151,450 research outputs found

    Guided patch-wise nonlocal SAR despeckling

    Full text link
    We propose a new method for SAR image despeckling which leverages information drawn from co-registered optical imagery. Filtering is performed by plain patch-wise nonlocal means, operating exclusively on SAR data. However, the filtering weights are computed by taking into account also the optical guide, which is much cleaner than the SAR data, and hence more discriminative. To avoid injecting optical-domain information into the filtered image, a SAR-domain statistical test is preliminarily performed to reject right away any risky predictor. Experiments on two SAR-optical datasets prove the proposed method to suppress very effectively the speckle, preserving structural details, and without introducing visible filtering artifacts. Overall, the proposed method compares favourably with all state-of-the-art despeckling filters, and also with our own previous optical-guided filter

    Local helioseismology and the active Sun

    Full text link
    The goal of local helioseismology is to elicit three-dimensional information about the sub-surface (or far-side) structure and dynamics of the Sun from observations of the helioseismic wave field at the surface. The physical quantities of interest include flows, sound-speed deviations and magnetic fields. However, strong surface magnetic fields induce large perturbations to the waves making inversions difficult to interpret. The purpose of this paper is to outline the methods of analysis used in local helioseismology, review discoveries associated with the magnetic Sun made using local helioseismology from the past three years, and highlight the efforts towards imaging the interior in the presence of strong magnetic fields.Comment: 6 pages, 4th HELAS International Conference, Lanzarote, Spain, 1-5 February 201

    Spin filtering and magnetoresistance in ballistic tunnel junctions

    Full text link
    We theoretically investigate magnetoresistance (MR) effects in connection with spin filtering in quantum-coherent transport through tunnel junctions based on non-magnetic/semimagnetic heterostructures. We find that spin filtering in conjunction with the suppression/enhancement of the spin-dependent Fermi seas in semimagnetic contacts gives rise to (i) spin-split kinks in the MR of single barriers and (ii) a robust beating pattern in the MR of double barriers with a semimagnetic well. We believe these are unique signatures for quantum filtering.Comment: Added references + corrected typo

    Minimum requirements for feedback enhanced force sensing

    Full text link
    The problem of estimating an unknown force driving a linear oscillator is revisited. When using linear measurement, feedback is often cited as a mechanism to enhance bandwidth or sensitivity. We show that as long as the oscillator dynamics are known, there exists a real-time estimation strategy that reproduces the same measurement record as any arbitrary feedback protocol. Consequently some form of nonlinearity is required to gain any advantage beyond estimation alone. This result holds true in both quantum and classical systems, with non-stationary forces and feedback, and in the general case of non-Gaussian and correlated noise. Recently, feedback enhanced incoherent force sensing has been demonstrated [Nat. Nano. \textbf{7}, 509 (2012)], with the enhancement attributed to a feedback induced modification of the mechanical susceptibility. As a proof-of-principle we experimentally reproduce this result through straightforward filtering.Comment: 5 pages + 2 pages of Supplementary Informatio

    Deposition of particle pollution in turbulent forced-air cooling

    Get PDF
    Rotating fans are the prevalent forced cooling method for heat generating equipment and buildings. As the concentration of atmospheric pollutants has increased, the accumulation of microscale and nanoscale particles on surfaces due to advection-diffusion has led to adverse mechanical, chemical and electrical effects that increase cooling demands and reduce the reliability of electronic equipment. Here, we uncover the mechanisms leading to enhanced deposition of particle matter (PM10_{10} and PM2.5_{2.5}) on surfaces due to turbulent axial fan flows operating at Reynolds numbers, Re∼105Re \sim 10^5. Qualitative observations of long-term particle deposition from the field were combined with \textit{in situ} particle image velocimetry on a telecommunications base station, revealing the dominant role of impingement velocity and angle. Near-wall momentum transport for 10<y+<5010 < y^+ < 50 were explored using a quadrant analysis to uncover the contributions of turbulent events that promote particle deposition through turbulent diffusion and eddy impaction. By decomposing these events, the local transport behaviour of fine particles from the bulk flow to the surface has been categorised. The transition from deposition to clean surfaces was accompanied by a decrease in shear velocity, turbulent stresses, and particle sweep motions with lower flux in the wall-normal direction. Finally, using these insights, selective filtering of coarse particles was found to promote the conditions that enhance the deposition of fine particle matter

    Towards an understanding of jet substructure

    Get PDF
    We present first analytic, resummed calculations of the rates at which widespread jet substructure tools tag QCD jets. As well as considering trimming, pruning and the mass-drop tagger, we introduce modified tools with improved analytical and phenomenological behaviours. Most taggers have double logarithmic resummed structures. The modified mass-drop tagger is special in that it involves only single logarithms, and is free from a complex class of terms known as non-global logarithms. The modification of pruning brings an improved ability to discriminate between the different colour structures that characterise signal and background. As we outline in an extensive phenomenological discussion, these results provide valuable insight into the performance of existing tools and help lay robust foundations for future substructure studies.Comment: 52 pages, 18 figures. Version to be published in JHEP: added an Appendix about Y-trimming and addressed several points raised by the refere
    • …
    corecore