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“If you look at the cycles of the moon, it starts as a thin crescent and then

gradually waxes until it becomes full; then it gradually wanes back into an-

other crescent and then it is gone. The moon reflects sunlight like humans

reflect information. We wax and wane and when we become full moons, our

egos are full. We think we have this knowledge when in fact, the information

we have is pure. And how it reflects or shines off of us, is something we take

credit for as though the moon could take credit for its brightness when, in fact,

it is only reflecting light from the sun. We have to understand that we are ego-

less just as the moon is without light. It and we are simply reflectors. The ego

is not responsible for the information. It can reflect the information in creative

ways, but the information itself is pure.” –Maynard James Keenan
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ABSTRACT

Yanardag Delul, Pinar PhD, Purdue University, May 2016. Information Overload in Struc-

tured Data. Major Professors: S.V.N. Vishwanathan, Jennifer Neville.

Information overload refers to the difficulty of making decisions caused by too much

information. In this dissertation, we address information overload problem in two separate

structured domains, namely, graphs and text.

Graph kernels have been proposed as an efficient and theoretically sound approach to

compute graph similarity. They decompose graphs into certain sub-structures, such as sub-

trees, or subgraphs. However, existing graph kernels suffer from a few drawbacks. First,

the dimension of the feature space associated with the kernel often grows exponentially as

the complexity of sub-structures increase. One immediate consequence of this behavior is

that small, non-informative, sub-structures occur more frequently and cause information

overload. Second, as the number of features increase, we encounter sparsity: only a few

informative sub-structures will co-occur in multiple graphs. In the first part of this disser-

tation, we propose to tackle the above problems by exploiting the dependency relationship

among sub-structures. First, we propose a novel framework that learns the latent represen-

tations of sub-structures by leveraging recent advancements in deep learning. Second, we

propose a general smoothing framework that takes structural similarity into account, in-

spired by state-of-the-art smoothing techniques used in natural language processing. Both

the proposed frameworks are applicable to popular graph kernel families, and achieve sig-

nificant performance improvements over state-of-the-art graph kernels.

In the second part of this dissertation, we tackle information overload in text. We

first focus on a popular social news aggregation website, Reddit, and design a submodular

recommender system that tailors a personalized frontpage for individual users. Second, we

propose a novel submodular framework to summarize videos, where both transcript and
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comments are available. Third, we demonstrate how to apply filtering techniques to select

a small subset of informative features from virtual machine logs in order to predict resource

usage.
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1 INTRODUCTION

Information overload refers to the difficulty of making decisions caused by too much in-

formation. An example of information overload can be found as early as 1st century A.D.,

when the Roman rhetorician and writer Seneca the Elder commented that “the abundance

of books is distraction” [1]. Today, Seneca’s distraction that is caused by information over-

load is present in nearly every domain, from online news aggregators to social networks,

question/answering platforms to system logs, and even in biological networks.

Information overload affects users on the web as well as systems, as both are interfered

with their ability to filter and process substantial amount of new observations. In the recent

years, there has been a significant increase in the amount of content generated daily, which

forces both users and systems to cope with information overload. For instance, there are

over 850 thousand communities on Reddit [2], over 500 million tweets generated daily on

Twitter [3], and hundreds of gigabytes of system logs generated by virtual machines on

VMware’s cloud services [4]. One of the common causes of information overload problem

is the lack of methods for accurately comparing and processing different kinds of obser-

vations. In this dissertation, we address these challenges in two separate domains: (1)

information overload in graphs and (2) information overload in text.

1.1 Information Overload in Graphs

Graphs are universal data structures that model a network of relationships between

objects. In particular, they offer a flexible and natural way to represent data in various

domains, including social networks, bioinformatics, chemoinformatics and robotics. We

list some of the important fields of application for graphs in the following.
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edges represent bonds between them. This approach is especially used in chemoinformatics

to model characteristics of molecules from their graph structures, such as toxicity [9].

Systems This is another area where graph structures are frequently used. For instance,

a computer program can be represented as a graph, so-called Program Dependence Graph

(PDG) [10] where nodes represent statements or expressions, and edges represent data val-

ues or control conditions which execution of the program depends on. This representation

is then used to perform several tasks including optimizing compilers and improve paral-

lelism [10].

One of the central algorithmic problems involving graphs is measuring the similar-

ity between two graphs. To illustrate one example where graph similarity can be useful,

consider the problem of identifying a sub-community (also referred as subreddits) on Red-

dit. To tackle this problem, one can represent an online discussion thread as a graph in

which nodes represent users, and edges represent whether two users interact, for instance,

by responding to each others comments (see Figure 1.1). The task is then to predict which

sub-community a discussion thread belongs to by analyzing its communication graph. Sim-

ilarly, in bioinformatics, one might be interested in the problem of identifying whether a

given protein is an enzyme or not. In this case, the secondary structure of a protein is rep-

resented as a graph in which nodes correspond to atoms and edges represent the chemical

bonds between atoms. If the graph structure of the protein is similar to the known enzymes,

one can predict that the given graph is also an enzyme [11]. Graph similarity can also be

utilized in systems security, where one might represent computer programs as program de-

pendence graphs and aim to predict whether a given program has security vulnerabilities

such as buffer overflows.

Meanwhile graphs offer a flexible structure to represent various type of relationships,

there is no universally accepted similarity function on graphs that can be computed effi-

ciently [12]. Perhaps the most simplest approach to identify common parts of two graphs

is to consider the set of all subgraphs between two graphs. However, given a graph with n
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Figure 1.4. Dependency schema of a set of graphlets of size k ∈ {3, 4, 5}
where G39 can be derived from G15 (similarly, G15 can be derived from G7) by

adding a new node and an edge.

1.2 Information Overload in Text

In the second half of this dissertation, we investigate a large variety of information

overload problems related to text. Text is a natural way to represent information, and

has been utilized in various domains including natural language processing (NLP), social

networks, news aggregation platforms and recommender systems [18, 19]. In the recent

years, there has been a substantial increase in amount of content generated daily in these

areas. We list some of the examples of information overload problem related to text in the

following.

Micro-blogs and blogs In the recent years, micro-blogging services became a popular

medium to spread breaking news, share personal updates, promote opinions and tracking

real time events. Micro-blogging is a form of blogging where posts typically consist of

short content such as quick comments, phrases, URLs, or media, such as images and videos.

Due to their popularity, users are easily overwhelmed by the large amount of incoming

messages. For instance, over 500 million tweets are generated daily on Twitter where users

have to cope up with a substantial information overload [3]. A similar trend also appear

in blogosphere, where users are faced with an endless torrent of information from various

sources [68].

News aggregation websites News aggregation websites such as Reddit face with infor-

mation overload both in terms of posted content, and in terms of user base. Reddit is one

of the largest community-driven content aggregation websites where approximately, 6%
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of online adults are estimated to be Reddit users [20]. Due to the increasing number of

users and interests, there are more than 850 thousand communities on Reddit devoted to

various topics. Given that thousands of new threads and discussion topics generated hourly

on thousands of communities, finding relevant and interesting content for users becomes a

difficult task.

Documents and videos Another major source of information overload is text documents

such as books and scientific articles. Transcripts of videos such as Youtube or video lectures

such as TED talks [21] form a special case of documents. Similar to the previous cases, it is

difficult for users to cope up with incoming torrent of documents and videos. For instance,

there are over 300 hours of video uploaded per minute to Youtube [22].

System logs System logs are being employed in many software applications as files that

record important events such as failures, warnings and system-specific messages. These

log files are often used by system administrators to monitor the system or analyzed by soft-

ware applications for automatically discovering patterns in the system. With the increasing

number of logs generated hourly, a natural information overload arises in this context. For

instance, Georgia Institute of Technology generates over four terabytes of data daily by

its network [23]. This issue is particularly important in cloud computing systems where a

single system can be setup to manage hundreds of thousands of virtual machines [4].

An important observation is that there is often a substantial overlap in content among

these resources, and one can reduce the information overload by selecting informative and

diverse observations. A second observation which especially holds in social network and

news aggregation websites is to consider personalized preference of the users, where we

can design a system that not only provides informative and diverse observations, but also

satisfies the specific information needs of the users.

In the second part of this dissertation, we aim to address these problems using submod-

ularity, a discrete optimization area that exhibits a natural diminishing returns property.
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In particular, we design and use submodular objective functions in which we can provide

efficient and near-optimal solutions for overcoming information overload problem.

1.3 Thesis Statement and Main Contributions

The core of this dissertation revolves around the following statement:

In many practical applications, including (1) graph mining and (2) text mining,

it is important to consider the information overload problem. By exploiting the

problem structure, one can design algorithms to select among most informative

but diverse observations to produce robust and accurate solutions.

Throughout this dissertation, we evaluate this thesis statement on a variety of problems.

In particular, the development of this hypothesis is separated into two components: (1)

Information Overload in Graphs (2) Information Overload in Text.

Information Overload in Graphs In the first part of the dissertation, we consider in-

formation overload problem in graphs. We focus on graph comparison task, and propose

novel frameworks to address information overload arise in feature space.

First, we propose a novel framework that learns the latent representations of sub-

structures by leveraging the co-occurrence relationship of the features. Our contributions

in this work are as follows:

• We propose a general framework that is applicable to any graph kernel that is an

instance of R-convolution kernels. In particular, we embed sub-structures into a d-

dimensional space by using the latest advancements in language modeling and deep

learning.

• We demonstrate our framework on three popular graph kernels, namely Graphlet

kernels, Weisfeiler-Lehman subtree kernels, and Shortest-Path kernels and achieve

significant improvements on several benchmark datasets.
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• We discuss the connection of our framework to R-convolution kernels and apply our

framework to derive deep variants of string kernels.

• We introduce several new and large graph kernel datasets in social network domain,

associated with novel tasks such as community prediction.

