7 research outputs found

    DoS and DDoS vulnerability of IoT: A review

    Get PDF
    Internet of Things (IoT) paradigm became particularly popular in the last couple of years in such a way that the devices are present in almost every home across the globe. Using cheap components one can connect any device to the internet and enable information collecting from the environment, making everyday life a lot easier. Even though it does bring multiple advantages to the table, at the same time it brings certain challenges and vulnerabilities that need to be addressed. In this paper we focus on Distributed Denial of Service (DDoS) and Denial of Service (DoS) attacks and we provide a review of the current architecture of Internet of Things which is prone to these

    Edge-Detect: Edge-centric Network Intrusion Detection using Deep Neural Network

    Full text link
    Edge nodes are crucial for detection against multitudes of cyber attacks on Internet-of-Things endpoints and is set to become part of a multi-billion industry. The resource constraints in this novel network infrastructure tier constricts the deployment of existing Network Intrusion Detection System with Deep Learning models (DLM). We address this issue by developing a novel light, fast and accurate 'Edge-Detect' model, which detects Distributed Denial of Service attack on edge nodes using DLM techniques. Our model can work within resource restrictions i.e. low power, memory and processing capabilities, to produce accurate results at a meaningful pace. It is built by creating layers of Long Short-Term Memory or Gated Recurrent Unit based cells, which are known for their excellent representation of sequential data. We designed a practical data science pipeline with Recurring Neural Network to learn from the network packet behavior in order to identify whether it is normal or attack-oriented. The model evaluation is from deployment on actual edge node represented by Raspberry Pi using current cybersecurity dataset (UNSW2015). Our results demonstrate that in comparison to conventional DLM techniques, our model maintains a high testing accuracy of 99% even with lower resource utilization in terms of cpu and memory. In addition, it is nearly 3 times smaller in size than the state-of-art model and yet requires a much lower testing time

    High-performance, Platform-Independent DDoS Detection for IoT Ecosystems

    Get PDF
    Most Distributed Denial of Service (DDoS) detection and mitigation strategies for Internet of Things (IoT) are based on a remote cloud server or purpose-built middlebox executing complex intrusion detection methods, that impose stringent scalability and performance requirements on the IoT due to the vast amounts of traffic and devices to be handled. In this paper, we present an edge-based detection scheme using BPFabric, a high-speed, programmable data-plane switch architecture, and lightweight network functions to execute upstream anomaly detection. The proposed detection scheme ensures fast detection of DDoS attacks originated from IoT devices, while guaranteeing minimum resource usage and processing overhead. Our solution was compared against two widespread coarse-grained detection techniques, showing detection delays under 5ms, an overall accuracy of 93 − 95% and a bandwidth overhead of less than 1%

    Edge computing infrastructure for 5G networks: a placement optimization solution

    Get PDF
    This thesis focuses on how to optimize the placement of the Edge Computing infrastructure for upcoming 5G networks. To this aim, the core contributions of this research are twofold: 1) a novel heuristic called Hybrid Simulated Annealing to tackle the NP-hard nature of the problem and, 2) a framework called EdgeON providing a practical tool for real-life deployment optimization. In more detail, Edge Computing has grown into a key solution to 5G latency, reliability and scalability requirements. By bringing computing, storage and networking resources to the edge of the network, delay-sensitive applications, location-aware systems and upcoming real-time services leverage the benefits of a reduced physical and logical path between the end-user and the data or service host. Nevertheless, the edge node placement problem raises critical concerns regarding deployment and operational expenditures (i.e., mainly due to the number of nodes to be deployed), current backhaul network capabilities and non-technical placement limitations. Common approaches to the placement of edge nodes are based on: Mobile Edge Computing (MEC), where the processing capabilities are deployed at the Radio Access Network nodes and Facility Location Problem variations, where a simplistic cost function is used to determine where to optimally place the infrastructure. However, these methods typically lack the flexibility to be used for edge node placement under the strict technical requirements identified for 5G networks. They fail to place resources at the network edge for 5G ultra-dense networking environments in a network-aware manner. This doctoral thesis focuses on rigorously defining the Edge Node Placement Problem (ENPP) for 5G use cases and proposes a novel framework called EdgeON aiming at reducing the overall expenses when deploying and operating an Edge Computing network, taking into account the usage and characteristics of the in-place backhaul network and the strict requirements of a 5G-EC ecosystem. The developed framework implements several placement and optimization strategies thoroughly assessing its suitability to solve the network-aware ENPP. The core of the framework is an in-house developed heuristic called Hybrid Simulated Annealing (HSA), seeking to address the high complexity of the ENPP while avoiding the non-convergent behavior of other traditional heuristics (i.e., when applied to similar problems). The findings of this work validate our approach to solve the network-aware ENPP, the effectiveness of the heuristic proposed and the overall applicability of EdgeON. Thorough performance evaluations were conducted on the core placement solutions implemented revealing the superiority of HSA when compared to widely used heuristics and common edge placement approaches (i.e., a MEC-based strategy). Furthermore, the practicality of EdgeON was tested through two main case studies placing services and virtual network functions over the previously optimally placed edge nodes. Overall, our proposal is an easy-to-use, effective and fully extensible tool that can be used by operators seeking to optimize the placement of computing, storage and networking infrastructure at the users’ vicinity. Therefore, our main contributions not only set strong foundations towards a cost-effective deployment and operation of an Edge Computing network, but directly impact the feasibility of upcoming 5G services/use cases and the extensive existing research regarding the placement of services and even network service chains at the edge
    corecore