10,137 research outputs found

    Towards Explanatory Feedback for User Training in Brain–Computer Interfaces

    Get PDF
    International audienceDespite their potential for many applications, Brain-Computer Interfaces (BCI) are still rarely used due to their low reliability and long training. These limitations are partly due to inappropriate training protocols, which includes the feedback provided to the user. While feedback should theoretically be explanatory, motivating and meaningful, current BCI feedback is usually boring, corrective only and difficult to understand. In this study, different features of the electroencephalogram signals were explored to be used as a richer, explanatory BCI feedback. First, based on offline mental imagery BCI data, muscular relaxation was notably found to be negatively correlated to BCI performance. Second, this study reports on an online BCI evaluation using muscular relaxation as additional feedback. While this additional feedback did not lead to significant change in BCI performance, this study showed that multiple feedbacks can be used without deteriorating performance and provided interesting insights for explanatory BCI feedback design

    Predicting mental imagery based BCI performance from personality, cognitive profile and neurophysiological patterns

    Get PDF
    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy— EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user

    PRESENCE: A human-inspired architecture for speech-based human-machine interaction

    No full text
    Recent years have seen steady improvements in the quality and performance of speech-based human-machine interaction driven by a significant convergence in the methods and techniques employed. However, the quantity of training data required to improve state-of-the-art systems seems to be growing exponentially and performance appears to be asymptotic to a level that may be inadequate for many real-world applications. This suggests that there may be a fundamental flaw in the underlying architecture of contemporary systems, as well as a failure to capitalize on the combinatorial properties of human spoken language. This paper addresses these issues and presents a novel architecture for speech-based human-machine interaction inspired by recent findings in the neurobiology of living systems. Called PRESENCE-"PREdictive SENsorimotor Control and Emulation" - this new architecture blurs the distinction between the core components of a traditional spoken language dialogue system and instead focuses on a recursive hierarchical feedback control structure. Cooperative and communicative behavior emerges as a by-product of an architecture that is founded on a model of interaction in which the system has in mind the needs and intentions of a user and a user has in mind the needs and intentions of the system

    Analysis of research methodologies for neurorehabilitation

    Get PDF

    Implementing Performance Accommodation Mechanisms in Online BCI for Stroke Rehabilitation: A Study on Perceived Control and Frustration

    Get PDF
    Brain–computer interfaces (BCIs) are successfully used for stroke rehabilitation, but the training is repetitive and patients can lose the motivation to train. Moreover, controlling the BCI may be difficult, which causes frustration and leads to even worse control. Patients might not adhere to the regimen due to frustration and lack of motivation/engagement. The aim of this study was to implement three performance accommodation mechanisms (PAMs) in an online motor imagery-based BCI to aid people and evaluate their perceived control and frustration. Nineteen healthy participants controlled a fishing game with a BCI in four conditions: (1) no help, (2) augmented success (augmented successful BCI-attempt), (3) mitigated failure (turn unsuccessful BCI-attempt into neutral output), and (4) override input (turn unsuccessful BCI-attempt into successful output). Each condition was followed-up and assessed with Likert-scale questionnaires and a post-experiment interview. Perceived control and frustration were best predicted by the amount of positive feedback the participant received. PAM-help increased perceived control for poor BCI-users but decreased it for good BCI-users. The input override PAM frustrated the users the most, and they differed in how they wanted to be helped. By using PAMs, developers have more freedom to create engaging stroke rehabilitation games

    Digital library access for illiterate users

    Get PDF
    The problems that illiteracy poses in accessing information are gaining attention from the research community. Issues currently being explored include developing an understanding of the barriers to information acquisition experienced by different groups of illiterate information seekers; creating technology, such as software interfaces, that support illiterate users effectively; and tailoring content to increase its accessibility. We have taken a formative evaluation approach to developing and evaluating a digital library interface for illiterate users. We discuss modifications to the Greenstone platform, describe user studies and outline resulting design implications
    corecore