgh .504 ± .021 .686 ± .020 .680 ± .021 .684 ± .019 .690 ± .020 N/A .721 ± .019 N/A

Melbourne .379 ± .012 .524 ± .015 .532 ± .015 .459 ± .014 .555 ± .017 N/A .546 ± .016 N/A

The performance of baselines and structured recommendation methods for short
(length < 5) and long (length � 5) trajectories with top-k (k 2 {1, . . . , 10}) recom-
mendations on Osaka are shown in Figures D.1, D.2 and D.3; the performance on
Toronto are shown in Figures D.4, D.5 and D.6; the performance on Edinburgh are
shown in Figures D.7, D.8 and D.9; and the performance on Melbourne are shown
in Figures D.10, D.11 and D.12.

116 Details of Travel Trajectory Recommendation Experiments

Table D.5: Performance of trajectory recommendation on best of top-5.

Random Popularity PoiRank Markov SP SPpath SR SRpath

F1 score on points

Osaka .646 ± .035 .699 ± .034 .772 ± .037 .789 ± .033 .700 ± .041 .757 ± .036 .761 ± .036 .751 ± .037
Glasgow .655 ± .026 .754 ± .033 .821 ± .026 .736 ± .029 .755 ± .030 .770 ± .027 .847 ± .024 .850 ± .025
Toronto .624 ± .022 .719 ± .023 .781 ± .021 .783 ± .021 .705 ± .023 .724 ± .022 .808 ± .021 .798 ± .021
Edinburgh .646 ± .016 .747 ± .017 .739 ± .017 .655 ± .021 .774 ± .017 N/A .788 ± .016 N/A

Melbourne .450 ± .012 .556 ± .015 .570 ± .016 .451 ± .015 .598 ± .016 N/A .591 ± .016 N/A

F1 score on pairs

Osaka .375 ± .058 .459 ± .057 .607 ± .058 .621 ± .055 .507 ± .064 .568 ± .058 .584 ± .058 .575 ± .058
Glasgow .377 ± .044 .590 ± .052 .670 ± .045 .507 ± .048 .563 ± .048 .573 ± .047 .701 ± .043 .715 ± .044
Toronto .343 ± .034 .500 ± .036 .590 ± .034 .581 ± .034 .483 ± .037 .509 ± .037 .624 ± .035 .609 ± .035
Edinburgh .364 ± .025 .512 ± .027 .527 ± .027 .439 ± .029 .540 ± .027 N/A .561 ± .026 N/A

Melbourne .137 ± .015 .281 ± .021 .320 ± .022 .187 ± .019 .348 ± .022 N/A .337 ± .022 N/A

Kendall’s t

Osaka .618 ± .038 .674 ± .038 .750 ± .040 .769 ± .036 .678 ± .045 .735 ± .039 .741 ± .039 .729 ± .041
Glasgow .623 ± .029 .727 ± .037 .801 ± .030 .712 ± .032 .727 ± .033 .743 ± .031 .826 ± .028 .832 ± .028
Toronto .574 ± .025 .687 ± .025 .754 ± .023 .749 ± .024 .662 ± .027 .683 ± .026 .778 ± .023 .769 ± .024
Edinburgh .562 ± .020 .693 ± .020 .692 ± .021 .719 ± .018 .714 ± .020 N/A .734 ± .019 N/A

Melbourne .425 ± .013 .535 ± .016 .560 ± .016 .485 ± .014 .578 ± .017 N/A .571 ± .017 N/A

Table D.6: Performance of trajectory recommendation on best of top-10.

Random Popularity PoiRank Markov SP SPpath SR SRpath

F1 score on points

Osaka .703 ± .032 .786 ± .034 .804 ± .034 .840 ± .029 .770 ± .039 .809 ± .033 .793 ± .033 .820 ± .031
Glasgow .731 ± .026 .771 ± .033 .847 ± .025 .800 ± .028 .810 ± .027 .807 ± .026 .883 ± .023 .868 ± .023
Toronto .696 ± .021 .746 ± .022 .807 ± .020 .819 ± .019 .733 ± .023 .755 ± .022 .828 ± .019 .823 ± .020
Edinburgh .689 ± .014 .768 ± .017 .754 ± .017 .679 ± .021 .796 ± .016 N/A .809 ± .015 N/A

Melbourne .511 ± .012 .587 ± .016 .609 ± .017 .508 ± .017 .622 ± .016 N/A .628 ± .016 N/A

F1 score on pairs

Osaka .451 ± .057 .626 ± .055 .661 ± .056 .693 ± .051 .620 ± .061 .664 ± .055 .637 ± .055 .671 ± .053
Glasgow .495 ± .046 .623 ± .051 .726 ± .043 .635 ± .048 .658 ± .046 .648 ± .045 .770 ± .039 .746 ± .041
Toronto .438 ± .034 .546 ± .036 .646 ± .034 .644 ± .033 .530 ± .037 .552 ± .036 .660 ± .033 .656 ± .034
Edinburgh .411 ± .024 .561 ± .027 .557 ± .027 .472 ± .030 .588 ± .027 N/A .608 ± .026 N/A

Melbourne .205 ± .018 .341 ± .023 .388 ± .023 .268 ± .023 .390 ± .023 N/A .403 ± .023 N/A

Kendall’s t

Osaka .685 ± .035 .768 ± .038 .787 ± .037 .824 ± .031 .749 ± .043 .791 ± .036 .777 ± .036 .803 ± .034
Glasgow .703 ± .029 .748 ± .036 .830 ± .029 .781 ± .031 .790 ± .030 .787 ± .029 .868 ± .026 .853 ± .026
Toronto .652 ± .024 .719 ± .024 .784 ± .023 .789 ± .022 .697 ± .027 .719 ± .026 .802 ± .022 .797 ± .022
Edinburgh .616 ± .018 .718 ± .020 .712 ± .020 .739 ± .018 .741 ± .020 N/A .761 ± .018 N/A

Melbourne .488 ± .013 .567 ± .017 .601 ± .017 .541 ± .016 .602 ± .017 N/A .610 ± .017 N/A

§D.3 Additional empirical results 117

(a) Short Trajectories (b) Long Trajectories

Figure D.1: F1 score on points over k=1 :10 for trajectories on Osaka.

(a) Short Trajectories (b) Long Trajectories

Figure D.2: F1 score on pairs over k=1 :10 for trajectories on Osaka.

(a) Short Trajectories (b) Long Trajectories

Figure D.3: Kendall’s t over k=1 :10 for trajectories on Osaka.

118 Details of Travel Trajectory Recommendation Experiments

(a) Short Trajectories (b) Long Trajectories

Figure D.4: F1 score on points over k=1 :10 for trajectories on Toronto.

(a) Short Trajectories (b) Long Trajectories

Figure D.5: F1 score on pairs over k=1 :10 for trajectories on Toronto.

(a) Short Trajectories (b) Long Trajectories

Figure D.6: Kendall’s t over k=1 :10 for trajectories on Toronto.

§D.3 Additional empirical results 119

(a) Short Trajectories (b) Long Trajectories

Figure D.7: F1 score on points over k=1 :10 for trajectories on Edinburgh.

(a) Short Trajectories (b) Long Trajectories

Figure D.8: F1 score on pairs over k=1 :10 for trajectories on Edinburgh.

(a) Short Trajectories (b) Long Trajectories

Figure D.9: Kendall’s t over k=1 :10 for trajectories on Edinburgh.

