4 research outputs found

    Π Π°Π±ΠΎΡ‚Π° ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ со структурой p+–p–n+ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΎΠ΄Π½ΠΎΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ рСгистрации

    Get PDF
    The conditions for realizing the single-quantum detection mode for silicon photomultiplier tubes with the p+–p–n+ structure are studied and data on their characteristics in this mode are obtained. The structure of the experimental setup and the research technique are presented. Measurements of the counting characteristics of the photodetectors, such as the dependences of the counting rate of single-photon pulses, the speed of dark pulses, and the signal-to-noise ratio, have beenΒ performed. The dependences of the counting rate of one-photon pulses on the intensity of optical radiation recorded by a silicon photomultiplier tube are presented. It was found that these dependences had a linear section, the length of which increased with increasing overvoltage of silicon photomultiplier tubes. Also, with an increase in overvoltage, the angle of inclination of the linear section increased. The dependences of the count rate of one-photon and dark pulses, as well as the signal-to-noise ratio on overvoltage, are given. It was found that the counting rate of dark pulses increased with increasing overvoltage. It was found that the dependence of the signal-to-noise ratio on the overvoltage for these silicon photomultiplier tubes has a maximum. To obtain the maximum sensitivity of the studied silicon photomultiplier tubes, it is necessary to select the overvoltage corresponding to this maximum. As a result of comparing the sensitivity of the investigated silicon photomultiplier tubes and avalanche photodiodes, it was found that silicon photomultiplier tubes operating in the single-quantum detection mode have a higher sensitivity compared to avalanche photodiodes in the same operating mode. With a decrease in temperature, this superiority persisted. Also, a decrease in temperature led to a decrease in the minimum value of the intensity of the recorded optical radiation. Thus, the possibility of operation of silicon photomultiplier tubes in the single-quantum registration mode has been proved. These results can be applied in quantum cryptography systems when receiving an optical signal.Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ условия Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΎΠ΄Π½ΠΎΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ рСгистрации для ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ со структурой p+–p–n+ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎΠ± ΠΈΡ… характСристиках Π² этом Ρ€Π΅ΠΆΠΈΠΌΠ΅. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ структура ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ установки ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° исслСдований. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ измСрСния счСтных характСристик Ρ„ΠΎΡ‚ΠΎΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΈΠΊΠΎΠ², Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ зависимости скорости счСта ΠΎΠ΄Π½ΠΎΡ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ², скорости Ρ‚Π΅ΠΌΠ½ΠΎΠ²Ρ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² ΠΈ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сигнал/ΡˆΡƒΠΌ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ зависимости скорости счСта ΠΎΠ΄Π½ΠΎΡ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² ΠΎΡ‚ интСнсивности оптичСского излучСния, рСгистрируСмого ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹ΠΌ фотоэлСктронным ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΌ. УстановлСно, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½Ρ‹Π΅ зависимости ΠΈΠΌΠ΅ΡŽΡ‚ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ участок, Π΄Π»ΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ увСличиваСтся с ростом пСрСнапряТСния ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ. Π’Π°ΠΊΠΆΠ΅ с ростом пСрСнапряТСния увСличиваСтся ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ участка. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ зависимости скорости счСта ΠΎΠ΄Π½ΠΎΡ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… ΠΈ Ρ‚Π΅ΠΌΠ½ΠΎΠ²Ρ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сигнал/ΡˆΡƒΠΌ ΠΎΡ‚ пСрСнапряТСния. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ счСта Ρ‚Π΅ΠΌΠ½ΠΎΠ²Ρ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² возрастаСт с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ пСрСнапряТСния. УстановлСно, Ρ‡Ρ‚ΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сигнал/ΡˆΡƒΠΌ ΠΎΡ‚ пСрСнапряТСния для этих ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ максимум. Для получСния максимальной Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ исслСдованных ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²Ρ‹Π±ΠΈΡ€Π°Ρ‚ΡŒ пСрСнапряТСниС, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ этому максимуму. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ сравнСния Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ исслСдуСмых ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΈ Π»Π°Π²ΠΈΠ½Π½Ρ‹Ρ… Ρ„ΠΎΡ‚ΠΎΠ΄ΠΈΠΎΠ΄ΠΎΠ² установлСно, Ρ‡Ρ‚ΠΎ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Π΅ фотоэлСктронныС ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ, Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΠ΅ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΎΠ΄Π½ΠΎΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ рСгистрации, ΠΈΠΌΠ΅ΡŽΡ‚ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π»Π°Π²ΠΈΠ½Π½Ρ‹ΠΌΠΈ Ρ„ΠΎΡ‚ΠΎΠ΄ΠΈΠΎΠ΄Π°ΠΌΠΈ Π² этом ΠΆΠ΅ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π‘ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π΄Π°Π½Π½ΠΎΠ΅ прСвосходство сохраняСтся. Π’Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ минимального значСния интСнсивности рСгистрируСмого оптичСского излучСния. Π’Π΅ΠΌ самым Π΄ΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… фотоэлСктронных ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΎΠ΄Π½ΠΎΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ рСгистрации. Π”Π°Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π² систСмах ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ ΠΊΡ€ΠΈΠΏΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ΅ оптичСского сигнала

    Electrical Insulation Weaknesses in Wide Bandgap Devices

    Get PDF
    The power electronics research community is balancing on the edge of a game-changing technological innovation: as traditionally silicon (Si) based power semiconductors approach their material limitations, next-generation wide bandgap (WBG) power semiconductors are poised to overtake them. Promising WBG materials are silicon carbide (SiC), gallium nitride (GaN), diamond (C), gallium oxide (Ga2O3) and aluminum nitride (AlN). They can operate at higher voltages, temperatures, and switching frequencies with greater efficiencies compared to existing Si, in power electronics. These characteristics can reduce energy consumption, which is critical for national economic, health, and security interests. However, increased voltage blocking capability and trend toward more compact packaging technology for high-power density WBG devices can enhance the local electric field that may become large enough to raise partial discharges (PDs) within the module. High activity of PDs damages the insulating silicone gel, lead to electrical insulation failure and reduce the reliability of the module. Among WBG devices, electrical insulation weaknesses in WBG-based Insulated Gate Bipolar Transistor (IGBT) have been more investigated. The chapter deals with (a) current standards for evaluation of the insulation systems of power electronics modules, (b) simulation and modeling of the electric field stress inside modules, (c) diagnostic tests on modules, and (d) PD control methods in modules

    Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers

    No full text
    Optical detection is reliable in intrinsically characterizing partial discharges (PDs). Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM)-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM) interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD) for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT) and a vacuum photomultiplier tube (PMT). Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring
    corecore