• We show that it is possible to perform analogy task on graphs similar to word analogy

tasks.

• To best of our knowledge, our framework is among the first to introduce the usage

of word embedding and deep learning techniques in graph comparison tasks, and

leads to novel deep learning frameworks that automatically discover important graph

patterns for graph mining tasks.

Second, we propose a general smoothing framework for graph kernels by taking struc-

tural similarity into account. Our framework is inspired by state-of-the-art smoothing tech-

niques used in NLP. However, unlike NLP applications that primarily deal with strings, we

show how one can apply smoothing to a richer class of inter-dependent sub-structures that

naturally arise in graphs. Our contributions in this work are as follows:

• We propose a general framework that is applicable to any graph kernel that is an

instance of R-convolution kernels by taking the structural similarity into account.

• We extend state-of-the-art smoothing techniques in natural language processing to

structured objects by defining a Directed Acyclic Graph (DAG) which encodes the

dependency relationships between sub-structures.

• We demonstrate our framework on three popular graph kernels, namely Graphlet

kernels, Weisfeiler-Lehman subtree kernels, and Shortest-Path kernels and achieve

significant improvements on several benchmark datasets.

• We derive a Bayesian extension of our framework using Pitman-Yor process, thereby

leading to novel graph kernel extensions.
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Information Overload in Text In the second part of this dissertation, we focus on in-

formation overload arise in text applications, namely, social news aggregators, video tran-

scripts, and system logs.

First, we focus on information overload in social news aggregation websites. In particu-

lar, we focus on Reddit, one of the largest community-driven content aggregation websites

that is commonly referred as the frontpage of the Internet. We propose a framework that

tailors a personalized frontpage for individual users. Our contributions in this work are as

follows.

• We propose a submodular recommender system to curate a frontpage for users in

which we provide a near-optimal and efficient solution.

• We project subreddits into topical space, and discover novel relationships between

communities.

• We formalize a two-step, personalized notion of coverage by learning the preference

of individual users towards topics.

• We evaluate our algorithm quantitatively on a large-scale real voting data collected

from Reddit users, and as well as conducting a user study.

Second, we focus on information overload arise in documents and video transcripts. In

particular, we propose a novel summarization framework to summarize TED talks, a non-

profit organization devoted to “Ideas Worth Spreading” [21]. We formulate our objective

function as a submodular framework that balances coverage and diversity and reduces in-

formation overload by avoiding to select redundant content. Our contributions in this work

are as follows.

• We propose a coverage function covers the ideas that speaker is promoting while also

leveraging aspects that audience is focused on.

• We propose a novel diversity function that avoids redundancy by using the latest

advancements in deep learning and neural language processing. In particular, our
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framework evaluates diversity of selected sentences in the summary in terms of latent

dimensions of the words.

• We demonstrate a novel application by summarizing TED talks that is applicable to

any video summarization task where an audience is available, such as Youtube.

Third, we focus on information overload in system logs. In particular, we use a popula-

tion of virtual machines from VMware [4], and demonstrate how to apply feature filtering

and selection techniques to reduce the information overload and identify important features.

Our contributions in this work are as follows.

• We present and quantitatively validate feature filtering and selection techniques to

identify important features to use as model inputs. Our feature-selection results are

corroborated and validated by domain experts from VMware.

• We demonstrate how to construct a crowdsourced model of memory usage for the

virtual machines and provide sizing recommendations for the virtual appliances.

1.4 Thesis Outline

This dissertation is structured as follows:

Chapter 2. Background In this chapter, we review related background material,

including graph kernels, submodularity and word embeddings.

Part I: Information Overload in Graphs Chapters 3-4. In the first part of this

dissertation, we first introduce a novel framework that learns latent representations of

sub-structures in graphs (Chapter 3). Then, we propose a new smoothing framework

that is applicable to structured objects, and demonstrate our framework on several

benchmark graph kernels (Chapter 4).

Part II: Information Overload in Text Chapters 5-7. Here, we first introduce a

novel recommender system for Reddit (Chapter 5). Then, we introduce a summa-

rization framework for TED talks (Chapter 6). Finally, we introduce a framework



12

that extracts features from system logs in order to provide sizing recommendations

for virtual machines (Chapter 7).

Chapter 9: Conclusions and Future Work We summarize our contributions and

provide a discussion on future work in the last chapter of the dissertation.

1.5 Related Publications

The material in this dissertation is based on the papers listed below, which published or

in submission to the following conference proceedings.

• Pinar Yanardag Delul, SVN Vishwanathan. A Structural Smoothing Framework For

Robust Graph Comparison, . In Proceedings of the Twenty-ninth Annual Conference

on Neural Information Processing Systems (NIPS), 2015

• Pinar Yanardag Delul, SVN Vishwanathan. Deep Graph Kernels. In Proceedings

of the 21st ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD), 2015

• Pinar Yanardag Delul, SVN Vishwanathan. Submodular Graph Kernels, Networks

Workshop at The Twenty-ninth Annual Conference on Neural Information Process-

ing Systems (NIPS), 2015

• Pinar Yanardag Delul, Rean Griffith, Anne Holler, K. Shankari, Xiaoyun Zhu, Ravi

Soundararajan, Adarsh Jagadeeshwaran, Pradeep Padala, Crowdsourced Resource

Sizing of Virtual Appliances, 7th IEEE International Conference on Cloud Computing

(IEEE CLOUD)

• Pinar Yanardag Delul, SVN Vishwanathan, Understanding and Analyzing Microblogs,

WWW Doctoral Consortium, Rio de Janeiro, 2013

• Pinar Yanardag Delul, SVN Vishwanathan, Where does the narwhal bacon? Diver-

sity and Discoverability in Online Communities, (Submitted to KDD 2016)
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• Pinar Yanardag Delul, SVN Vishwanathan, Ideas Worth Summarizing: A Submodu-

lar Framework to Summarize TED Talks, (Submitted to ACL 2016)
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2 BACKGROUND

In this chapter, we review the notation and related background. First, we review graph

kernel literature that we use throughout the first part of the dissertation. Then, we introduce

background on submodularity that we use throughout the second part of this dissertation.

Finally, we introduce background on word embedding methods.

2.1 Graph Kernels

In graph kernels, we are interested in designing a kernel function that respects the struc-

tural information embedded in the graph, while being efficient to compute. Next, we intro-

duce brief notation we are going to employ throughout the dissertation, and then introduce

popular graph kernel families.

2.1.1 Notation

A graph is a pair G = (V,E) where V =
{
v1, v2, . . . , v|V |

}
is an ordered set of vertices

or nodes and E ⊆ V × V is a set of edges.

Given G = (V,E) and H = (VH , EH), H is a sub-graph of G iff there is an injective

mapping α : VH → V such that (v, w) ∈ EH iff (α(v), α(w)) ∈ E.

A graph G is called a labeled graph in which there is a function l : V → Σ that assigns

labels from an alphabet Σ to vertices in the graph.

A graph G is called an unlabeled graph in which individual vertices have no distinct

identifications other than their inter-connectivity.

Given two graphs G and G ′, we are interested in defining a kernel K(G,G ′) that mea-

sures the similarity between G and G ′. Graph classification task considers the problem of

classifying graphs into two or more categories. Given a set of graphs G and a set of class
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Figure 2.1. Sample graphs from NCI1 dataset [24] where each graph repre-

sents a chemical compound and labeled as +1 (active in an anti-cancer screen)

or -1 (non-active in an anti-cancer screen). Graphs are created using Gephi

[25].

labels Y , the task in graph classification is then to learn a model that maps graphs in G

to the label set Y (see Figure 2.1). A popular approach is to first use a graph kernel to

compute a kernel matrix K of size n × n where Kij represents the similarity between Gi
and Gj , and then to plug the computed kernel matrix into a kernelized learning algorithm

such as SVM [26] to perform classification. Thus, graph kernels serve as a bridge between

graph structured data and kernelized learning algorithms.

R-convolution [14] is a general framework for handling discrete objects where the key

idea is to recursively decompose structured objects into “atomic” sub-structures and define

valid local kernels between them. In the case of graphs, given a graph G, let φ (G) denote a

vector which contains counts of atomic sub-structures, and 〈·, ·〉H denote a dot product in a

reproducing kernel Hilbert space H, then the kernel between two graphs G and G ′ is given

by

K (G,G ′) = 〈φ (G) , φ (G ′)〉H . (2.1)

Existing graphs kernels can be categorized into three major families: graph kernels

based on limited-sized subgraphs [16,27, ], graph kernels based on subtree patterns [17,28,

], and graph kernels based on walks [11, 29, ] and paths [30, ]. Next, we discuss each

of the above kernels, and recap how they can be viewed as instances of the more general

R-Convolution framework [14].
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Figure 2.2. An illustration of induced, non-isomorphic induced sub-graphs of

size k ≤ 5.

2.1.2 Graph Kernels Based on Subgraphs

A graphlet G is an induced and non-isomorphic sub-graph of size-k (see Figure 2.2)

[15]. Let Vk = {G1, G2, . . . , Gnk
} be the set of size-k graphlets where nk denotes the

number of unique graphlets of size k. Given two unlabeled graphs G and G ′, the graphlet

kernel is defined as follows [16]:

KGK(G,G ′) =
〈
fG, fG

′
〉
, (2.2)

where fG and fG
′

are vectors of normalized counts, that is, the i-th component of fG

(resp. fG
′
) denotes the frequency with which graphlet Gi occurs as a sub-graph of G (resp.

G ′). Furthermore, 〈·, ·〉 denotes the Euclidean dot product.