120 Details of Travel Trajectory Recommendation Experiments

(a) Short Trajectories (b) Long Trajectories

Figure D.10: F1 score on points over k=1 :10 for trajectories on Melbourne.

(a) Short Trajectories (b) Long Trajectories

Figure D.11: F1 score on pairs over k=1 :10 for trajectories on Melbourne.

(a) Short Trajectories (b) Long Trajectories

Figure D.12: Kendall’s t over k=1 :10 for trajectories on Melbourne.

Appendix E

Proof of Lemma 1

First, we approximate the empirical risk Rrank
q (with the exponential surrogate loss)

as follows:

Rrank
q (f ,D) =

1
N

U

Â
u=1

Â
i2Pu

1
Mi

�
Â

m0 :yi
m0=0

exp
✓
� min

m:yi
m=1

f (m, u, i) + f (m0, u, i)
◆

=
1
N

U

Â
u=1

Â
i2Pu

1
Mi

�
exp

✓
� min

m:yi
m=1

f (m, u, i)
◆

Â
m0 :yi

m0=0

exp
�

f (m0, u, i)
�

⇡ 1
N

U

Â
u=1

Â
i2Pu

1
Mi

�
exp

0

@ 1
p

log Â
m:yi

m=1
e�p f (m,u,i)

1

A Â
m0 :yi

m0=0

exp
�

f (m0, u, i)
�

=
1
N

U

Â
u=1

Â
i2Pu

1
Mi

�

0

@ Â
m:yi

m=1
e�p f (m,u,i)

1

A

1
p

Â
m0 :yi

m0=0

e f (m0,u,i)

=
1
N

U

Â
u=1

Â
i2Pu

1
Mi

�

0

@

0

@ Â
m0 :yi

m0=0

e f (m0,u,i)

1

A
p

Â
m:yi

m=1
e�p f (m,u,i)

1

A

1
p

=
1
N

U

Â
u=1

Â
i2Pu

1
Mi

�

0

@ Â
m:yi

m=1
e�p f (m,u,i)

0

@ Â
m0 :yi

m0=0

e f (m0,u,i)

1

A
p1

A

1
p

=
1
N

U

Â
u=1

Â
i2Pu

1
Mi

�

0

@ Â
m:yi

m=1

0

@ Â
m0 :yi

m0=0

e�(f (m,u,i)� f (m0,u,i))

1

A
p1

A

1
p

= eRrank
q (f ,D).

Recall that Rmtc
q is defined as

Rmtc
q (f ,D) =

1
N

U

Â
u=1

Â
i2Pu

0

@ 1
pMi

+
Â

m:yi
m=1

e�p f (m,u,i) +
1

Mi
�

Â
m0 :yi

m0=0

e f (m0,u,i)

1

A .

121

122 Proof of Lemma 1

Let q⇤ 2 argminq Rmtc
q (assuming minimisers exist), Lemma 1 in Section 5.4.4

shows that q⇤ 2 argminq
eRrank

q .

Proof. We follow the proof technique in (Ertekin and Rudin, 2011) by first introducing
a constant feature 1 for each song, without loss of generality, let the first feature of
xm, m 2 {1, . . . , M} be the constant feature, i.e., x0

m = 1. We then show that ∂ Rmtc
q

∂ q = 0

implies ∂ eRrank
q

∂ q = 0, which means minimisers of Rmtc
q also minimise eRrank

q .

Let 0 =
∂ Rmtc

q

∂ b0
i

=
1
N

0

@ 1
pMi

+
Â

m:yi
m=1

e�p f (m,u,i)(�p) +
1

Mi
�

Â
m0 :yi

m0=0

e f (m0,u,i)

1

A , i 2

Pu, u 2 {1, . . . , U}, we have

1
Mi

+
Â

m:yi
m=1

e�p f (m,u,i)

�����
q=q⇤

=
1

Mi
�

Â
m0 :yi

m0=0

e f (m0,u,i)

�����
q=q⇤

, i 2 Pu, u 2 {1, . . . , U}. (E.1)

Further, let

0 =
∂ Rmtc

q
∂ bi

=
1
N

0

@ 1
pMi

+
Â

m:yi
m=1

e�p f (m,u,i)(�pxm) +
1

Mi
�

Â
m0 :yi

m0=0

e f (m0,u,i)xm0

1

A , i 2 Pu, u 2 {1, . . . , U},

we have

1
Mi

+
Â

m:yi
m=1

e�p f (m,u,i)xm

�����
q=q⇤

=
1

Mi
�

Â
m0 :yi

m0=0

e f (m0,u,i)xm0

�����
q=q⇤

, i 2 Pu, u 2 {1, . . . , U}.

(E.2)

By Eq. (E.1) and (E.2), for i 2 Pu, u 2 {1, . . . , U}, we have

∂ eRrank
q

∂ bi

�����
q=q⇤

=
1

NMi
�

2

64
1
p

0

@ Â
m:yi

m=1
e�p f (m,u,i)

1

A

1
p�1

Â
m:yi

m=1
e�p f (m,u,i)(�pxm) Â

m0 :yi
m0=0

e f (m0,u,i) +

0

@ Â
m:yi

m=1
e�p f (m,u,i)

1

A

1
p

Â
m0 :yi

m0=0

e f (m0,u,i)xm0

3

75

=
�1

NMi
�

0

@ Â
m:yi

m=1
e�p f (m,u,i)

1

A

1
p�1 2

4 Â
m:yi

m=1
e�p f (m,u,i)xm Â

m0 :yi
m0=0

e f (m0,u,i) � Â
m:yi

m=1
e�p f (m,u,i) Â

m0 :yi
m0=0

e f (m0,u,i)xm0

3

5

=
�1

NMi
�

0

@ Â
m:yi

m=1
e�p f (m,u,i)

1

A

1
p�1 2

4

0

@ Â
m:yi

m=1
e�p f (m,u,i)xm

1

A

0

@Mi
�

Mi
+

Â
m:yi

m=1
e�p f (m,u,i)

1

A� Â
m:yi

m=1
e�p f (m,u,i) Â

m0 :yi
m0=0

e f (m0,u,i)xm0

3

5

=
�1

NMi
�

0

@ Â
m:yi

m=1
e�p f (m,u,i)

1

A

1
p
2

4Mi
�

Mi
+

Â
m:yi

m=1
e�p f (m,u,i)xm � Â

m0 :yi
m0=0

e f (m0,u,i)xm0

3

5

= 0.
(E.3)

123

We further let

h(u, i) =
1

NMi
�

0

@ Â
m:yi

m=1
e�p f (m,u,i)

1

A

1
p

Â
m0 :yi

m0=0

e f (m0,u,i), i 2 Pu, u 2 {1, . . . , U},

and similar to Eq. (E.3), we have

∂ h(u, i)
∂ bi

�����
q=q⇤

= 0, i 2 Pu, u 2 {1, . . . , U}. (E.4)

By Eq. (E.4), for u 2 {1, . . . , U}, we have

∂ eRrank
q

∂ au

�����
q=q⇤

= Â
i2Pu

∂ h(u, i)
∂ au

�����
q=q⇤

= Â
i2Pu

∂ h(u, i)
∂ bi

�����
q=q⇤

= 0, (E.5)

and
∂ eRrank

q
∂ µ

�����
q=q⇤

=
U

Â
u=1

Â
i2Pu

∂ h(u, i)
∂ µ

�����
q=q⇤

=
U

Â
u=1

Â
i2Pu

∂ h(u, i)
∂ bi

�����
q=q⇤

= 0. (E.6)

Finally, by Eq. (E.3), (E.5), and (E.6), q⇤ 2 argminq
eRrank

q .

