3 research outputs found

    Towards Operator-less Data Centers Through Data-Driven, Predictive, Proactive Autonomics

    Get PDF
    Continued reliance on human operators for managing data centers is a major impediment for them from ever reaching extreme dimensions. Large computer systems in general, and data centers in particular, will ultimately be managed using predictive computational and executable models obtained through data-science tools, and at that point, the intervention of humans will be limited to setting high-level goals and policies rather than performing low-level operations. Data-driven autonomics, where management and control are based on holistic predictive models that are built and updated using live data, opens one possible path towards limiting the role of operators in data centers. In this paper, we present a data-science study of a public Google dataset collected in a 12K-node cluster with the goal of building and evaluating predictive models for node failures. Our results support the practicality of a data-driven approach by showing the effectiveness of predictive models based on data found in typical data center logs. We use BigQuery, the big data SQL platform from the Google Cloud suite, to process massive amounts of data and generate a rich feature set characterizing node state over time. We describe how an ensemble classifier can be built out of many Random Forest classifiers each trained on these features, to predict if nodes will fail in a future 24-hour window. Our evaluation reveals that if we limit false positive rates to 5%, we can achieve true positive rates between 27% and 88% with precision varying between 50% and 72%.This level of performance allows us to recover large fraction of jobs' executions (by redirecting them to other nodes when a failure of the present node is predicted) that would otherwise have been wasted due to failures. [...

    DCDB Wintermute: Enabling Online and Holistic Operational Data Analytics on HPC Systems

    Full text link
    As we approach the exascale era, the size and complexity of HPC systems continues to increase, raising concerns about their manageability and sustainability. For this reason, more and more HPC centers are experimenting with fine-grained monitoring coupled with Operational Data Analytics (ODA) to optimize efficiency and effectiveness of system operations. However, while monitoring is a common reality in HPC, there is no well-stated and comprehensive list of requirements, nor matching frameworks, to support holistic and online ODA. This leads to insular ad-hoc solutions, each addressing only specific aspects of the problem. In this paper we propose Wintermute, a novel generic framework to enable online ODA on large-scale HPC installations. Its design is based on the results of a literature survey of common operational requirements. We implement Wintermute on top of the holistic DCDB monitoring system, offering a large variety of configuration options to accommodate the varying requirements of ODA applications. Moreover, Wintermute is based on a set of logical abstractions to ease the configuration of models at a large scale and maximize code re-use. We highlight Wintermute's flexibility through a series of practical case studies, each targeting a different aspect of the management of HPC systems, and then demonstrate the small resource footprint of our implementation.Comment: Accepted for publication at the 29th ACM International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2020
    corecore