2.1.3 Graph Kernels Based on Subtree Patterns

The second family of graph kernels decomposes a graph into its subtree patterns. The

Weisfeiler-Lehman subtree kernel [17] belongs to this family. The key idea here is to

iterate over each vertex of a labeled graph and its neighbors in order to create a multiset

label. The multiset at every iteration consists of the label of the vertex, and the sorted

labels of its neighbors. The resultant multiset is given a new label, which is then used

for the next iteration. When comparing graphs, we simply count the co-occurrences of

labels in both graphs. This procedure is inspired by the Weisfeiler-Lehman test of graph
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Table 2.1.

Common characteristics of different graph kernel families are given with rep-

resentative instances where WL denotes Weisfeiler-Lehman kernel and SP de-

notes Shortest Path kernel. All three graph kernel families are based on MLE

estimation and use frequency-based vector representation.

Graph Family Representative Kernel Structure Type

Subgraph Graphlet Kernel Graphlets

Subtree Weisfeiler-Lehman Kernel Labeled Subtrees

Path & Walk Shortest-Path Kernel Shortest-paths

isomorphism, and is equivalent to comparing the number of shared subtrees between two

graphs. Formally, given G and G ′, the Weisfeiler-Lehman subtree kernel is defined as:

KWL(G,G ′) =
〈
lG, lG

′
〉
. (2.3)

As before, 〈·, ·〉 denotes the Euclidean dot product. If we assume that we perform h itera-

tions of relabeling, then lG consists of h blocks. The i-th component in the j-th block of lG

contains the frequency with which the i-th label was assigned to a node in the j-th iteration.

2.1.4 Graph Kernels Based on Random-walks

The third family of graph kernels decomposes a graph into random-walks [11, 29] or

paths [30] and counts the co-occurrence of random-walks or paths in two graphs. Let PG

represent the set of all shortest-paths in graph G, and pi ∈ PG denote a triplet (lis, l
i
e, nk)

where nk is the length of the path and lis and lie are the labels of the starting and ending

vertices, respectively. The shortest-path kernel between labeled graphs G and G ′ is defined

as [30]:

KSP (G,G ′) =
〈
pG,pG′

〉
, (2.4)

where i-th component of pG contains the normalized frequency with which the i-th triplet

occurs in graph G. The vector pG′
is defined analogously for G ′.
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2.1.5 R-convolution Framework

One can show that all graph kernels summarized above are all instances of the R-

Convolution framework (also see Table 2.1). In a nutshell, the recipe for defining graph

kernels using R-convolution can be summarized as follows: A graph is recursively decom-

posed into its subgraphs. Next, the decomposed subgraphs are represented as a vector of

frequencies where each item of the vector represents how many times a given subgraphs oc-

curs in the graph. Finally, using the Euclidean space or some other domain specific RKHS,

the dot product between the vector of frequencies is defined. Many existing graph kernels

can be recovered using this general recipe. For instance, the graphlet kernel of [16] decom-

poses a graph into graphlets (size-k, connected, non-isomorphic sub-graphs), Weisfeiler-

Lehman subtree kernel of [31] decomposes a graph into subtrees, and the shortest-path

kernel of [30] decomposes a graph into shortest-paths.

2.2 Submodularity

Submodularity is a discrete optimization method that shares similar characteristics with

concavity, while resembling convexity. Submodularity appears in a wide range of applica-

tion areas including social networks, viral marketing [6] and document summarization [32].

Submodular functions exhibit a natural diminishing returns property, i.e., given two sets

S and T , where S ⊆ T ⊆ V \v, the incremental value of an item v decreases as the context

in which v is considered grows from S to T .

More formally, submodularity is a property of set functions, i.e., the class of functions

f : 2V → R that maps subsets S ⊆ V to a value f(S) where V is a finite ground set. The

function f maps any given subset to a real number. The function f is called normalized if

f(∅) = 0, and it is monotone if f(S) ≤ f(T ), whenever S ⊆ T . The function f is called

submodular if the following equation holds for any S, T ⊆ V :

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ) (2.5)
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Algorithm 1 Greedy submodular function maximization with budget constraint

Require: V ,k

Ensure: Selected set of posts S

1: Initialize S ← ∅

2: while |S| ≤ k do

3: v ← argmaxz∈V \S(f(S ∪ {z})− f(S))

4: S ← S ∪ {v}
5: end while

6: return S

It has been shown that submodular function minimization can be solved in polynomial

time [33], while submodular function maximization is an NP-complete optimization prob-

lem and intractable. However, it has been shown by [34] that the maximization of a mono-

tone submodular function under a cardinality constraint can be solved near-optimally using

a greedy algorithm. In submodular function maximization, we are interested in solving the

following optimization problem:

A∗ = argmax
A⊆V :|A|≤k

f(A)

subject to a cardinality constraint k. If a function f is submodular, takes only non-negative

values, and is monotone, then even though the maximization is still NP complete, we can

use a greedy algorithm (see Algoritm 1) to approximate the optimum solution within a

factor of (1− 1/e) ≈ 0.63 [34].

2.3 Word Embedding Models

Traditional language models estimate the likelihood of a sequence of words appearing

in a corpus. Given a sequence of training words {w1, w2, . . . , wT}, n-gram based language

models aims to maximize the following probability

Pr(wt|w1, . . . , wt−1). (2.6)
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In other words, they estimate the likelihood of observing wt given n previous words ob-

served so far.

Recent work in language modeling focused on distributed vector representation of

words, also referred as word embeddings. These neural language models improve clas-

sic n-gram language models by using continuous vector representations for words. Unlike

traditional n-gram models, neural language models take advantage of the notion of context

where a context is defined as a fixed number of preceding words. In practice, the objective

of word embedding models is to maximize the following log-likelihood,

T∑
t=1

log Pr(wt|wt−n+1, . . . , wt−1), (2.7)

where wt−n+1, . . . , wt−1 are the context of wt. Continuous bag-of-words (CBOW) and

Skip-gram models [35] are two popular methods that approximate Equation 2.7.

2.3.1 Continuous Bag-of-words

CBOW model predicts the current word given the surrounding words within a given

window. The model architecture is similar to feedforward neural network language model

[36] where the non-linear hidden layer is removed and the projection layer is shared for

all words (see Figure 2.3). Formally, CBOW model aims to maximize the following log-

likelihood,

T∑
t=1

log Pr(wt|wt−c, . . . , wt+c), (2.8)

where c is the length of the context. The probability Pr(wt|wt−c, . . . , wt+c) is computed

using the softmax, defined as

exp(v̄�v′
wt
)∑V

w=1 exp(v̄
�v′

w)
. (2.9)
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Here, vw corresponds to the input vector representation of w and v′
wt

corresponds to the

output vector representation of wt. The averaged vector representation from the context is

computed as

v̄ =
1

2c

∑
−c≤j≤c,j �=0

vwt+j
. (2.10)

2.3.2 Skip-gram

The Skip-gram model maximizes co-occurrence probability among the words that ap-

pear within a given window. In other words, instead of predicting the current word based

on surrounding words, the main objective of the Skip-gram is to predict the surrounding

words given the current word (see Figure 2.3). More precisely, the objective of the Skip-

gram model is to maximize the following log-likelihood,

T∑
t=1

log Pr(wt−c, . . . , wt+c|wt). (2.11)

where the probability Pr(wt−c, . . . , wt+c|wt) is computed as

∏
−c≤j≤c,j �=0

Pr(wt+j|wt). (2.12)

Here, the contextual words and the current word are assumed to be independent. Further-

more, Pr(wt+j|wt) is defined as

exp(v�
wt
v′
wt+j

)∑V
w=1 exp(v

�
wt
v′
w)

(2.13)

where vw and v′
w are the input and output vectors of word w.

Hierarchical softmax and Negative Sampling are two efficient algorithms that are used

in training the Skip-gram and CBOW models. Hierarchical softmax uses a binary Huffman

tree to factorize expensive partition function of the Skip-gram model. An alternative to the

Hierarchical softmax is negative sampling, which selects the contexts at random instead of

considering all words in the vocabulary. In other words, if a word w appears in the context

of another word w′, then the vector representation of the word w is closer to the vector
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3 DEEP GRAPH KERNELS

In this chapter, we present a unified framework to learn latent representations of sub-

structures for graphs, inspired by latest advancements in language modeling and deep

learning. Our framework leverages the co-occurrence information between sub-structures

by learning their latent representations, and alleviate the information overload problem

arise in feature space by incorporating the relationship between sub-structures into the

kernel computation. We demonstrate instances of our framework on three popular graph

kernels, namely Graphlet kernels, Weisfeiler-Lehman subtree kernels, and Shortest-Path

graph kernels. Our experiments on several benchmark datasets show that Deep Graph Ker-

nels achieve significant improvements in classification accuracy over state-of-the-art graph

kernels.

3.1 Motivation

Given a graph G, let φ (G) denote a vector which contains counts of atomic sub-structures,

and 〈·, ·〉H denote a dot product in a RKHSH. Then, the kernel between two graphs G and

G ′ is given by

K (G,G ′) = 〈φ (G) , φ (G ′)〉H . (3.1)

However, this representation does not take a number of important observations into account

and suffer from information overload problem in the feature space (see the discussion in

Chapter 1). To alleviate this problem, consider an alternative kernel between two graphs G
and G ′ such that,

K (G,G ′) = φ (G)TMφ (G ′) (3.2)

whereM represents a |V| × |V| positive semi-definite matrix that encodes the relationship

between sub-structures and V represents the vocabulary of sub-structures obtained from



25

the training data. Therefore, one can design a matrixM that respects the similarity of the

sub-structure space. In cases where there is a strong mathematical relationship between

sub-structures, such as edit-distance, one can design matrixM that respects the geometry

of the space. In cases where a clear mathematical relationship between sub-structures might

not exist, one can learn the geometry of the space directly from data. In this chapter, we

propose recipes for designing suchM matrices for graph kernels. For our first recipe, we

exploit an edit-distance relationship between sub-structures and directly compute a matrix

M. In our second recipe, we propose a framework that computes anMmatrix by learning

latent representations of sub-structures.