124 Proof of Lemma 1

Bibliography

Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., Deng, L., Penn, G., and Yu, D. (2014).
Convolutional neural networks for speech recognition. IEEE/ACM Transactions on
audio, speech, and language processing, 22:1533–1545. (Cited on page 44.)

Agarwal, D. and Chen, B.-C. (2009). Regression-based latent factor models. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 19–28. (Cited on page 73.)

Agarwal, D., Chen, B.-C., Elango, P., and Ramakrishnan, R. (2013). Content rec-
ommendation on web portals. Communications of the ACM, 56:92–101. (Cited on
page 51.)

Agarwal, S. (2011). The infinite push: A new support vector ranking algorithm that
directly optimizes accuracy at the absolute top of the list. In Proceedings of the IEEE
International Conference on Data Mining, pages 839–850. (Cited on pages 30 and 74.)

Agarwal, S. and Niyogi, P. (2005). Stability and generalization of bipartite ranking
algorithms. In Proceedings of the Annual Conference on Learning Theory, pages 32–47.
(Cited on pages 3 and 71.)

Aggarwal, C. C. (2016). Recommender Systems: The Textbook. Springer. (Cited on
pages 1, 8, and 73.)

Aggarwal, C. C. and Parthasarathy, S. (2001). Mining massively incomplete data sets
by conceptual reconstruction. In Proceedings of the ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 227–232. (Cited on page 8.)

Agrafiotis, D. K., Bandyopadhyay, D., Wegner, J. K., and van Vlijmen, H. (2007).
Recent Advances in Chemoinformatics. Journal of chemical information and modeling,
47:1279–1293. (Cited on pages 2 and 51.)

Agresti, A. (2010). Analysis of ordinal categorical data. Wiley. (Cited on pages 61, 112,
and 114.)

Aji, S. M. and McEliece, R. J. (2000). The generalized distributive law. IEEE transactions
on Information Theory, 46:325–343. (Cited on pages 17, 20, and 22.)

Amatriain, X. and Basilico, J. (2015). Recommender Systems in Industry: A Netflix Case
Study, pages 385–419. Springer. (Cited on page 51.)

An, H.-C., Kleinberg, R., and Shmoys, D. B. (2015). Improving Christofides’ Algorithm
for the S-t Path TSP. Journal of the ACM, 62:34:1–34:28. (Cited on pages 3 and 26.)

125

126 BIBLIOGRAPHY

Anagnostopoulos, A., Atassi, R., Becchetti, L., Fazzone, A., and Silvestri, F. (2017). Tour
recommendation for groups. Data Mining and Knowledge Discovery, 31:1157–1188.
(Cited on pages 36 and 66.)

Andrew, G. and Gao, J. (2007). Scalable training of L1-regularized log-linear models.
In Proceedings of the International Conference on Machine Learning, pages 33–40. (Cited
on page 79.)

Antikacioglu, A., Ravi, R., and Sridhar, S. (2015). Recommendation subgraphs for web
discovery. In Proceedings of the Web Conference, pages 77–87. (Cited on page 51.)

Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2011). The traveling salesman
problem: a computational study. Princeton University Press. (Cited on pages 2 and 3.)

Avriel, M. (2003). Nonlinear programming: analysis and methods. Courier Corporation.
(Cited on page 78.)

Bach, S., Huang, B., Boyd-graber, J., and Getoor, L. (2015). Paired-dual learning for
fast training of latent variable hinge-loss MRFs. In Proceedings of the International
Conference on Machine Learning, pages 381–390. (Cited on page 16.)

BakIr, G., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., and Vishwanathan, S.
(2007). Predicting structured data. MIT press. (Cited on pages 3 and 11.)

Bao, J., Zheng, Y., Wilkie, D., and Mokbel, M. (2015). Recommendations in location-
based social networks: a survey. GeoInformatica, 19(3):525–565. (Cited on pages 34
and 35.)

Baraglia, R., Muntean, C. I., Nardini, F. M., and Silvestri, F. (2013). LearNext: learning
to predict tourists movements. In Proceedings of the ACM Conference on Information
and Knowledge Management, pages 751–756. (Cited on page 36.)

Ben-Elazar, S., Lavee, G., Koenigstein, N., Barkan, O., Berezin, H., Paquet, U., and
Zaccai, T. (2017). Groove radio: A bayesian hierarchical model for personalized
playlist generation. In Proceedings of the ACM International Conference on Web Search
and Data Mining, pages 445–453. (Cited on pages 2, 66, 73, 74, 75, 76, 83, and 92.)

Bennett, J., Lanning, S., et al. (2007). The Netflix Prize. In Proceedings of KDD cup and
workshop. (Cited on page 1.)

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P. (2011). The million
song dataset. In Proceedings of the International Society for Music Information Retrieval,
pages 591–596. (Cited on page 79.)

Bonnin, G. and Jannach, D. (2013). Evaluating the quality of playlists based on
hand-crafted samples. In Proceedings of the International Society for Music Information
Retrieval, pages 263–268. (Cited on pages 73, 82, 83, 85, and 87.)

Bonnin, G. and Jannach, D. (2014). Automated generation of music playlists: Survey
and experiments. ACM Computing Surveys, 47:26:1–26:35. (Cited on pages 66, 73,
83, 85, and 87.)

BIBLIOGRAPHY 127

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press. (Cited on page 78.)

Boyd, S. and Vandenberghe, L. (2008). Localization and cutting-plane methods. http:
//web.stanford.edu/class/ee392o/localization-methods.pdf , retrieved September
2016. (Cited on pages 14, 97, 99, 101, and 102.)

Brilhante, I., Macedo, J. A., Nardini, F. M., Perego, R., and Renso, C. (2013). Where
shall we go today?: planning touristic tours with tripbuilder. In Proceedings of the
ACM Conference on Information and Knowledge Management, pages 757–762. (Cited
on pages 36 and 66.)

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullender,
G. (2005). Learning to rank using gradient descent. In Proceedings of the International
Conference on Machine Learning, pages 89–96. (Cited on page 2.)

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User
Modeling and User-Adapted Interaction, 12:331–370. (Cited on page 73.)

Cao, B., Liu, N. N., and Yang, Q. (2010). Transfer learning for collective link prediction
in multiple heterogenous domains. In Proceedings of the International Conference on
Machine Learning, pages 159–166. (Cited on page 73.)

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. (2007). Learning to rank: From
pairwise approach to listwise approach. In Proceedings of the International Conference
on Machine Learning, pages 129–136. (Cited on page 2.)

Caruana, R. (1993). Multitask learning: A knowledge-based source of inductive bias.
In Proceedings of the International Conference on Machine Learning, pages 41–48. (Cited
on pages 31 and 91.)

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75. (Cited on
pages 31, 75, and 91.)

Charlesworth, B. and Charlesworth, D. (2010). Elements of evolutionary genetics. W. H.
Freeman. (Cited on page 96.)

Chen, C., Zhang, D., Guo, B., Ma, X., Pan, G., and Wu, Z. (2015). TripPlanner: Per-
sonalized trip planning leveraging heterogeneous crowdsourced digital footprints.
IEEE Transactions on Intelligent Transportation Systems, 16(3):1259–1273. (Cited on
pages 36 and 37.)

