2,289 research outputs found

    The Multimodal Sentiment Analysis in Car Reviews (MuSe-CaR) Dataset: Collection, Insights and Improvements

    Full text link
    Truly real-life data presents a strong, but exciting challenge for sentiment and emotion research. The high variety of possible `in-the-wild' properties makes large datasets such as these indispensable with respect to building robust machine learning models. A sufficient quantity of data covering a deep variety in the challenges of each modality to force the exploratory analysis of the interplay of all modalities has not yet been made available in this context. In this contribution, we present MuSe-CaR, a first of its kind multimodal dataset. The data is publicly available as it recently served as the testing bed for the 1st Multimodal Sentiment Analysis Challenge, and focused on the tasks of emotion, emotion-target engagement, and trustworthiness recognition by means of comprehensively integrating the audio-visual and language modalities. Furthermore, we give a thorough overview of the dataset in terms of collection and annotation, including annotation tiers not used in this year's MuSe 2020. In addition, for one of the sub-challenges - predicting the level of trustworthiness - no participant outperformed the baseline model, and so we propose a simple, but highly efficient Multi-Head-Attention network that exceeds using multimodal fusion the baseline by around 0.2 CCC (almost 50 % improvement).Comment: accepted versio

    Multimodal Emotion Recognition among Couples from Lab Settings to Daily Life using Smartwatches

    Full text link
    Couples generally manage chronic diseases together and the management takes an emotional toll on both patients and their romantic partners. Consequently, recognizing the emotions of each partner in daily life could provide an insight into their emotional well-being in chronic disease management. The emotions of partners are currently inferred in the lab and daily life using self-reports which are not practical for continuous emotion assessment or observer reports which are manual, time-intensive, and costly. Currently, there exists no comprehensive overview of works on emotion recognition among couples. Furthermore, approaches for emotion recognition among couples have (1) focused on English-speaking couples in the U.S., (2) used data collected from the lab, and (3) performed recognition using observer ratings rather than partner's self-reported / subjective emotions. In this body of work contained in this thesis (8 papers - 5 published and 3 currently under review in various journals), we fill the current literature gap on couples' emotion recognition, develop emotion recognition systems using 161 hours of data from a total of 1,051 individuals, and make contributions towards taking couples' emotion recognition from the lab which is the status quo, to daily life. This thesis contributes toward building automated emotion recognition systems that would eventually enable partners to monitor their emotions in daily life and enable the delivery of interventions to improve their emotional well-being.Comment: PhD Thesis, 2022 - ETH Zuric

    Bridging Emotion Role Labeling and Appraisal-based Emotion Analysis

    Full text link
    The term emotion analysis in text subsumes various natural language processing tasks which have in common the goal to enable computers to understand emotions. Most popular is emotion classification in which one or multiple emotions are assigned to a predefined textual unit. While such setting is appropriate to identify the reader's or author's emotion, emotion role labeling adds the perspective of mentioned entities and extracts text spans that correspond to the emotion cause. The underlying emotion theories agree on one important point; that an emotion is caused by some internal or external event and comprises several subcomponents, including the subjective feeling and a cognitive evaluation. We therefore argue that emotions and events are related in two ways. (1) Emotions are events; and this perspective is the fundament in NLP for emotion role labeling. (2) Emotions are caused by events; a perspective that is made explicit with research how to incorporate psychological appraisal theories in NLP models to interpret events. These two research directions, role labeling and (event-focused) emotion classification, have by and large been tackled separately. We contributed to both directions with the projects SEAT (Structured Multi-Domain Emotion Analysis from Text) and CEAT (Computational Event Evaluation based on Appraisal Theories for Emotion Analysis), both funded by the German Research Foundation. In this paper, we consolidate the findings and point out open research questions.Comment: under review for https://bigpictureworkshop.com

    A Proposal for Multimodal Emotion Recognition Using Aural Transformers and Action Units on RAVDESS Dataset