The rest of this chapter is as follows. In Section 3.2, we first design a matrix M
for Graphlet kernels by exploiting edit-distance relationship between sub-structures, and

then we introduce a framework that learns the relationship between sub-structures. In

Section 3.3, we discuss related work. In Section 3.4, we compare the classification per-

formance of deep graph kernels to their base variants as well as to other state-of-the-art

graph kernels. We report results on classification accuracy on graph benchmark datasets

and discuss the run-time cost of our framework. Section 3.5 concludes the chapter.

3.2 Methodology

In this section, we first discuss how to compute a matrixM by using the edit-distance

relationship between sub-structures (Section 3.2.1). Then, we discuss how to compute a

matrix M by learning the similarity between sub-structures inspired by latest advance-

ments in language modeling and deep learning (Section 3.2.2).

3.2.1 Sub-structure Similarity via Edit-distance

When sub-structures exhibit a clear mathematical relationship, one can exploit the un-

derlying similarities between sub-structures to compute a matrix M. For instance, in

Graphlet kernels, one can derive an edit-distance relationship to encode how similar one

graphlet to is another. Given a graphlet Gi of size k, and a graphlet Gj of size k + 1,
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compose graphs in a similar way that different words form sentences when used together.

With this analogy in mind, one can utilize word embedding models to unveil dimensions of

similarity between sub-structures. The main expectation here is that similar sub-structures

will be close to each other in the d-dimensional latent space. Figure 3.2 illustrates shortest-

path sub-structures in R
2 learned by our framework. Note that similar sub-structures are

close together in latent space.

3.2.3 Deep Graph Kernels

Our framework first takes a list of graphs G and decomposes each graph into its sub-

structures. The list of decomposed sub-structures for each graph is then treated as a sen-

tence that is generated from a vocabulary V where vocabulary V simply corresponds to

the unique set of observed sub-structures in the training data. However, unlike words in

a traditional text corpora, sub-structures do not have a linear co-occurrence relationship.

Therefore, one needs to build a corpus where the co-occurrence of the sub-structures is

meaningful. Next, we discuss how to generate corpora where co-occurrence relationship is

meaningful on three major graph kernel families.

Corpus Generation for Graphlet Kernels: Exhaustive enumeration of all graphlets in

a graph G is prohibitively expensive for even moderate sized graphs [15]. Several sam-

pling heuristics are proposed for sampling sub-graphs efficiently, such as random sampling

scheme of [16]. In practice, the random sampling of graphlets of size k in a graph G in-

volves placing a randomly generated window of size k × k on the adjacency matrix of G
and collecting the observed graphlet in that window. This procedure is repeated n times

where n being the number of graphlets we would like to sample. However, since this is

a random sampling scheme, it does not preserve any notion of co-occurrence relationship

which is a desired property for our framework. Therefore, we modify the random sampling

scheme to partially preserve the co-occurrence between graphlets by using the notion of

neighborhoods. That is, whenever we randomly sample a graphlet G, we also sample its

immediate neighbors. The graphlet and its neighbors are then interpreted as co-occurred
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graphs. Similar to graphlet kernel, one needs to find a meaningful co-occurrence relation-

ship between shortest-path sub-structures. One can show that all sub-paths of a shortest-

path are also shortest-paths with the same source [39]. In other words, whenever we ob-

serve a shortest-path sub-structure p of length l, we must also observe all of its sub-paths

of length < l as well. Inspired by this property, whenever we generate a shortest-path

sub-structure, we also collect all possible shortest-path sub-structures that share the same

source node, and treat them as co-occurred. Therefore, shortest-path sub-structures which

have similar labels will acquire similar representations (see Figure 3.2).

Corpus Generation for Weisfeiler-Lehman Kernels: The Weisfeiler-Lehman subtree

kernel iterates over each vertex and its neighbors in order to create a multiset label. The

resultant multiset is given a new label, which is then used for the next iteration. Therefore,

multiset labels that belong a given iteration h can be treated as co-occurred in order to

partially preserve a notion of similarity.

After generating a corpus where a co-occurrence relationship is partially preserved, we

build a model by using CBOW and Skip-gram algorithms1. Let s represent an arbitrary

sub-structure from a vocabulary V , and Φs represent learned vector representation of s

using our framework. Given the vector representations of sub-structures, we compute a

diagonalM matrix such that each entry on the diagonal,Mii computed as 〈Φi,Φi〉 where

Φi corresponds to learned d-dimensional hidden of sub-sequence i and Mij = 0 where

i = j and 1 ≤ i ≤ |V| (resp. j). After computing theM matrix, we simply plug it into

Equation 3.2 in order to compute the kernel between each sub-structure.

3.2.4 Deep String Kernels

In a similar fashion, we can plug other graph kernels into our framework such as

Random-walk kernels [40], labeled version of graphlet kernel [16], subtree kernels [28,41],

cyclic pattern kernels [27] and p-step Random-walk kernel [42]. Moreover, our framework

1We used Gensim library [85] for all algorithms.
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is applicable to any R-convolution kernel where there is a notion of dependency between

sub-structures, such as string kernels.

String kernels are another popular instance of R-convolution kernels where the task is

to compute a kernel between two sequences, such as DNA strings. Given an input sequence

S over an alphabet V and a number k ≥ 1, k−spectrum of the sequence S is defined as the

set of all k-length contiguous sub-sequences S contains [43]. The feature vector φ (S) is

then simply constructed as a frequency vector over sub-sequences in its k-spectrum and the

kernel between two sequences are computed via Equation 3.1. Similar to graph kernels, the

co-occurrence relationship between sub-sequences are not taken into account in k-spectrum

kernel. Similar to graph kernels, we treat all length k sub-sequences of a string as co-

occurred and learn the hidden representation of each spectrum using our framework. In case

of string kernels, we computeM matrix such that each entry Mij computed as 〈Φi,Φj〉
where Φi corresponds to learned d-dimensional vector of sub-sequence i (resp. Φj).

3.3 Related Work

The closest work to our framework is the recently proposed model, DeepWalk by [44].

DeepWalk learns social representations of vertices of graphs by modeling short Random-

walks. We distance ourselves from DeepWalk in several aspects. First, instead of learning

similarities between nodes we are interested in learning similarities between structured

objects, such as graphs and strings. In other words, DeepWalk operates on a single graph,

while we are interested in the relationship between multiple graphs. Moreover, instead

of using Random-walks, our framework can be configured to work with any type of sub-

structures, including graphlets, shortest-paths, sub-trees and strings.

Many different graph kernels focusing on different types of subgraphs have been de-

fined in the past which can be categorized into three major families: graph kernels based

on limited-sized subgraphs [27], [16], graph kernels based on subtree patterns [28], [17]

and graph kernels based on walks [29] and paths [30]. Our framework is complementary
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to existing graph and string kernels where the sub-structures have a similarity relationship

between them.

3.4 Experiments

The aim of our experiments is threefold. First, we want to show that using anM ma-

trix that infers the relationship between sub-structures improves the classification accuracy.

Second, we want to show that our framework is robust to random noise. Third, we want to

show that the deep kernels are comparable to or outperform state-of-the-art graph kernels

in terms of classification accuracy, while remaining competitive in terms of computational

requirements.

3.4.1 Experimental Setup

We compare our framework against representative instances of major families of graph

kernels in the literature. Other than base kernels of our framework, namely, Weisfeiler-

Lehman subtree kernel [16], Graphlet kernel [16], and Shortest-path kernel [30], we also

compare our kernels with the random walk kernel [40], the subtree kernel [28], and p-step

Random-walk kernel [42]. The Random-walk, p-step Random-walk and Ramon-Gärtner

kernels are written in Matlab and were obtained from the authors of [16]. All other kernels

were coded in Python. In order to ensure a fair comparison, all experiments are performed

on the same hardware.

All kernels are normalized to have a unit length in the feature space. Moreover, we use

10-fold cross validation with a binary C-SVM [45] to test classification performance. The

C value for each fold is independently tuned using training data from that fold. In order to

exclude random effects of the fold assignments, this experiment is repeated 10 times, and

average prediction accuracies with their standard deviations are reported.
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Table 3.1.

Properties of the bioinformatics datasets used in graph kernel experiments.

Dataset Size Classes Avg.nodes Labels

MUTAG 188 2 17.9 7

PTC 344 2 25.5 19

ENZYMES 600 6 32.6 3

PROTEINS 1113 2 39.1 3

NCI1 4110 2 29.8 37

NCI109 4127 2 29.6 38

3.4.2 Datasets

In this section, we introduce the datasets that are used in our experiments. In particular,

we first we use several benchmark graph kernel datasets from bioinformatics. Then, we de-

rive several new and large datasets related to social network domain. Finally, we introduce

benchmark datasets used in string kernel experiments.

Bioinformatics Datasets We applied our framework to benchmark graph kernel datasets,

namely, MUTAG, PTC, ENZYMES, PROTEINS and NCI1, NCI109. MUTAG is a dataset

of 188 mutagenic aromatic and heteroaromatic nitro compounds [46] with 7 discrete labels.

PTC [47] is a dataset of 344 chemical compounds that reports the carcinogenicity for male

and female rats and it has 19 discrete labels. NCI1 and NCI109 [24] datasets (4100 and

4127 nodes, respectively), made publicly available by the National Cancer Institute (NCI)

are two subsets of balanced datasets of chemical compounds screened for ability to suppress

or inhibit the growth of a panel of human tumor cell lines, having 37 and 38 discrete labels

respectively. ENZYMES is a balanced dataset of 600 protein tertiary structures obtained

from [8] and has 3 discrete labels. PROTEINS is a dataset obtained from [8] where nodes

are secondary structure elements (SSEs) and there is an edge between two nodes if they are
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Table 3.2.