Chen, D., Kim, D., Xie, L., Shin, M., Menon, A. K., Ong, C. S., Avazpour, I., and
Grundy, J. (2017a). PathRec: Visual analysis of travel route recommendations. In
Proceedings of the ACM Recommender Systems Conference, pages 364–365. (Cited on
page 3.)

Chen, D., Ong, C. S., and Menon, A. K. (2019). Cold-start playlist recommendation
with multitask learning. CoRR, abs/1901.06125. (Cited on page 3.)

http://web.stanford.edu/class/ee392o/localization-methods.pdf
http://web.stanford.edu/class/ee392o/localization-methods.pdf

128 BIBLIOGRAPHY

Chen, D., Ong, C. S., and Xie, L. (2016). Learning points and routes to recommend
trajectories. In Proceedings of the ACM Conference on Information and Knowledge Man-
agement, pages 2227–2232. (Cited on pages 2, 3, 51, 59, 61, and 112.)

Chen, D., Xie, L., Menon, A. K., and Ong, C. S. (2017b). Structured recommendation.
CoRR, abs/1706.09067. (Cited on pages 3 and 35.)

Chen, S., Moore, J. L., Turnbull, D., and Joachims, T. (2012). Playlist prediction via
metric embedding. In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 714–722. (Cited on pages 2, 51, 66,
and 73.)

Chen, Y., Yan, W., Li, C., Huang, Y., and Yang, L. (2018). Personalized optimal
bicycle trip planning based on q-learning algorithm. In Wireless Communications and
Networking Conference, pages 1–6. (Cited on pages 36 and 66.)

Chen, Y.-Y., Cheng, A.-J., and Hsu, W. H. (2013). Travel recommendation by mining
people attributes and travel group types from community-contributed photos. IEEE
Transactions on Multimedia, 15(6):1283–1295. (Cited on page 37.)

Cheng, C., Yang, H., Lyu, M. R., and King, I. (2013). Where you like to go next:
Successive point-of-interest recommendation. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 2605–2611. (Cited on pages 36 and 66.)

Choi, K., Fazekas, G., Sandler, M., et al. (2016). Towards playlist generation algorithms
using RNNs trained on within-track transitions. arXiv preprint arXiv:1606.02096.
(Cited on pages 2, 51, and 66.)

Christofides, N. (1976). Worst-case analysis of a new heuristic for the traveling
salesman problem. Sympos. on New Directions and Recent Results in Algorithms and
Complexity. (Cited on pages 27 and 58.)

Clémençon, S., Lugosi, G., Vayatis, N., et al. (2008). Ranking and empirical minimiza-
tion of u-statistics. The Annals of Statistics, 36:844–874. (Cited on page 71.)

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
algorithms. MIT press. (Cited on page 23.)

Cremonesi, P., Koren, Y., and Turrin, R. (2010). Performance of recommender al-
gorithms on top-n recommendation tasks. In Proceedings of the ACM Recommender
Systems Conference, pages 39–46. (Cited on page 87.)

De Choudhury, M., Feldman, M., Amer-Yahia, S., Golbandi, N., Lempel, R., and Yu, C.
(2010). Automatic construction of travel itineraries using social breadcrumbs. In
Proceedings of the ACM Conference on Hypertext and Social Media, pages 35–44. (Cited
on pages 38, 45, and 59.)

Debnath, M., Tripathi, P. K., Biswas, A. K., and Elmasri, R. (2018). Preference aware
travel route recommendation with temporal influence. In Proceedings of the ACM
SIGSPATIAL Workshop on Recommendations for Location-based Services and Social Net-
works. (Cited on page 36.)

BIBLIOGRAPHY 129

Dehaspe, L., Toivonen, H., and King, R. D. (1998). Finding frequent substructures
in chemical compounds. In Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 30–36. (Cited on pages 2 and 51.)

Dembczyński, K., Cheng, W., and Hüllermeier, E. (2010). Bayes optimal multilabel
classification via probabilistic classifier chains. In Proceedings of the International
Conference on Machine Learning, ICML’10, pages 279–286. (Cited on page 31.)

Deveaud, R., Albakour, M., Macdonald, C., Ounis, I., et al. (2014). On the importance of
venue-dependent features for learning to rank contextual suggestions. In Proceedings
of the ACM Conference on Information and Knowledge Management, pages 1827–1830.
(Cited on page 37.)

Deveaud, R., Albakour, M., Macdonald, C., Ounis, I., et al. (2015). Experiments
with a venue-centric model for personalised and time-aware venue suggestion. In
Proceedings of the ACM Conference on Information and Knowledge Management, pages
53–62. (Cited on page 37.)

Diggle, P., Diggle, P. J., Heagerty, P., Heagerty, P. J., Liang, K.-Y., Zeger, S., et al. (2002).
Analysis of longitudinal data. Oxford University Press. (Cited on page 75.)

Donaldson, J. (2007). A hybrid social-acoustic recommendation system for popular
music. In Proceedings of the ACM Recommender Systems Conference, pages 187–190.
(Cited on page 73.)

Dutka, J. (1991). The early history of the factorial function. Archive for history of exact
sciences, 43(3):225–249. (Cited on page 25.)

Eghbal-Zadeh, H., Lehner, B., Schedl, M., and Widmer, G. (2015). I-vectors for
timbre-based music similarity and music artist classification. In Proceedings of
the International Society for Music Information Retrieval, pages 554–560. (Cited on
page 73.)

Elzinga, J. and Moore, T. G. (1975). A central cutting plane algorithm for the con-
vex programming problem. Mathematical Programming, 8(1):134–145. (Cited on
page 100.)

Ertekin, Ş. and Rudin, C. (2011). On equivalence relationships between classification
and ranking algorithms. Journal of Machine Learning Research, 12:2905–2929. (Cited
on pages 3, 29, 30, 74, 78, 79, 103, and 122.)

Ference, G., Ye, M., and Lee, W.-C. (2013). Location recommendation for out-of-town
users in location-based social networks. In Proceedings of the ACM Conference on
Information and Knowledge Management, pages 721–726. (Cited on page 37.)

Flickr (2019). The Flickr developer guide. https://www.flickr.com/services/developer
, retrieved February 2019. (Cited on page 33.)

Foursquare (2019). FourSquare: about us. https://foursquare.com/about , retrieved
February 2019. (Cited on page 33.)

https://www.flickr.com/services/developer
https://foursquare.com/about

130 BIBLIOGRAPHY

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. (2003). An efficient boosting
algorithm for combining preferences. Journal of Machine Learning Research, 4:933–
969. (Cited on pages 30 and 71.)

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55:119–139. (Cited on page 29.)

Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., and Schmidt-Thieme, L.
(2010). Learning attribute-to-feature mappings for cold-start recommendations.
In Proceedings of the IEEE International Conference on Data Mining, pages 176–185.
(Cited on pages 74 and 83.)

Gao, H., Tang, J., Hu, X., and Liu, H. (2013). Exploring temporal effects for location
recommendation on location-based social networks. In Proceedings of the ACM
Recommender Systems Conference, pages 93–100. (Cited on pages 36 and 37.)

Gionis, A., Lappas, T., Pelechrinis, K., and Terzi, E. (2014). Customized tour recom-
mendations in urban areas. In Proceedings of the ACM International Conference on
Web Search and Data Mining, pages 313–322. (Cited on pages 35, 36, and 66.)