    Get PDF
    The work leading to these results was supported by the Spanish Ministry of Science and Innovation through the projects GOMINOLA (PID2020-118112RB-C21 and PID2020-118112RB-C22, funded by MCIN/AEI/10.13039/501100011033), CAVIAR (TEC2017-84593-C2-1-R, funded by MCIN/AEI/10.13039/501100011033/FEDER "Una manera de hacer Europa"), and AMIC-PoC (PDC2021-120846-C42, funded by MCIN/AEI/10.13039/501100011033 and by "the European Union "NextGenerationEU/PRTR"). This research also received funding from the European Union's Horizon2020 research and innovation program under grant agreement No 823907 (http://menhir-project.eu, accessed on 17 November 2021). Furthermore, R.K.'s research was supported by the Spanish Ministry of Education (FPI grant PRE2018-083225).Emotion recognition is attracting the attention of the research community due to its multiple applications in different fields, such as medicine or autonomous driving. In this paper, we proposed an automatic emotion recognizer system that consisted of a speech emotion recognizer (SER) and a facial emotion recognizer (FER). For the SER, we evaluated a pre-trained xlsr-Wav2Vec2.0 transformer using two transfer-learning techniques: embedding extraction and fine-tuning. The best accuracy results were achieved when we fine-tuned the whole model by appending a multilayer perceptron on top of it, confirming that the training was more robust when it did not start from scratch and the previous knowledge of the network was similar to the task to adapt. Regarding the facial emotion recognizer, we extracted the Action Units of the videos and compared the performance between employing static models against sequential models. Results showed that sequential models beat static models by a narrow difference. Error analysis reported that the visual systems could improve with a detector of high-emotional load frames, which opened a new line of research to discover new ways to learn from videos. Finally, combining these two modalities with a late fusion strategy, we achieved 86.70% accuracy on the RAVDESS dataset on a subject-wise 5-CV evaluation, classifying eight emotions. Results demonstrated that these modalities carried relevant information to detect users’ emotional state and their combination allowed to improve the final system performance.Spanish Government PID2020-118112RB-C21 PID2020-118112RB-C22 MCIN/AEI/10.13039/501100011033 TEC2017-84593-C2-1-R MCIN/AEI/10.13039/501100011033/FEDER PDC2021-120846-C42European Union "NextGenerationEU/PRTR")European Union's Horizon2020 research and innovation program 823907German Research Foundation (DFG) PRE2018-08322

    Computational Intelligence and Human- Computer Interaction: Modern Methods and Applications

    Get PDF
    The present book contains all of the articles that were accepted and published in the Special Issue of MDPI’s journal Mathematics titled "Computational Intelligence and Human–Computer Interaction: Modern Methods and Applications". This Special Issue covered a wide range of topics connected to the theory and application of different computational intelligence techniques to the domain of human–computer interaction, such as automatic speech recognition, speech processing and analysis, virtual reality, emotion-aware applications, digital storytelling, natural language processing, smart cars and devices, and online learning. We hope that this book will be interesting and useful for those working in various areas of artificial intelligence, human–computer interaction, and software engineering as well as for those who are interested in how these domains are connected in real-life situations

    Improving the Generalizability of Speech Emotion Recognition: Methods for Handling Data and Label Variability

    Full text link
    Emotion is an essential component in our interaction with others. It transmits information that helps us interpret the content of what others say. Therefore, detecting emotion from speech is an important step towards enabling machine understanding of human behaviors and intentions. Researchers have demonstrated the potential of emotion recognition in areas such as interactive systems in smart homes and mobile devices, computer games, and computational medical assistants. However, emotion communication is variable: individuals may express emotion in a manner that is uniquely their own; different speech content and environments may shape how emotion is expressed and recorded; individuals may perceive emotional messages differently. Practically, this variability is reflected in both the audio-visual data and the labels used to create speech emotion recognition (SER) systems. SER systems must be robust and generalizable to handle the variability effectively. The focus of this dissertation is on the development of speech emotion recognition systems that handle variability in emotion communications. We break the dissertation into three parts, according to the type of variability we address: (I) in the data, (II) in the labels, and (III) in both the data and the labels. Part I: The first part of this dissertation focuses on handling variability present in data. We approximate variations in environmental properties and expression styles by corpus and gender of the speakers. We find that training on multiple corpora and controlling for the variability in gender and corpus using multi-task learning result in more generalizable models, compared to the traditional single-task models that do not take corpus and gender variability into account. Another source of variability present in the recordings used in SER is the phonetic modulation of acoustics. On the other hand, phonemes also provide information about the emotion expressed in speech content. We discover that we can make more accurate predictions of emotion by explicitly considering both roles of phonemes. Part II: The second part of this dissertation addresses variability present in emotion labels, including the differences between emotion expression and perception, and the variations in emotion perception. We discover that it is beneficial to jointly model both the perception of others and how one perceives one’s own expression, compared to focusing on either one. Further, we show that the variability in emotion perception is a modelable signal and can be captured using probability distributions that describe how groups of evaluators perceive emotional messages. Part III: The last part of this dissertation presents methods that handle variability in both data and labels. We reduce the data variability due to non-emotional factors using deep metric learning and model the variability in emotion perception using soft labels. We propose a family of loss functions and show that by pairing examples that potentially vary in expression styles and lexical content and preserving the real-valued emotional similarity between them, we develop systems that generalize better across datasets and are more robust to over-training. These works demonstrate the importance of considering data and label variability in the creation of robust and generalizable emotion recognition systems. We conclude this dissertation with the following future directions: (1) the development of real-time SER systems; (2) the personalization of general SER systems.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147639/1/didizbq_1.pd
    • 

    corecore