130,049 research outputs found

    Substructure Discovery Using Minimum Description Length and Background Knowledge

    Full text link
    The ability to identify interesting and repetitive substructures is an essential component to discovering knowledge in structural data. We describe a new version of our SUBDUE substructure discovery system based on the minimum description length principle. The SUBDUE system discovers substructures that compress the original data and represent structural concepts in the data. By replacing previously-discovered substructures in the data, multiple passes of SUBDUE produce a hierarchical description of the structural regularities in the data. SUBDUE uses a computationally-bounded inexact graph match that identifies similar, but not identical, instances of a substructure and finds an approximate measure of closeness of two substructures when under computational constraints. In addition to the minimum description length principle, other background knowledge can be used by SUBDUE to guide the search towards more appropriate substructures. Experiments in a variety of domains demonstrate SUBDUE's ability to find substructures capable of compressing the original data and to discover structural concepts important to the domain. Description of Online Appendix: This is a compressed tar file containing the SUBDUE discovery system, written in C. The program accepts as input databases represented in graph form, and will output discovered substructures with their corresponding value.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    Towards automatic construction of domain ontologies: Application to ISA88 and assessment

    Get PDF
    Process Systems Engineering has shown a growing interest on ontologies to develop knowledge models, organize information, and produce software accordingly. Although software tools supporting the structure of ontologies exist, developing a PSE ontology is a creative procedure to be performed by human experts from each specific domain. This work explores the opportunities for automatic construction of domain ontologies. Specialised documentation can be selected and automatically parsed; next pattern recognition methods can be used to extract concepts and relations; finally, supervision is required to validate the automatic outcome, as well as to complete the task. The bulk of the development of an ontology is expected to result from the application of systematic procedures, thus the development time will be significantly reduced. Automatic methods were prepared and applied to the development of an ontology for batch processing based on the ISA88 standard. Methods are described and commented, and results are discussed from the comparison with a previous ontology for the same domain manually developed.Postprint (published version

    The meaning of meaning-fallibilism

    Get PDF
    Much discussion of meaning by philosophers over the last 300 years has been predicated on a Cartesian first-person authority (i.e. ‘infallibilism’) with respect to what one’s terms mean. However this has problems making sense of the way the meanings of scientific terms develop, an increase in scientific knowledge over and above scientists’ ability to quantify over new entities. Although a recent conspicuous embrace of rigid designation has broken up traditional meaning-infallibilism to some extent, this new dimension to the meaning of terms such as ‘water’ is yet to receive a principled epistemological undergirding (beyond the deliverances of ‘intuition’ with respect to certain somewhat unusual possible worlds). Charles Peirce’s distinctive, naturalistic philosophy of language is mined to provide a more thoroughly fallibilist, and thus more realist, approach to meaning, with the requisite epistemology. Both his pragmatism and his triadic account of representation, it is argued, produce an original approach to meaning, analysing it in processual rather than objectual terms, and opening a distinction between ‘meaning for us’, the meaning a term has at any given time for any given community and ‘meaning simpliciter’, the way use of a given term develops over time (often due to a posteriori input from the world which is unable to be anticipated in advance). This account provocatively undermines a certain distinction between ‘semantics’ and ‘ontology’ which is often taken for granted in discussions of realism

    Relational Justice

    Get PDF

    Learning Deep Visual Object Models From Noisy Web Data: How to Make it Work

    Full text link
    Deep networks thrive when trained on large scale data collections. This has given ImageNet a central role in the development of deep architectures for visual object classification. However, ImageNet was created during a specific period in time, and as such it is prone to aging, as well as dataset bias issues. Moving beyond fixed training datasets will lead to more robust visual systems, especially when deployed on robots in new environments which must train on the objects they encounter there. To make this possible, it is important to break free from the need for manual annotators. Recent work has begun to investigate how to use the massive amount of images available on the Web in place of manual image annotations. We contribute to this research thread with two findings: (1) a study correlating a given level of noisily labels to the expected drop in accuracy, for two deep architectures, on two different types of noise, that clearly identifies GoogLeNet as a suitable architecture for learning from Web data; (2) a recipe for the creation of Web datasets with minimal noise and maximum visual variability, based on a visual and natural language processing concept expansion strategy. By combining these two results, we obtain a method for learning powerful deep object models automatically from the Web. We confirm the effectiveness of our approach through object categorization experiments using our Web-derived version of ImageNet on a popular robot vision benchmark database, and on a lifelong object discovery task on a mobile robot.Comment: 8 pages, 7 figures, 3 table
    • 

    corecore