Goffin, J.-L. and Vial, J.-P. (2002). Convex nondifferentiable optimization: A survey
focused on the analytic center cutting plane method. Optimization Methods and
Software, 17:805–867. (Cited on page 101.)

Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using collaborative filtering
to weave an information Tapestry. Communications of the ACM, 35:61–70. (Cited on
pages 1 and 7.)

Golden, B. L., Levy, L., and Vohra, R. (1987). The Orienteering Problem. Naval Research
Logistics, 34:307–318. (Cited on page 3.)

Gomez-Uribe, C. A. and Hunt, N. (2015). The Netflix recommender system: Algo-
rithms, business value, and innovation. ACM Transactions on Management Informa-
tion Systems, 6:13:1–13:19. (Cited on page 51.)

Guo, S., Zoeter, O., and Archambeau, C. (2011). Sparse bayesian multi-task learning.
In Advances in Neural Information Processing Systems, pages 1755–1763. (Cited on
page 31.)

Hariri, N., Mobasher, B., and Burke, R. (2012). Context-aware music recommendation
based on latenttopic sequential patterns. In Proceedings of the ACM Recommender
Systems Conference, pages 131–138. (Cited on pages 66, 73, and 83.)

Hashem, T., Barua, S., Ali, M. E., Kulik, L., and Tanin, E. (2015). Efficient computation
of trips with friends and families. In Proceedings of the ACM Conference on Information
and Knowledge Management, pages 931–940. (Cited on page 36.)

He, J., Qi, J., and Ramamohanarao, K. (2018). A jointly learned context-aware place
of interest embedding for trip recommendations. arXiv preprint arXiv:1808.08023.
(Cited on pages 2, 35, 36, 51, and 66.)

BIBLIOGRAPHY 131

Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Evaluating col-
laborative filtering recommender systems. ACM Transactions on Information Systems,
22:5–53. (Cited on page 83.)

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D. (2015). Session-based recom-
mendations with recurrent neural networks. arXiv preprint arXiv:1511.06939. (Cited
on pages 51 and 66.)

Hoogeveen, J. (1991). Analysis of Christofides’ heuristic: Some paths are more difficult
than cycles. Operations Research Letters, 10:291–295. (Cited on pages 3 and 26.)

Hsieh, H.-P. and Li, C.-T. (2014). Mining and planning time-aware routes from check-in
data. In Proceedings of the ACM Conference on Information and Knowledge Management,
pages 481–490. (Cited on pages 36 and 37.)

Hu, B. and Ester, M. (2013). Spatial topic modeling in online social media for location
recommendation. In Proceedings of the ACM Recommender Systems Conference, pages
25–32. (Cited on page 37.)

Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit feedback
datasets. In Proceedings of the IEEE International Conference on Data Mining, pages
263–272. (Cited on pages 9, 11, and 83.)

Huang, J.-T., Li, J., Yu, D., Deng, L., and Gong, Y. (2013). Cross-language knowledge
transfer using multilingual deep neural network with shared hidden layers. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 7304–7308. (Cited on page 31.)

Jannach, D., Lerche, L., and Kamehkhosh, I. (2015). Beyond hitting the hits: Generating
coherent music playlist continuations with the right tracks. In Proceedings of the
ACM Recommender Systems Conference, pages 187–194. (Cited on page 83.)

Joachims, T., Finley, T., and Yu, C.-N. J. (2009a). Cutting-plane training of structural
SVMs. Machine Learning, 77:27–59. (Cited on pages 12, 13, and 14.)

Joachims, T., Hofmann, T., Yue, Y., and Yu, C.-N. (2009b). Predicting structured objects
with support vector machines. Communications of the ACM, 52(11):97–104. (Cited
on pages 2, 3, 14, 44, and 54.)

John, J. (2006). Pandora and the music genome project. Scientific Computing, 23:40–41.
(Cited on pages 7 and 73.)

Jurafsky, D. and Martin, J. H. (2009). Speech and language processing: an introduction to
natural language processing, computational linguistics, and speech recognition. Prentice
Hall. (Cited on pages 83 and 96.)

Kamehkhosh, I., Jannach, D., and Bonnin, G. (2018). How automated recommenda-
tions affect the playlist creation behavior of users. In IUI Workshop on Intelligent
Music Interfaces for Listening and Creation. (Cited on page 92.)

132 BIBLIOGRAPHY

Kluver, D. and Konstan, J. A. (2014). Evaluating recommender behavior for new users.
In Proceedings of the ACM Recommender Systems Conference, pages 121–128. (Cited
on page 84.)

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted collabora-
tive filtering model. In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 426–434. (Cited on page 11.)

Koren, Y. (2009). Collaborative filtering with temporal dynamics. In Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 447–456. (Cited on pages 1 and 11.)

Koren, Y. (2010). Factor in the neighbors: Scalable and accurate collaborative filtering.
ACM Transactions on Knowledge Discovery from Data, 4:1:1–1:24. (Cited on page 51.)

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer, 42:30–37. (Cited on pages 1, 2, 8, 9, 11, 66,
and 69.)

Kotlowski, W., Dembczynski, K. J., and Huellermeier, E. (2011). Bipartite ranking
through minimization of univariate loss. In Proceedings of the International Conference
on Machine Learning, pages 1113–1120. (Cited on page 71.)

Kuo, T.-M., Lee, C.-P., and Lin, C.-J. (2014). Large-scale Kernel RankSVM. In Proceed-
ings of the SIAM International Conference on Data Mining, pages 812–820. (Cited on
page 3.)

Kurashima, T., Iwata, T., Irie, G., and Fujimura, K. (2010). Travel route recommenda-
tion using geotags in photo sharing sites. In Proceedings of the ACM Conference on
Information and Knowledge Management, pages 579–588. (Cited on page 37.)

Lacoste-julien, S., Jaggi, M., Schmidt, M., and Pletscher, P. (2013). Block-coordinate
Frank-Wolfe optimization for structural SVMs. In Proceedings of the International
Conference on Machine Learning, pages I–53–I–61. (Cited on page 17.)

Lafferty, J. D., McCallum, A., and Pereira, F. C. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of
the International Conference on Machine Learning, pages 282–289. (Cited on page 44.)

Laird, N. M., Ware, J. H., et al. (1982). Random-effects models for longitudinal data.
Biometrics, 38:963–974. (Cited on page 75.)

Le, Q. T. and Pishva, D. (2016). An innovative tour recommendation system for
tourists in japan. In International Conference on Advanced Communication Technology,
pages 717–729. (Cited on page 37.)

Lee, C.-P. and Lin, C.-b. (2014). Large-scale Linear RankSVM. Neural computation,
26(4):781–817. (Cited on pages 3 and 39.)

BIBLIOGRAPHY 133

Li, N., Jin, R., and Zhou, Z.-H. (2014). Top rank optimization in linear time. In Ad-
vances in Neural Information Processing Systems, pages 1502–1510. (Cited on pages 30
and 74.)

Li, X., Pham, T.-A. N., Cong, G., Yuan, Q., Li, X.-L., and Krishnaswamy, S. (2015).
Where you instagram?: Associating your instagram photos with points of interest. In
Proceedings of the ACM Conference on Information and Knowledge Management, pages
1231–1240. (Cited on page 36.)

Li, Y., Song, Y., and Luo, J. (2017). Improving pairwise ranking for multi-label image
classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. (Cited on page 31.)

Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., and Rui, Y. (2014). GeoMF: Joint geo-
graphical modeling and matrix factorization for point-of-interest recommendation.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 831–840. (Cited on pages 36 and 37.)