Properties of the social network datasets used in graph kernel experiments.

Dataset Size Classes Avg.nodes

COLLAB 5000 3 74.49

IMDB-BINARY 1000 2 19.77

IMDB-MULTI 1500 3 13

REDDIT-BINARY 2000 2 429.61

REDDIT-MULTI-5K 5000 2 508.5

REDDIT-MULTI-12K 11929 11 391.4

neighbors in the amino-acid sequence or in 3D space. It has 3 discrete labels, representing

helix, sheet or turn. See Table 3.1 for detailed statistics of the datasets.

Social Network Datasets In order to test the efficacy of our framework on social network

domain, we derive several unlabeled graph datasets with different tasks as follows. Table

3.2 lists detailed statistics of the datasets.

• Reddit datasets: REDDIT-BINARY is a balanced dataset where each graph corre-

sponds to an online discussion thread where nodes correspond to users, and there is

an edge between two nodes if at least one of them responded to another’s comment.

We crawled top submissions from four popular subreddits, namely, IAmA, AskReddit,

TrollXChromosomes, atheism. IAmA and AskReddit are two question/answer-based

subreddits and TrollXChromosomes and atheism are two discussion-based subred-

dits. The task is then to identify whether a given graph belongs to a question/answer-

based community or a discussion-based community. REDDIT-MULTI-5K is a bal-

anced dataset from five different subreddits, namely, worldnews, videos, AdviceAn-

imals, aww and mildlyinteresting where we simply label each graph with their cor-

respondent subreddit. REDDIT-MULTI-12K is a larger variant of REDDIT-MULTI-

5K, consists of 11 different subreddits, namely, AskReddit, AdviceAnimals, atheism,
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aww, IAmA, mildlyinteresting, Showerthoughts, videos, todayilearned, worldnews,

TrollXChromosomes. The task in both datasets is to predict which subreddit a given

discussion graph belongs to.

• Scientific Collaboration Dataset: COLLAB is a scientific-collaboration dataset,

derived from 3 public collaboration datasets [48], namely, High Energy Physics,

Condensed Matter Physics and Astro Physics. Following the approach of [49], we

generated ego-networks of different researchers from each field, and labeled each

graph as the field of the researcher. The task is then to determine whether the ego-

collaboration graph of a researcher belongs to High Energy, Condensed Matter or

Astro Physics field.

• Movie Collaboration Datasets: IMDB-BINARY is a movie-collaboration dataset

where we collected actor/actress and genre information of different movies on IMDB.

For each graph, nodes represent actors/actresses and there is an edge between them

if they appear in the same movie. We generated collaboration graphs on Action and

Romance genres and derived ego-networks for each actor/actress. Note that a movie

can belong to both genres at the same time, therefore we discarded movies from Ro-

mance genre if the movie is already included to the Action genre. Similar to COL-

LAB dataset, we simply labeled each ego-network with the genre graph it belongs

to. The task is then simply to identify which genre an ego-network graph belongs to.

IMDB-MULTI is multi-class version of IMDB-BINARY and contains a balanced set

of ego-networks derived from Comedy, Romance and Sci-Fi genres.

String Datasets In order to test the efficacy of our model, we applied our method to

benchmark datasets in string kernels. SCOP (Structural Classification of Proteins) is a

manually-curated database that groups proteins together based on their 3-D structures [50]

(see Figure 3.4 for a sample protein from TIM beta/alpha-barrel fold2). The task is then

to classify protein sequences into 7 distinct super-families. SCOP database has a 4-level

2Image is generated by using PyMOL toolkit: http://http://pymol.org
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3.4.3 Parameter Selection

We chose parameters for the various kernels as follows: the window size and dimension

for deep graph kernels is chosen from {2, 5, 10, 25, 50}, the decay factor for Random-walk

kernels is chosen from {10−6, 10−5, . . . , 10−1}, the p value in the p-step Random-walk

kernel is chosen from {1, 2, . . . , 10} and the height parameter in Ramon-Gärtner subtree

kernel is chosen from {1, 2, 3}. For each kernel, we report the results for the parameter

which gave the best classification accuracy. For Weisfeiler-Lehman subtree kernel, we

experimented with the height parameter h = 2 due to exponentially increasing feature

space of the original kernel. For the Graphlet kernel, we set the size of the graphlets k to

be 7 since it exhibits the sparsity problem that we are interested in. We used Nauty [54] to

get canonically-labeled isomorphic representations of each graphlet which are then used to

construct the feature representation.

3.4.4 Computational Cost

For Edit-distance Graphlet kernel, computing anM matrix involves a one-time com-

putation of the undirected graph between 1253 nodes for k = 7 which empirically takes 7

minutes. After that, one needs to compute all-pairs-shortest-path distances on the obtained

undirected graph which empirically takes 8 seconds. For deep graph kernels, the overhead

of computing an M matrix involves learning latent representations of the observed sub-

structures. The runtime averaged out of all datasets for learning the latent representations

is 21.5 seconds for deep Graphlet kernel, 4.5 seconds for deep shortest-path graph kernel

and 1.75 seconds for deep Weisfeiler-Lehman graph kernel. All runtime experiments use a

fixed window size and dimension at 25 and this process is repeated 10 times to eliminate

random effects.



39

Table 3.3.

Comparison of classification accuracy (± standard deviation) of the Graphlet

kernel and Deep Graphlet kernel on social network datasets.

Dataset Graphlet kernel Deep Graphlet kernel

COLLAB 72.84 ± 0.28 73.09 ± 0.25

IMDB-BINARY 65.87 ± 0.98 66.96 ± 0.56

IMDB-MULTI 43.89 ± 0.38 44.55 ± 0.52

REDDIT-BINARY 77.34 ± 0.18 78.04 ± 0.39

REDDIT-MULTI-5K 41.01 ± 0.17 41.27 ± 0.18

REDDIT-MULTI-12K 31.82 ± 0.08 32.22 ± 0.10

3.4.5 Results for Graph Kernels

In this section, we apply our framework to several benchmark datasets and compare the

classification accuracy of our kernels against their base variants.

Graphlet kernels Under Noise We have two variants of Graphlet kernels, namely, Edit-

distance Graphlet Kernel (EGK) introduced in Section 3.2.1 and Deep Graphlet kernel

(DGK) introduced in Section 3.2.2. Since Graphlet kernels do not exploit label information

on the vertices and only compare graphs based on their structural similarity, an interesting

experiment is to see how our kernels behave under random noise on the edges. There-

fore, we derive noisy variants of the datasets by randomly flipping 10%, 20% and 30% of

the edges. Figure 3.5 shows the comparison between original Graphlet kernel and EGK

where 0% represents the classification accuracy on the original dataset without noise. As

can be seen from the figure, EGK outperforms the base kernel in MUTAG, PTC, PRO-

TEINS, NCI1, NCI109, but outperformed by the original kernel in ENZYMES dataset. We

believe this is due to the fact that EGK only uses a mathematical relationship between sub-

structures rather than learning a sophisticated relationship. Therefore, we applied our deep

kernel framework on Graphlet kernels (see Figure 3.6). As can be seen from the figure,
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learning latent representations of the graphlets outperforms its base variant significantly in

all datasets except PROTEINS.

Graphlet kernels on Social Network Datasets Next, we test the efficacy of our frame-

work on several social network datasets using Graphlet kernels. As can be seen from Table

3.3, Deep Graphlet kernels are able to outperform its base variant in all cases.

Deep Graph Kernels on Bioinformatics Datasets Table 3.4 shows the classification

accuracy between the Graphlet, Shortest-path and Weisfeiler-Lehman graph kernel and

their deep variants. Deep variant of graph kernels are able to outperform their base variant

for all cases.

Comparison Against Other Kernels Next, we compare the performance of Deep Graph

Kernels with state-of-the-art graph kernels in the literature. Table 3.5 shows the comparison

of Deep Graph Kernels with Ramon & Gärtner, p-Random-walk, and Random-walk graph

kernels. The result for Deep Graph Kernels is constructed by picking the best result of

Deep Graph Kernels from Table 3.4. As can be seen from the results, Deep Graph Kernels

are able to outperform other graph kernels.

3.4.6 Results for String Kernels

As a proof-of-concept, we derive a deep variant of k-spectrum string kernel and perform

experiments on benchmark bioinformatics datasets. The comparison between original k-

spectrum string kernel with k = 3 and our method can be seen from Table 3.6. One can see

that the deep variant of k-spectrum string kernel is able to outperform the base k-spectrum

string kernel in all datasets.
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Table 3.6.

Classification accuracy for string kernel experiments where numbers next to

the accuracy results represents the standard deviation.

Dataset K-Spectrum Deep Spectrum

TIM beta/alpha 67.60 ± 1.13 69.03 ± 1.03

(trans)glycosidases 93.88 ± 2.17 95.33 ± 1.02

NAD(P)-Rossmann 69.87 ± 0.78 75.54 ± 0.85

TED 74.31 ± 0.88 77.39 ± 0.97

3.5 Conclusions

In this chapter, we presented a novel framework for graph kernels inspired by latest

advancements in natural language processing and deep learning. We applied our frame-

work to three popular graph kernels, namely, Graphlet kernel, Shortest-path kernel, and

Weisfeiler-Lehman subtree kernels. We introduced several new and large graph kernel

datasets in social network domain, and showed that our framework outperforms its base

variants in terms of classification accuracy while introducing a negligible overhead.

