526 research outputs found

    Optimal Resource Allocation for Network Protection Against Spreading Processes

    Get PDF
    We study the problem of containing spreading processes in arbitrary directed networks by distributing protection resources throughout the nodes of the network. We consider two types of protection resources are available: (i) Preventive resources able to defend nodes against the spreading (such as vaccines in a viral infection process), and (ii) corrective resources able to neutralize the spreading after it has reached a node (such as antidotes). We assume that both preventive and corrective resources have an associated cost and study the problem of finding the cost-optimal distribution of resources throughout the nodes of the network. We analyze these questions in the context of viral spreading processes in directed networks. We study the following two problems: (i) Given a fixed budget, find the optimal allocation of preventive and corrective resources in the network to achieve the highest level of containment, and (ii) when a budget is not specified, find the minimum budget required to control the spreading process. We show that both resource allocation problems can be solved in polynomial time using Geometric Programming (GP) for arbitrary directed graphs of nonidentical nodes and a wide class of cost functions. Furthermore, our approach allows to optimize simultaneously over both preventive and corrective resources, even in the case of cost functions being node-dependent. We illustrate our approach by designing optimal protection strategies to contain an epidemic outbreak that propagates through an air transportation network

    A Bi-Level Multi-Objective Approach for Web Service Design Defects Detection

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152453/1/JSS_WSBi_Level__Copy_fv.pd

    Information overload in structured data

    Get PDF
    Information overload refers to the difficulty of making decisions caused by too much information. In this dissertation, we address information overload problem in two separate structured domains, namely, graphs and text. Graph kernels have been proposed as an efficient and theoretically sound approach to compute graph similarity. They decompose graphs into certain sub-structures, such as subtrees, or subgraphs. However, existing graph kernels suffer from a few drawbacks. First, the dimension of the feature space associated with the kernel often grows exponentially as the complexity of sub-structures increase. One immediate consequence of this behavior is that small, non-informative, sub-structures occur more frequently and cause information overload. Second, as the number of features increase, we encounter sparsity: only a few informative sub-structures will co-occur in multiple graphs. In the first part of this dissertation, we propose to tackle the above problems by exploiting the dependency relationship among sub-structures. First, we propose a novel framework that learns the latent representations of sub-structures by leveraging recent advancements in deep learning. Second, we propose a general smoothing framework that takes structural similarity into account, inspired by state-of-the-art smoothing techniques used in natural language processing. Both the proposed frameworks are applicable to popular graph kernel families, and achieve significant performance improvements over state-of-the-art graph kernels. In the second part of this dissertation, we tackle information overload in text. We first focus on a popular social news aggregation website, Reddit, and design a submodular recommender system that tailors a personalized frontpage for individual users. Second, we propose a novel submodular framework to summarize videos, where both transcript and comments are available. Third, we demonstrate how to apply filtering techniques to select a small subset of informative features from virtual machine logs in order to predict resource usage

    A Transformative Concept: From Data Being Passive Objects to Data Being Active Subjects

    Get PDF
    The exploitation of potential societal benefits of Earth observations is hampered by users having to engage in often tedious processes to discover data and extract information and knowledge. A concept is introduced for a transition from the current perception of data as passive objects (DPO) to a new perception of data as active subjects (DAS). This transition would greatly increase data usage and exploitation, and support the extraction of knowledge from data products. Enabling the data subjects to actively reach out to potential users would revolutionize data dissemination and sharing and facilitate collaboration in user communities. The three core elements of the transformative DAS concept are: (1) intelligent semantic data agents (ISDAs) that have the capabilities to communicate with their human and digital environment. Each ISDA provides a voice to the data product it represents. It has comprehensive knowledge of the represented product including quality, uncertainties, access conditions, previous uses, user feedbacks, etc., and it can engage in transactions with users. (2) A knowledge base that constructs extensive graphs presenting a comprehensive picture of communities of people, applications, models, tools, and resources and provides tools for the analysis of these graphs. (3) An interaction platform that links the ISDAs to the human environment and facilitates transaction including discovery of products, access to products and derived knowledge, modifications and use of products, and the exchange of feedback on the usage. This platform documents the transactions in a secure way maintaining full provenance
    • …
    corecore