Lim, K. H., Chan, J., Leckie, C., and Karunasekera, S. (2015). Personalized tour
recommendation based on user interests and points of interest visit durations. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages 1778–
1784. (Cited on pages 2, 34, 35, 36, 44, 45, 47, 49, 51, 59, 61, 66, and 112.)

Linden, G., Smith, B., and York, J. (2003). Amazon.com Recommendations: Item-to-
Item Collaborative Filtering. IEEE Internet Computing, 7:76–80. (Cited on page 51.)

Liu, Q., Wu, S., Wang, D., Li, Z., and Wang, L. (2016a). Context-aware sequential
recommendation. In Proceedings of the IEEE International Conference on Data Mining,
pages 1053–1058. (Cited on page 44.)

Liu, Q., Wu, S., Wang, L., and Tan, T. (2016b). Predicting the next location: A recurrent
model with spatial and temporal contexts. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 194–200. (Cited on pages 36, 44, and 66.)

Liu, T.-Y. (2009). Learning to Rank for Information Retrieval. Foundations and Trends
in Information Retrieval, 3:225–331. (Cited on page 2.)

Liu, X., Liu, Y., Aberer, K., and Miao, C. (2013). Personalized point-of-interest
recommendation by mining users’ preference transition. In Proceedings of the ACM
Conference on Information and Knowledge Management, pages 733–738. (Cited on
page 37.)

Liu, Y., Wei, W., Sun, A., and Miao, C. (2014). Exploiting geographical neighborhood
characteristics for location recommendation. In Proceedings of the ACM Conference on
Information and Knowledge Management, pages 739–748. (Cited on pages 36 and 37.)

Louche, U. and Ralaivola, L. (2015). From cutting planes algorithms to compression
schemes and active learning. In Proceedings of the International Joint Conference on
Neural Networks, pages 1–8. (Cited on page 101.)

134 BIBLIOGRAPHY

Lu, E. H.-C., Chen, C.-Y., and Tseng, V. S. (2012). Personalized trip recommendation
with multiple constraints by mining user check-in behaviors. In Proceedings of
the ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, pages 209–218. (Cited on pages 2, 36, 37, and 51.)

Lu, X., Wang, C., Yang, J.-M., Pang, Y., and Zhang, L. (2010). Photo2Trip: Generating
travel routes from geo-tagged photos for trip planning. In Proceedings of the ACM
Multimedia Conference, pages 143–152. (Cited on pages 2, 36, and 51.)

Lu, Y.-S., Shih, W.-Y., Gau, H.-Y., Chung, K.-C., and Huang, J.-L. (2018). On successive
point-of-interest recommendation. World Wide Web, pages 1–23. (Cited on page 36.)

Ma, H., Yang, H., Lyu, M. R., and King, I. (2008). SoRec: Social recommendation
using probabilistic matrix factorization. In Proceedings of the ACM Conference on
Information and Knowledge Management, pages 931–940. (Cited on page 73.)

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information
Retrieval. Cambridge University Press. (Cited on page 83.)

McFee, B., Bertin-Mahieux, T., Ellis, D. P., and Lanckriet, G. R. (2012). The Million
Song Dataset Challenge. In Proceedings of the Web Conference, pages 909–916. (Cited
on pages 73, 74, 82, and 87.)

McFee, B. and Lanckriet, G. R. (2011). The natural language of playlists. In Proceedings
of the International Society for Music Information Retrieval, pages 537–542. (Cited on
pages 2, 51, 66, and 73.)

McFee, B. and Lanckriet, G. R. (2012). Hypergraph models of playlist dialects. In
Proceedings of the International Society for Music Information Retrieval, pages 343–348.
(Cited on pages 73, 79, and 92.)

Menon, A. K. (2017). The Viterbi algorithm and its list variants. Technical report,
Data61, CSIRO. (Cited on page 26.)

Menon, A. K., Chen, D., Xie, L., and Ong, C. S. (2017). Revisiting revisits in trajec-
tory recommendation. In Proceedings of the International Workshop on Recommender
Systems for Citizens, pages 2:1–2:6. (Cited on pages 3, 26, and 27.)

Menon, A. K. and Williamson, R. C. (2016). Bipartite ranking: a risk-theoretic
perspective. Journal of Machine Learning Research, 17:1–102. (Cited on pages 3, 30,
74, and 78.)

Meshi, O., Sontag, D., Globerson, A., and Jaakkola, T. S. (2010). Learning efficiently
with approximate inference via dual losses. In Proceedings of the International Con-
ference on Machine Learning, pages 783–790. (Cited on page 16.)

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Advances in
Neural Information Processing Systems, pages 3111–3119. (Cited on page 80.)

BIBLIOGRAPHY 135

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer programming formulation
of traveling salesman problems. Journal of the ACM, 7:326–329. (Cited on pages 2, 3,
27, 42, 56, and 109.)

Müller, A. (2014). Methods for learning structured prediction in semantic segmentation of
natural images. PhD dissertation, Universitäts-und Landesbibliothek Bonn. (Cited
on page 16.)

Narasimhan, H. and Agarwal, S. (2013). On the relationship between binary classi-
fication, bipartite ranking, and binary class probability estimation. In Advances in
Neural Information Processing Systems, pages 2913–2921. (Cited on pages 74 and 78.)

Netflix (2006). Netflix Prize. http://www.netflixprize.com/. (Cited on page 69.)

Newman, M. (2010). Networks: An Introduction. Oxford University Press. (Cited on
page 96.)

Nill, C. and Sundberg, C.-E. (1995). List and soft symbol output Viterbi algorithms:
Extensions and comparisons. IEEE Transactions on Communications, 43:277–287.
(Cited on pages 3 and 22.)

Nilsson, D. and Goldberger, J. (2001). Sequentially finding the N-best list in hid-
den Markov models. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 1280–1285. (Cited on pages 3, 22, 23, 24, 26, 56, and 58.)

Oord, A. v. d., Dieleman, S., and Schrauwen, B. (2013). Deep content-based music
recommendation. In Advances in Neural Information Processing Systems, pages 2643–
2651. (Cited on pages 74 and 83.)

Ostendorf, M., Kannan, A., Austin, S., Kimball, O., Schwartz, R., and Rohlicek, J. R.
(1991). Integration of diverse recognition methodologies through reevaluation of
n-best sentence hypotheses. In Proceedings of the Workshop on Speech and Natural
Language, pages 83–87. (Cited on page 22.)

Paterek, A. (2007). Improving regularized singular value decomposition for collabora-
tive filtering. In Proceedings of KDD cup and workshop, pages 5–8. (Cited on pages 9
and 11.)

Platt, J. C., Burges, C. J., Swenson, S., Weare, C., and Zheng, A. (2001). Learning a
gaussian process prior for automatically generating music playlists. In Advances in
Neural Information Processing Systems, pages 1425–1432. (Cited on page 73.)

Pletscher, P., Ong, C. S., and Buhmann, J. M. (2010). Entropy and margin maximization
for structured output learning. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 83–98. (Cited on page 11.)

Quercia, D., Schifanella, R., and Aiello, L. M. (2014). The shortest path to happiness:
Recommending beautiful, quiet, and happy routes in the city. In Proceedings of the
ACM Conference on Hypertext and Social Media, pages 116–125. (Cited on page 37.)