Moreover, while we mainly restricted ourselves to graph kernels in this study, we dis-

cussed that our framework is rather general, and lends itself to many extensions. For in-

stance, it can be plugged directly into any R-convolution kernel as long as there is a depen-

dency between sub-structures. We demonstrated one such extension on string kernels and

achieved significant improvements in classification accuracy.
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4 SMOOTHED GRAPH KERNELS

In this chapter, we propose a general smoothing framework for graph kernels by taking

structural similarity into account, and apply it to derive smoothed variants of popular graph

kernels. Our framework is inspired by state-of-the-art smoothing techniques used in natural

language processing. However, unlike NLP applications that primarily deal with strings,

we show how one can apply smoothing to a richer class of inter-dependent sub-structures

that naturally arise in graphs. Moreover, we discuss extensions of the Pitman-Yor process

that can be adapted to smooth structured objects, thereby leading to novel graph kernels.

Our kernels are able to tackle the diagonal dominance problem while respecting the struc-

tural similarity between features. Experimental evaluation shows that not only our kernels

achieve statistically significant improvements over the unsmoothed variants, but also out-

perform several other graph kernels in the literature.

4.1 Motivation

Many graph kernels can be viewed as instances of R-convolution framework. However,

R-convolution based graph kernels suffer from a few drawbacks. First, the size of the

feature space often grows exponentially. As size of the space grows, the probability that

two graphs will contain similar sub-structures becomes very small. Therefore, a graph

becomes similar to itself but not to any other graph in the training data. This is well known

as the diagonal dominance problem [55] where the resulting kernel matrix is close to the

identity matrix. Second, lower order sub-structures tend to be more numerous while a vast

majority of the sub-structures occurs rarely. In other words, a few sub-structures dominate

the distribution. This exhibits a strong power-law behavior and results in underestimation of

the true distribution. Third, the sub-structures used to define a graph kernel are often related

to each other. However, an R-convolution kernel only respects exact matchings. This
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problem is particularly important when noise is present in the training data and considering

partial similarity between sub-structures might alleviate the noise problem.

In this study, we propose to tackle the above problems by using a general framework to

smooth graph kernels that are defined using a frequency vector of decomposed structures.

We use structure information by encoding relationships between lower and higher order

sub-structures in order to derive our method.

The remainder of this chapter is structured as follows. In Section 4.2.1, we review

smoothing methods for multinomial distributions. In Section 4.2.2, we introduce a frame-

work for smoothing structured objects. In Section 4.2.3, we propose a Bayesian variant

of our model that is extended from the Hierarchical Pitman-Yor process [56]. In Section

4.3, we discuss related work. In Section 4.4, we compare smoothed graph kernels to their

unsmoothed variants as well as to other state-of-the-art graph kernels. We report results

on classification accuracy on several benchmark datasets as well as their noisy-variants.

Section 4.6 concludes the chapter.

4.2 Methodology

We first briefly review smoothing techniques for multinomial distributions, and then we

propose a new interpolated smoothing framework that is applicable to a richer set of objects

such as graphs by using a Directed Acyclic Graph (DAG).

4.2.1 Smoothing Multinomial Distributions

Let e1, e2, . . . , em be a sequence of n discrete events drawn from a ground set A =

{1, 2, . . . , V }. Suppose we would like to estimate the probability P (ei = a) for some

a ∈ A. It is well known that the Maximum likelihood estimate (MLE) can be computed as

follows:

PMLE (ei = a) =
ca
m

(4.1)
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where ca denotes the number of times the event a appears in the observed sequence and∑
j cj = m denotes the total number of observed events.

However, MLE estimates of the multinomial distribution are spiky since they assign

zero probability to the events that did not occur in the observed sequence. What this means

is that an event with low probability is often estimated to have zero probability mass. The

general idea behind smoothing is to adjust the maximum likelihood estimate of the proba-

bilities by pushing the high probabilities downwards and pushing low or zero probabilities

upwards in order to produce a more accurate distribution on the events [57].

Laplace smoothing, or so-called additive smoothing [58], is perhaps the simplest and

one of the oldest smoothing methods, where only a fixed count of α is added to every event.

In the case of α = 1, this results in the estimate

PL (ei = a) = λPMLE (ei = a) + (1− λ)
1

V
, (4.2)

where λ = m
m+V

is a normalization factor which ensures that the distributions sum to one.

The intuition behind Laplace smoothing is to interpolate a uniform distribution with the

MLE distribution. Although Laplace smoothing resolves the zero-count problem, it takes

away too much probability from seen events and assigns too much probability to unseen

events which is undesirable.

Interpolated smoothing methods offer a middle ground by using a linear interpolation

between the higher-order maximum likelihood model and lower-order smoothed model (or

so-called, fallback model). The way the fallback model is designed is the key to defining

a new smoothing method. Absolute discounting [59] and Interpolated Kneser-Ney [60] are

two popular instances of interpolated smoothing methods:

PA (ei = a) =
max {ca − d, 0}

m
+

md · d
m

P ′
A (ei = a) . (4.3)

Here, d > 0 is a discount factor, md := |{a : ca > d}| is the number of events whose

counts are larger than d, while P ′
A is the fallback distribution. Absolute discounting defines

the fallback distribution as the smoothed version of the lower-order MLE while Kneser-

Ney uses an unusual estimate of the fallback distribution by using number of different
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contexts that the event follows in the lower order model. In the next section, we propose a

new interpolated smoothing framework that is applicable to a richer set of objects such as

graphs.

4.2.2 Structural Smoothing

The key to designing a new smoothing method is to define a fallback distribution, which

not only incorporates domain knowledge but is also easy to estimate recursively. Suppose,

we have access to a weighted DAG where every node at the k-th level represents an event

from the ground set A. Moreover let wij denote the weight of the edge connecting event i

to event j, and Pa (resp. Ca) denote the parents (resp. children) of event a ∈ A in the DAG.

We define our structural smoothing for events at level k as follows:

P k
SS (ei = a) =

max {ca − d, 0}
m

+
md × d

m

∑
j∈Pa

P k−1
SS (j)

wja∑
a′∈Cj wja′

. (4.4)

The way to understand the above equation is as follows: we subtract a fixed discounting

factor d from every observed event which accumulates to a total mass of md × d. Each

event a receives some portion of this accumulated probability mass from its parents. The

proportion of the mass that a parent j at level k− 1 transmits to a given child a depends on

the weight wja between the parent and the child (normalized by the sum of the weights of

the edges from j to all its children), and the probability mass P k−1
SS (j) that is assigned to

node j. In other words, the portion a child event a is able to obtain from the total discounted

mass depends on how authoritative its parents are, and how strong the relationship between

the child and its parents.

Designing the DAG In order to construct a DAG for smoothing structured objects, we

first construct a vocabulary V that denotes the set of all unique sub-structures that are going

to be smoothed. Each item in the vocabulary V corresponds to a node in the DAG. V can

be generated statically or dynamically based on the type of sub-structure the graph kernel

exploits. For instance, it requires a one-time O(2k) effort to generate the vocabulary of size

≤ k graphlets for graphlet kernel. However, we need to build the vocabulary dynamically in
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Figure 4.2. Graphlet G15 gets the probability mass to its parents G7, G6, G5

according to the weights w1, w2, w3 respectively.

Weisfeiler-Lehman and Shortest-Path kernels since the sub-structures depend on the node

labels obtained from the datasets. After constructing the vocabulary V , the parent/child

relationship between sub-structures needs to be obtained. Given a sub-structure s of size

k, we apply a transformation to find all possible sub-structures of size k − 1 that s can

be reduced into. Each sub-structure s′ that is obtained by this transformation is assigned

as a parent of s. After obtaining the parent/child relationship between sub-structures, the

DAG is constructed by drawing a directed edge from each parent to its children nodes.

Since all descendants of a given sub-structure at depth k− 1 are at depth k, this results in a

topological ordering of the vertices, and hence the resulting graph is indeed a DAG. Next,

we discuss how to construct such DAGs for different graph kernels.

DAG for Graphlet Kernel: We construct the vocabulary V for Graphlet Kernel by enu-

merating all canonical graphlets of size up to k1. Each canonically-labeled graphlet is a

node in the DAG. We then apply a transformation to infer the parent/child relationship be-

tween graphlets as follows: we place a directed edge from graphlet G to G′ if, and only if,

G can be obtained from G′ by deleting a node. In other words, all edges from a graphlet

G of size k − 1 point to a graphlet G′ of size k. In order to assign weights to the edges,

given a graphlet pair G and G′, we count the number of times G can be obtained from G′

1We used Nauty [54] to obtain canonically-labeled isomorphic representations of graphlets.
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by deleting a node (call this number nGG′). Recall that G is of size k − 1 and G′ is of size

k, and therefore nGG′ can at most be k. Let CG denote the set of children of node G in the

DAG, and nG :=
∑

Ḡ∈CG nGḠ. Then we define the weight wGG′ of the edge connecting G

and G′ as nGG′/nG. The idea here is that the weight encodes the proportion of different

ways of extending G which results in the graphlet G′. For instance, let us consider G15 and

its parents G5, G6, G7 (see Figure 4.1 for the DAG of graphlets with size k ≤ 5). Even if

graphlet G15 is not observed in the training data, it still gets a probability mass proportional

to the edge weight from its parents in order to overcome the sparsity problem of unseen

data (see Figure 4.2).

