6 research outputs found

    Nurse-in-the-Loop Artificial Intelligence for Precision Management of Type 2 Diabetes in a Clinical Trial Utilizing Transfer-Learned Predictive Digital Twin

    Full text link
    Background: Type 2 diabetes (T2D) is a prevalent chronic disease with a significant risk of serious health complications and negative impacts on the quality of life. Given the impact of individual characteristics and lifestyle on the treatment plan and patient outcomes, it is crucial to develop precise and personalized management strategies. Artificial intelligence (AI) provides great promise in combining patterns from various data sources with nurses' expertise to achieve optimal care. Methods: This is a 6-month ancillary study among T2D patients (n = 20, age = 57 +- 10). Participants were randomly assigned to an intervention (AI, n=10) group to receive daily AI-generated individualized feedback or a control group without receiving the daily feedback (non-AI, n=10) in the last three months. The study developed an online nurse-in-the-loop predictive control (ONLC) model that utilizes a predictive digital twin (PDT). The PDT was developed using a transfer-learning-based Artificial Neural Network. The PDT was trained on participants self-monitoring data (weight, food logs, physical activity, glucose) from the first three months, and the online control algorithm applied particle swarm optimization to identify impactful behavioral changes for maintaining the patient's glucose and weight levels for the next three months. The ONLC provided the intervention group with individualized feedback and recommendations via text messages. The PDT was re-trained weekly to improve its performance. Findings: The trained ONLC model achieved >=80% prediction accuracy across all patients while the model was tuned online. Participants in the intervention group exhibited a trend of improved daily steps and stable or improved total caloric and total carb intake as recommended.Comment: Submitted for revie

    Personalized glucose forecasting for type 2 diabetes using data assimilation

    Get PDF
    Type 2 diabetes leads to premature death and reduced quality of life for 8% of Americans. Nutrition management is critical to maintaining glycemic control, yet it is difficult to achieve due to the high individual differences in glycemic response to nutrition. Anticipating glycemic impact of different meals can be challenging not only for individuals with diabetes, but also for expert diabetes educators. Personalized computational models that can accurately forecast an impact of a given meal on an individual’s blood glucose levels can serve as the engine for a new generation of decision support tools for individuals with diabetes. However, to be useful in practice, these computational engines need to generate accurate forecasts based on limited datasets consistent with typical self-monitoring practices of individuals with type 2 diabetes. This paper uses three forecasting machines: (i) data assimilation, a technique borrowed from atmospheric physics and engineering that uses Bayesian modeling to infuse data with human knowledge represented in a mechanistic model, to generate real-time, personalized, adaptable glucose forecasts; (ii) model averaging of data assimilation output; and (iii) dynamical Gaussian process model regression. The proposed data assimilation machine, the primary focus of the paper, uses a modified dual unscented Kalman filter to estimate states and parameters, personalizing the mechanistic models. Model selection is used to make a personalized model selection for the individual and their measurement characteristics. The data assimilation forecasts are empirically evaluated against actual postprandial glucose measurements captured by individuals with type 2 diabetes, and against predictions generated by experienced diabetes educators after reviewing a set of historical nutritional records and glucose measurements for the same individual. The evaluation suggests that the data assimilation forecasts compare well with specific glucose measurements and match or exceed in accuracy expert forecasts. We conclude by examining ways to present predictions as forecast-derived range quantities and evaluate the comparative advantages of these ranges

    A Simple Modeling Framework For Prediction In The Human Glucose-Insulin System

    Full text link
    In this paper, we build a new, simple, and interpretable mathematical model to describe the human glucose-insulin system. Our ultimate goal is the robust control of the blood glucose (BG) level of individuals to a desired healthy range, by means of adjusting the amount of nutrition and/or external insulin appropriately. By constructing a simple yet flexible model class, with interpretable parameters, this general model can be specialized to work in different settings, such as type 2 diabetes mellitus (T2DM) and intensive care unit (ICU); different choices of appropriate model functions describing uptake of nutrition and removal of glucose differentiate between the models. In both cases, the available data is sparse and collected in clinical settings, major factors that have constrained our model choice to the simple form adopted. The model has the form of a linear stochastic differential equation (SDE) to describe the evolution of the BG level. The model includes a term quantifying glucose removal from the bloodstream through the regulation system of the human body, and another two terms representing the effect of nutrition and externally delivered insulin. The parameters entering the equation must be learned in a patient-specific fashion, leading to personalized models. We present numerical results on patient-specific parameter estimation and future BG level forecasting in T2DM and ICU settings. The resulting model leads to the prediction of the BG level as an expected value accompanied by a band around this value which accounts for uncertainties in the prediction. Such predictions, then, have the potential for use as part of control systems which are robust to model imperfections and noisy data. Finally, a comparison of the predictive capability of the model with two different models specifically built for T2DM and ICU contexts is also performed.Comment: 47 pages, 9 figures, 7 table
    corecore