136 BIBLIOGRAPHY

Ratliff, N., Bagnell, J. A., and Zinkevich, M. (2006). Subgradient methods for maximum
margin structured learning. In ICML workshop on learning in structured output spaces.
(Cited on page 17.)

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2009). Classifier chains for multi-
label classification. In Machine Learning and Knowledge Discovery in Databases, pages
254–269. Springer Berlin Heidelberg. (Cited on page 31.)

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2009). BPR:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Confer-
ence on Uncertainty in Artificial Intelligence, pages 452–461. (Cited on pages 11, 55,
66, and 74.)

Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. (2010). Factorizing personalized
Markov chains for next-basket recommendation. In Proceedings of the Web Conference,
pages 811–820. (Cited on pages 1, 36, and 66.)

Ruder, S. (2017). An overview of multi-task learning in deep neural networks. CoRR,
abs/1706.05098. (Cited on pages 31 and 75.)

Rudin, C. (2009). The P-Norm Push: A simple convex ranking algorithm that con-
centrates at the top of the list. Journal of Machine Learning Research, 10:2233–2271.
(Cited on pages 30, 74, 77, and 78.)

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. (2015). ImageNet large scale visual recognition
challenge. International Journal of Computer Vision, 115:211–252. (Cited on page 61.)

Salakhutdinov, R. and Mnih, A. (2008a). Bayesian probabilistic matrix factorization
using Markov chain Monte Carlo. In Proceedings of the International Conference on
Machine Learning, pages 880–887. (Cited on pages 10 and 11.)

Salakhutdinov, R. and Mnih, A. (2008b). Probabilistic matrix factorization. In Advances
in Neural Information Processing Systems, pages 1257–1264. (Cited on page 9.)

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collaborative
filtering recommendation algorithms. In Proceedings of the Web Conference, pages
285–295. (Cited on page 69.)

Saveski, M. and Mantrach, A. (2014). Item cold-start recommendations: learning local
collective embeddings. In Proceedings of the ACM Recommender Systems Conference,
pages 89–96. (Cited on page 73.)

Schedl, M., Zamani, H., Chen, C.-W., Deldjoo, Y., and Elahi, M. (2017). Current
challenges and visions in music recommender systems research. ArXiv e-prints.
(Cited on pages 83, 84, and 92.)

Schein, A. I., Popescul, A., Ungar, L. H., and Pennock, D. M. (2002). Methods and
metrics for cold-start recommendations. In Proceedings of the International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 253–260.
(Cited on page 2.)

BIBLIOGRAPHY 137

Schindler, A., Mayer, R., and Rauber, A. (2012). Facilitating comprehensive bench-
marking experiments on the million song dataset. In Proceedings of the International
Society for Music Information Retrieval, pages 469–474. (Cited on page 80.)

Schreiber, H. (2015). Improving genre annotations for the million song dataset. In
Proceedings of the International Society for Music Information Retrieval, pages 241–247.
(Cited on page 80.)

Seshadri, N. and Sundberg, C.-E. (1994). List Viterbi decoding algorithms with
applications. IEEE Transactions on Communications, 42:313–323. (Cited on pages 3,
22, 23, 24, 25, and 56.)

Seyerlehner, K., Widmer, G., Schedl, M., and Knees, P. (2010). Automatic music tag
classification based on blocklevel features. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics. (Cited on page 73.)

Shao, B., Wang, D., Li, T., and Ogihara, M. (2009). Music recommendation based on
acoustic features and user access patterns. IEEE Transactions on Audio, Speech, and
Language Processing, 17:1602–1611. (Cited on page 73.)

Shi, Y., Serdyukov, P., Hanjalic, A., and Larson, M. (2011). Personalized landmark
recommendation based on geotags from photo sharing sites. In Proceedings of the
International AAAI Conference on Web and Social Media, pages 622–625. (Cited on
page 36.)

Sinnott, R. W. (1984). Virtues of the haversine. Sky and telescope, 68(2):159. (Cited on
pages 38 and 45.)

Soong, F. K. and Huang, E.-F. (1991). A tree-trellis based fast search for finding
the n-best sentence hypotheses in continuous speech recognition. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages
705–708. (Cited on page 3.)

Spotify (2018). Company Info. https://newsroom.spotify.com/companyinfo , re-
trieved September 2018. (Cited on page 78.)

Stolcke, A., Konig, Y., and Weintraub, M. (1997). Explicit word error minimization in
n-best list rescoring. In European Conference on Speech Communication and Technology.
(Cited on page 22.)

Sutton, C., McCallum, A., et al. (2012). An introduction to conditional random fields.
Foundations and Trends R� in Machine Learning, 4:267–373. (Cited on page 44.)

Takács, G., Pilászy, I., Németh, B., and Tikk, D. (2007). Major components of the
gravity recommendation system. ACM SIGKDD Explorations Newsletter, 9(2):80–83.
(Cited on page 9.)

Taskar, B. (2004). Learning structured prediction models: A large margin approach. PhD
dissertation, Stanford University. (Cited on pages 2 and 16.)

https://newsroom.spotify.com/companyinfo

138 BIBLIOGRAPHY

Taskar, B., Chatalbashev, V., Koller, D., and Guestrin, C. (2005). Learning structured
prediction models: A large margin approach. In Proceedings of the International
Conference on Machine Learning, pages 896–903. (Cited on pages 3 and 16.)

Taskar, B., Guestrin, C., and Koller, D. (2004). Max-margin markov networks. In
Advances in Neural Information Processing Systems, pages 25–32. (Cited on page 44.)

Thomee, B., Elizalde, B., Shamma, D. A., Ni, K., Friedland, G., Poland, D., Borth, D.,
and Li, L.-J. (2016). YFCC100M: The new data in multimedia research. Communica-
tions of the ACM, 59(2):64–73. (Cited on pages 45 and 59.)

Tintarev, N., Lofi, C., and Liem, C. (2017). Sequences of diverse song recommendations:
An exploratory study in a commercial system. In Proceedings of the ACM Conference
On User Modelling, Adaptation and Personalization, pages 391–392. (Cited on page 92.)

Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004). Support vector
machine learning for interdependent and structured output spaces. In Proceedings
of the International Conference on Machine Learning, pages 104–111. (Cited on pages 3,
14, and 44.)

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large margin
methods for structured and interdependent output variables. Journal of Machine
Learning Research, 6:1453–1484. (Cited on page 44.)

Turrin, R., Quadrana, M., Condorelli, A., Pagano, R., and Cremonesi, P. (2015). 30music
listening and playlists dataset. In Proceedings of the Poster Track of the ACM Conference
on Recommender Systems. (Cited on page 79.)

Vall, A., Schedl, M., Widmer, G., Quadrana, M., and Cremonesi, P. (2017). The
importance of song context in music playlists. In Proceedings of the Poster Track of the
ACM Conference on Recommender Systems. (Cited on page 92.)

Vapnik, V. (1992). Principles of risk minimization for learning theory. In Advances in
Neural Information Processing Systems, pages 831–838. (Cited on page 75.)

Volkovs, M., Yu, G., and Poutanen, T. (2017). Dropoutnet: Addressing cold start in
recommender systems. In Advances in Neural Information Processing Systems, pages
4957–4966. (Cited on page 73.)

Wallach, H. M. (2004). Conditional random fields: An introduction. Technical Reports
(CIS), page 22. (Cited on page 44.)

Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., and Xu, W. (2016). CNN-RNN: A
unified framework for multi-label image classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2285–2294. (Cited on
page 31.)