DAG for Weisfeiler-Lehman Kernel: The Weisfeiler-Lehman kernel performs an exact

matching between the compressed multiset labels. For instance, given two labels ABCDE

and ABCDF, it simply assigns zero value for their similarity even though two labels have

a partial similarity. In order to smooth Weisfeiler-Lehman kernel, we first run the original

algorithm and obtain the multiset representation of each graph in the dataset. We then

apply a transformation to infer the parent/child relationship between compressed labels as

follows: in each iteration of Weisfeiler-Lehman algorithm, and for each multiset label of

size k in the vocabulary, we generate its power set by computing all subsets of size k − 1

while keeping the root node fixed. For instance, the parents of a multiset label ABCDE

are {ABCD, ABCE, ABDE, ACDE}. Then, we simply construct the DAG by drawing a

directed edge from parent labels to children. Notice that considering only the set of labels

generated from the Weisfeiler-Lehman kernel is not sufficient enough for constructing a

valid DAG. For instance, it might be the case that none of the possible parents of a given

label exists in the vocabulary simply due to the sparsity problem (e.g.out of all possible

parents of ABCDE, we might only observe ABCE in the training data). Thus, restricting

ourselves to the original vocabulary leaves such labels orphaned in the DAG. Therefore,

we consider so-called pseudo parents as a part of the vocabulary when constructing the

DAG. Since the sub-structures in this kernel are data-dependent, we use a uniform weight

between a parent and its children.
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hierarchical Bayesian model consisting of Pitman-Yor process [63]. By following a similar

spirit, we extend our model to adapt Pitman-Yor process as an alternate smoothing frame-

work. A Pitman-Yor process P on a ground set Gk+1 of size-(k+1) graphlets is defined via

Pk+1 ∼ PY (dk+1, θk+1, Pk) where dk+1 is a discount parameter, 0 ≤ dk+1 < 1, θ > −dk+1

is a strength parameter, and Pk is a base distribution. The most intuitive way to understand

draws from the Pitman-Yor process is via the Chinese restaurant process (see Figure 4.3).

Consider a restaurant with an infinite number of tables where customers enter the restau-

rant one by one. The first customer sits at the first table, and a graphlet is assigned to it by

drawing a sample from the base distribution since this table is occupied for the first time.

The label of the first table is the first graphlet drawn from the Pitman-Yor process. Subse-

quent customers when they enter the restaurant decide to sit at an already occupied table

with probability proportional to ci − dk+1, where ci represents the number of customers

already sitting at table i. If they sit at an already occupied table, then the label of that table

denotes the next graphlet drawn from the Pitman-Yor process. On the other hand, with

probability θk+1 + dk+1t, where t is the current number of occupied tables, a new customer

might decide to occupy a new table. In this case, the base distribution is invoked to label

this table with a graphlet. Intuitively the reason this process generates power-law behavior

is because popular graphlets which are served on tables with a large number of customers

have a higher probability of attracting new customers and hence being generated again,

similar to a rich gets richer phenomenon. In a hierarchical Pitman-Yor process, the base

distribution Pk is recursively defined via a Pitman-Yor process Pk ∼ PY (dk, θk, Pk−1). In

order to label a table, we need a draw from Pk, which is obtained by inserting a customer

into the corresponding restaurant. However, adopting the traditional hierarchical Pitman-

Yor process is not straightforward in our case since the size of the context differs between

levels of hierarchy, that is, a child restaurant in the hierarchy can have more than one parent

restaurant to request a label from. In other words, Pk+1 is defined over Gk+1 of size nk+1

while Pk is defined over Gk of size nk ≤ nk+1. Therefore, one needs a transformation

function to transform base distributions of different sizes. We incorporate edge weights

between parent and child restaurants by using the same weighting scheme in Section 4.2.2.
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Algorithm 2 Insert a Customer

Input: dk+1, θk+1, Pk

t← 0 // Occupied tables

c← () // Counts of customers

l ← () // Labels of tables

if t = 0 then

t← 1

append 1 to c

draw graphlet Gi ∼ Pk // Insert customer in parent

draw Gj ∼ wij

append Gj to l

return Gj

else

with probability ∝ max(0, cj − d)

cj ← cj + 1

return lj

with probability proportional to θ + dt

t← t+ 1

append 1 to c

draw graphlet Gi ∼ Pk // Insert customer in parent

draw Gj ∼ wij

append Gj to l

return Gj

end if
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This changes the Chinese Restaurant process as follows: When we need to label a table,

we will first draw a size-k graphlet Gi ∼ Pk by inserting a customer into the corresponding

restaurant. Given Gi, we will draw a size-(k + 1) graphlet Gj proportional to wij , where

wij is obtained from the DAG. See Algorithm 2 for pseudo code of inserting a customer.

Deletion of a customer is handled similarly (see Algorithm 3).

Algorithm 3 Delete a Customer

Input: d, θ, P0, C, L, t

with probability ∝ cl

cl ← cl − 1

Gj ← lj

if cl = 0 then

Pk ∝ 1/wij

delete cl from c

delete lj from l

t← t− 1

end if

return G

4.2.4 Other Smoothed Graph Kernels

In a similar fashion to Smoothed Weisfeiler-Lehman subtree kernel, Smoothed Short-

est Path kernel and Smoothed Graphlet Kernel, we can plug other graph kernels into our

smoothing framework. As discussed in earlier sections, the key aspect of our smooth-

ing framework is defining the DAG which encodes the similarity between different sub-

structures. Therefore, a clear requirement is that the base kernel should exhibit dependency

and similarity among its features so that defining a fallback distribution would make sense

and we can exploit the relationship between different sub-structures by smoothing. On the

other hand, in graph kernels where feature representation is infinite, such as random walk
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kernels [40], one needs to consider whether smoothing can be done efficiently. Other pos-

sible base kernels for our smoothing framework would be the labeled version of graphlet

kernel [16], subtree kernels including [28] and [41], cyclic pattern kernels [27] and p-step

random walk kernel [42].

As discussed in the earlier sections, graph kernels are instances of R-convolution ker-

nels. Thus, our smoothing framework is applicable to any R-convolution kernel that has an

inherent dependency and similarity between its features where features are represented by

a vector of frequencies such as K-Spectrum string kernel [43].

4.3 Related Work

A survey of most popular graph kernel methods is already given in previous sections.

Several methods proposed in smoothing structured objects [64], [65]. Our framework is

similar to dependency tree kernels [64] since both methods are using the notion of smooth-

ing for structured objects. However, our method is interested in the problem of smoothing

the count of structured objects. Thus, while smoothing is achieved by using a DAG, we

discard the DAG once the counts are smoothed. Another related work to ours is propaga-

tion kernels [66] that define graph features as counts of similar node-label distributions on

the respective graphs by using Locality Sensitive Hashing (LSH). Our framework not only

considers node label distributions, but also explicitly incorporates structural similarity via

the DAG.

4.4 Experiments

The aim of our experiments is based on five aspects. First, we want to understand char-

acteristics of feature space in three popular graph kernels, and motivate why smoothing

is necessary. Then, we want to show that smoothing improves the classification accuracy

of various graph kernels. Third, we want to show that the pre-processing cost of creat-

ing a DAG and smoothing is not prohibitively expensive. Then, we want to show that the

smoothed kernels are comparable to or outperform state-of-the-art graph kernels in terms
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of classification accuracy, while remaining competitive in terms of computational require-

ments. Finally, we want to show that our methods significantly outperforms base kernels

when edge or label noise is presence.

4.4.1 Experimental Setup

We compare our framework against representative instances of major families of graph

kernels in the literature. In addition to the base kernels, we also compare our smoothed

kernels with the random walk kernel [40], the Ramon-Gärtner subtree [28], and p-step ran-

dom walk kernel [42]. The Random Walk, p-step Random Walk and Ramon-Gärtner are

written in Matlab and obtained from [16]. All other kernels were coded in Python except

Pitman-Yor smoothing which is coded in C++2. We used a parallel implementation for

smoothing the counts of Weisfeiler-Lehman kernel for efficiency. All kernels are normal-

ized to have a unit length in the feature space. Moreover, we use 10-fold cross validation

with a binary C-Support Vector Machine (SVM) where the C value for each fold is inde-

pendently tuned using training data from that fold. In order to exclude random effects of

the fold assignments, this experiment is repeated 10 times and average prediction accuracy

of 10 experiments with their standard deviations are reported.

4.4.2 Datasets

We used the following benchmark datasets used in graph kernels: MUTAG, PTC, EN-

ZYMES, PROTEINS, NCI1 and NCI109 (see Section 3.4.2 for a detailed description of

the datasets).

4.4.3 Analyzing Feature Space

In this experiment, we investigate the characteristics of the feature space in Graphlet

Kernels, Weisfeiler-Lehman kernels and Shortest-Path Kernels on benchmark datasets. For

2We modified the open source implementation of PYP: https://github.com/redpony/cpyp.



57

Table 4.1.

Graphlet kernel feature statistics for benchmark datasets that shows median,

maximum and minimum number of features.

DATA SET NUMBER OF FEATURES MEDIAN MAX MIN

MUTAG 209 16 20 12

PTC 209 14 31 1

ENZYMES 209 26 97 1

PROTEINS 209 23 89 1

NCI1 209 13 33 1

NCI109 209 13 31 1

this purpose, we run the unsmoothed graph kernels on the benchmark datasets, and collect

median, max and min statistics for number of unique features. Table 4.1 shows feature

statistics for Graphlet Kernel where each feature corresponds to a graphlet. As we can

see from the table, even though there are 209 possible graphlets for size k = 6, we only

observe a few of them on each dataset. Table 4.2 shows feature statistics for Weisfeiler-

Lehman graph kernels, where each feature corresponds to a compressed label. One can

see that sparsity problem is much more severe in Weisfeiler-Lehman graph kernels. For

instance, while the unique number of features is 15,208 on Enzymes dataset, only 16 on

median is observed per graph. Similarly, Table 4.3 shows the feature statistics for shortest-

path graph kernel where each feature corresponds to a shortest-path label. Similar to other

graph kernels, feature space is sparse. For instance, while there are 1,084 unique shortest-

path feature in NCI1 dataset, only 47 feature is observed per graph on median. Therefore,

one can benefit from applying smoothing in order to reduce the data sparsity.

4.4.4 Parameter Selection

We chose parameters for the various kernels as follows: discount parameter for smoothed

kernels is chosen from {10−3, 10−2, 10−1, 0.25, 0.50, 0.75}, decay factor for random walk
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Table 4.2.

Weisfeiler-Lehman kernel feature statistics for benchmark datasets that shows

median, maximum and minimum number of features.