Wang, P., Guo, J., Lan, Y., Xu, J., Wan, S., and Cheng, X. (2015). Learning hierarchical
representation model for nextbasket recommendation. In Proceedings of the Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 403–412. (Cited on page 66.)

BIBLIOGRAPHY 139

Wu, X.-Z. and Zhou, Z.-H. (2017). A unified view of multi-label performance measures.
In Proceedings of the International Conference on Machine Learning, pages 3780–3788.
(Cited on page 31.)

Wulff, S. and Ong, C. S. (2013). Analytic center cutting plane method for multiple
kernel learning. Annals of Mathematics and Artificial Intelligence, 69(3):225–241. (Cited
on pages 14, 100, and 101.)

Xiong, L., Chen, X., HUang, T.-K., Schneider, J., and Carbonell, J. G. (2010). Temporal
collaborative filtering with Bayesian probabilistic tensor factorization. In Proceedings
of the IEEE International Conference on Data Mining, pages 211–222. (Cited on pages 1
and 11.)

Xue, Y., Dunson, D., and Carin, L. (2007). The matrix stick-breaking process for
flexible multi-task learning. In Proceedings of the International Conference on Machine
Learning, pages 1063–1070. ACM. (Cited on page 31.)

Yang, C., Sun, M., Zhao, W. X., Liu, Z., and Chang, E. Y. (2017). A neural net-
work approach to jointly modeling social networks and mobile trajectories. ACM
Transactions on Information Systems (TOIS), 35:36. (Cited on page 44.)

Yoshii, K., Goto, M., Komatani, K., Ogata, T., and Okuno, H. G. (2006). Hybrid
collaborative and content-based music recommendation using probabilistic model
with latent user preferences. In Proceedings of the International Society for Music
Information Retrieval. (Cited on page 73.)

Yu, F., Liu, Q., Wu, S., Wang, L., and Tan, T. (2016). A dynamic recurrent model for next
basket recommendation. In Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 729–732. (Cited on page 66.)

Yuan, Q., Cong, G., Ma, Z., Sun, A., and Thalmann, N. M. (2013). Time-aware point-of-
interest recommendation. In Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 363–372. (Cited on pages 36
and 37.)

Yuan, Q., Cong, G., and Sun, A. (2014). Graph-based point-of-interest recommendation
with geographical and temporal influences. In Proceedings of the ACM Conference on
Information and Knowledge Management, pages 659–668. (Cited on pages 36 and 37.)

Zhang, C., Liang, H., Wang, K., and Sun, J. (2015a). Personalized trip recommendation
with POI availability and uncertain traveling time. In Proceedings of the ACM
Conference on Information and Knowledge Management, pages 911–920. (Cited on
page 37.)

Zhang, J.-D., Chow, C.-Y., and Li, Y. (2014). LORE: Exploiting sequential influence
for location recommendations. In Proceedings of the ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 103–112. (Cited on
page 37.)

140 BIBLIOGRAPHY

Zhang, J.-D., Chow, C.-Y., and Zheng, Y. (2015b). ORec: An opinion-based point-
of-interest recommendation framework. In Proceedings of the ACM Conference on
Information and Knowledge Management, pages 1641–1650. (Cited on page 37.)

Zhang, W. and Wang, J. (2015). Location and time aware social collaborative retrieval
for new successive point-of-interest recommendation. In Proceedings of the ACM
Conference on Information and Knowledge Management, pages 1221–1230. (Cited on
pages 36, 37, and 66.)

Zhang, Y. C., Séaghdha, D. Ó., Quercia, D., and Jambor, T. (2012). Auralist: introducing
serendipity into music recommendation. In Proceedings of the ACM International
Conference on Web Search and Data Mining, pages 13–22. (Cited on page 83.)

Zheng, Y. (2015). Trajectory data mining: An overview. ACM Transactions on Intelligent
Systems and Technology, 6:29:1–29:41. (Cited on pages 34 and 35.)

Zheng, Y., Capra, L., Wolfson, O., and Yang, H. (2014). Urban computing: con-
cepts, methodologies, and applications. ACM Transactions on Intelligent Systems and
Technology, 5:38:1–38:55. (Cited on pages 34 and 35.)

Zheng, Y., Zhang, L., Xie, X., and Ma, W.-Y. (2009). Mining interesting locations and
travel sequences from GPS trajectories. In Proceedings of the Web Conference, pages
791–800. (Cited on page 36.)

Zheng, Y.-T., Zha, Z.-J., and Chua, T.-S. (2012). Mining travel patterns from geo-
tagged photos. ACM Transactions on Intelligent Systems and Technology, 3(3):56:1–
56:18. (Cited on page 36.)

	Declaration
	Acknowledgement
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Thesis outline

	Background
	The problem of recommending structured objects
	Path recommendation
	Set recommendation

	Techniques for recommender systems
	Recommendation strategies
	Matrix factorisation techniques

	Structured prediction
	Structured support vector machines
	Methods to train the SSVMs

	Path decoding in Markov chains
	The forward and backward approaches in HMM
	The list Viterbi algorithm
	Sub-tour elimination in s-t path TSP
	Heuristic algorithms

	Binary classification and bipartite ranking
	Loss functions for binary classification
	Loss functions for bipartite ranking

	Multi-task learning
	Summary

	Feature-based Travel Trajectory Recommendation
	Introduction
	Problem statement
	Related work
	Solutions for typical travel recommendation problems
	Methods for ranking locations and trajectories
	Features and information employed

	Query features and POI transition
	Tour recommendation
	POI ranking and route planning
	Combining ranking and transition
	Avoiding sub-tours
	Incorporating time constraints
	Discussion
	Measuring performance

	Experiments
	Photo trajectories from five cities
	Experimental setup
	Results
	An illustrative example

	Summary

	Structured Recommendation for Travel Trajectories
	Introduction
	Problem statement
	A structured recommendation approach
	Trajectory recommendation as structured prediction
	Global cohesion and the SP model
	Multiple ground truths and the SR model
	Eliminating loops in recommendation
	SP and SR model training
	Discussion
	Summary of proposed methods

	Experiments
	Photo trajectory datasets
	Evaluation setting
	Results and discussion
	A qualitative example

	Related work
	Summary

	Music Playlist Recommendation with Multi-task Learning
	Introduction
	Problem statement
	Related work
	Playlist recommendation
	Cold-start recommendation
	Connections between bipartite ranking and binary classification

	Multi-task learning for playlist recommendation
	Multi-task learning objective
	Cold-start playlist recommendation
	Ranking songs via Bottom-Push
	Efficient optimisation

	Experiments
	Dataset
	Features
	Experimental setup
	Results

	Discussion
	Multi-task learning, bipartite ranking and binary classification
	Cold-start playlist recommendation versus playlist continuation
	Information of songs, playlists and users

	Summary

	Conclusion
	Research summary
	Future work

	Cutting-plane Methods
	Overview of cutting-plane methods
	Methods to generate query points
	Method of Kelley-Cheney-Goldstein
	Chebyshev centre method
	Analytic centre cutting-plane method
	Centre of gravity or Bayes point method

	Linking Losses for Bipartite Ranking and Binary Classification
	Time Constraints for Travel Trajectory Recommendation
	Details of Travel Trajectory Recommendation Experiments
	Features
	POI-query features
	Transition features

	Evaluation metrics
	F1 score on points
	F1 score on pairs
	Kendall's with ties

	Additional empirical results

	Proof of Lemma 1
	Bibliography