DATA SET NUMBER OF FEATURES MEDIAN MAX MIN

MUTAG 572 8 23 1

PTC 2624 10 57 1

ENZYMES 15208 16 83 1

NCI1 22948 12 92 1

NCI109 23411 12 83 1

Table 4.3.

Shortest-Path kernel feature statistics for benchmark datasets that shows me-

dian, maximum and minimum number of features.

DATA SET NUMBER OF FEATURES MEDIAN MAX MIN

MUTAG 151 28 64 19

PTC 830 42 345 3

ENZYMES 178 31 139 2

NCI1 1084 47 306 4

NCI109 1053 47 311 8

kernels is chosen from {10−6, 10−5, . . . , 10−1}, the p value in the p-step random walk ker-

nel is chosen from {1, 2, . . . , 10} and the height parameter in Ramon-Gärtner subtree ker-

nel is chosen from {1, 2, 3}. For each kernel, we report the results for the parameter which

gave the best classification accuracy. For Weisfeiler-Lehman kernel, we experimented the

height parameter up to h ≤ 5 due to exponentially increasing feature space of the original

kernel. In all cases, since the relative classification performance of the original kernel and

our proposed smoothed variant remain consistent, we fix the height parameter at h = 3 for

the rest of the experiments. For the graphlet kernel, we set the size of the graphlets k to be
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6 since it exhibits the sparsity problem that we are interested in. Counting all graphlets of

size k for a graph with n nodes requires O(nk) effort which is intractable even for mod-

erate values of k. Therefore, we use random sampling, as advocated by [16], in order to

obtain an empirical distribution of graphlet counts that is close to the actual distribution of

graphlets in the graph. For each graph, we first randomly sampled 1000 graphlets of size 6

and then within the sampled graphlets, we search for graphlets of size 2 ≤ k < 6 (in other

words, we first fix a window of size k = 6, and then we look at all possible lower-order

graphlets). This sampling method allows us to ensure that random sampling between levels

are consistent. Table 4.4 lists all parameter values used in the experiments.

4.5 Results

In our first experiment, we compare the base kernels with their smoothed variants. As

can be seen from Table 4.5, smoothing improves the classification accuracy of every base

kernel on every dataset with majority of the improvements being statistically significant

with p ≤ 0.05. We observe that even though smoothing improves the accuracy of graphlet

kernels on PROTEINS and NCI1, the improvements are not statistically significant. We

believe this is due to the fact that these datasets are not sensitive to structural noise as much

as the other datasets, thus considering the partial similarities do not improve the results

significantly. Moreover, PYP smoothed graphlet kernels achieve statistically significant

improvements in most of the datasets, however they are outperformed by smoothed graphlet

kernels introduced in Section 4.2.1.

In our second experiment, we picked the best smoothed kernel in terms of classification

accuracy for each dataset, and compared it against the performance of state-of-the-art graph

kernels (see Table 4.7). Smoothed kernels outperform other methods on all datasets, and

the results are statistically significant on every dataset except PTC.

In our third experiment, we investigated the runtime behavior of our framework with

two major costs. First, one has to compute a DAG by using the original feature vectors.

Next, the constructed DAG need to be used to compute smoothed representations of the
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feature vectors. Table 4.6 shows the total wallclock runtime taken by all graphs for con-

structing the DAG, and smoothing the counts for each dataset. As can be seen from the

runtimes, our framework adds a constant factor to the original runtime for most of the

datasets. While the DAG creation in Weisfeiler-Lehman kernel also adds a negligible over-

head, the cost of smoothing becomes significant if the vocabulary size gets prohibitively

large due to the exponential growing nature of the kernel w.r.t. to subtree parameter h.

Finally, in our fourth experiment, we test the performance of graph kernels when edge

or label noise is present. For edge noise, we randomly removed and added {10%, 20%, 30%}
of the edges in each graph. For label noise, we randomly flipped {25%, 50%, 75%} of the

node labels in each graph where random labels are selected proportionally to the original

label-distribution of the graph. Figure 4.4 shows the performance of smoothed graph ker-

nels under noise. As can be seen from the figure, smoothed kernels are able to outperform

their base variants when noise is present. An interesting observation is that even though a

significant amount of edge noise is added to PROTEINS and NCI datasets, the performance

of base kernels do not change drastically. This further supports our observation that these

datasets are not sensitive to structural noise as much as the other datasets.

4.6 Conclusions

We presented a novel framework for smoothing graph kernels inspired by smoothing

techniques from natural language processing and applied our method to state-of-the-art

graph kernels. Our framework is rather general, and lends itself to many extensions. For

instance, by defining domain-specific parent-child relationships, one can construct different

DAGs with different weighting schemes.

Moreover, even though we restricted ourselves to graph kernels in this study, our frame-

work is applicable to any R-convolution kernel that uses a frequency-vector based repre-

sentation, such as string kernels.



Part II

Information Overload in Text

66



67

5 A SUBMODULAR RECOMMENDER SYSTEM FOR REDDIT

Reddit is one of the largest community-driven content aggregation websites. Approxi-

mately, 6% of online adults are estimated to be Reddit users [20]. The immense popularity

of Reddit can be attributed to its ability to surface freshest trends and content on the web,

and it is commonly referred as the front page of the Internet. With over 800K communities

devoted to various topics, a natural information overload problem arises. Given that thou-

sands of new threads and discussion topics generated hourly, providing the best coverage

of content that is relevant to the interests of the users becomes a critical task.

In this chapter, we propose a framework that tailors a personalized frontpage of the

Internet. We formulate our framework as a submodular optimization problem, for which

we can efficiently provide a near-optimal solution. We evaluate our framework both with

offline and online experiments, and empirically demonstrate that our algorithm respects

personal preference of the users, while presenting top stories on the web.

5.1 Introduction

Reddit is one of the largest community-driven social news and entertainment services

on the web, often referred as the frontpage of the Internet. According to the site statistics1,

Reddit has over 234 million unique visitors and 3.1 million logged-in users from 217 differ-

ent countries on a monthly basis. Moreover, it is ranked as the 32nd most popular website in

the world, and 10th most popular website in United States2. Users on Reddit, also referred

as redditors, can contribute by creating a new post, so-called self-posts, by submitting an

external link or by leaving a comment on an already existing submission. Posted content

is then organized by communities called subreddits, representing various areas of interests

1http://www.reddit.com/about, as of Feb 1, 2016.
2http://www.alexa.com/siteinfo/reddit.com, as of Feb 1, 2016.
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Figure 5.1. Default subreddits where size of the words are weighted by number

of users subscribed to that subreddit.

such as music, gaming, movies and books, among others. New users who sign

up to Reddit are automatically subscribed to a default set of 50 subreddits (see Figure 5.1),

and may later tailor their subscriptions by subscribing to individual subreddits of interest.

The frontpage for each user then becomes a mixture of content curated from the subscribed

subreddits.

The immense success of Reddit comes from being a community driven website, and

users have complete control in determining which content is promoted via a simple voting

mechanism: any registered user can upvote or downvote a post, and top voted items rise

to the frontpage of the website. One immediate consequence of this mechanism is that

popular content that appeals to a wide audience gets upvoted frequently. Combined with a

strong power-law behavior between number of subreddits and number of users (see Figure

5.2 (left)), posts from a small number of subreddits dominate the frontpage. Therefore,

users with non-mainstream interests do not see relevant and diverse content, and have to

cope with information overload.
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before. However, since the subscription-based model enforces a strong commitment, the

user is overwhelmed with posts that are not relevant anymore. Thus, we conjecture that

expressing the interests of the user in terms of topics is a more natural way to capture the

temporal interests of the users. Hence, the interest of the user towards the nyc subreddit

might fade, but it would be still possible to capture the fact that the user is interested in

travel topic.

The goal of this study is to address the above problems by formulating a framework

that not only suggests relevant and diverse content that users are interested in, but also

encourages discoverability by allowing us to inject posts from related subreddits. Our

technical contributions are as follows: we first present a simple and elegant solution to

cover posts from subreddits a user is subscribed to. We formulate an objective function that

exhibits a natural diminishing returns property, also known as submodularity, for which we

can efficiently provide a near-optimal solution [67].

Secondly, we project subreddits into a topical space by building a topic model using

the textual content of the posts, and identify the related subreddits. We then extend the

coverage of subreddits to coverage of topics which enables discoverability of novel content

and communities.

Finally, we extend our model to learn a personalized coverage function. We formulate

an interaction model by considering user feedback and learn preference of individual users.

We evaluate our framework by performing offline evaluation on data from real users from

Reddit. Results on average click position shows that our simple, subreddit-coverage based

algorithm significantly outperforms the baseline methods. Moreover, we perform a user

study by measuring diversity, discoverability and personalization. Results from the user

study show that our methods provides better diversity and discoverability comparing to the

baseline approach.
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5.2.1 Coverage

Given the dynamic environment of Reddit with thousands of new posts generated hourly,

our aim is to provide a good coverage of posts from subscribed subreddits of a user. For-

mally, let I denote the set of subreddits a user has subscribed to, and P t denote the set of all

candidate posts from I that can be shown to a user at time t. Given an arbitrary subreddit

i ∈ I, let P t
i represent the set of all posts submitted to subreddit i at time t. Then, we

are interested in selecting a subset S ⊆ P t that provides the best coverage of subreddits

in I. The first step towards coverage is to characterize posts with a score. Reddit uses an

algorithm called hot-score5 and assigns a score for each post to represent the freshness and

popularity of the post among users. For a post p ∈ P t, the hot-score is defined as,

H(p) = log10(up − dp) +
Δt

45000
, (5.1)

where up is the number of upvotes, dp is the number of downvotes, and Δt is the difference

of time in seconds since an arbitrary epoch, e.g.1970-01-01 00:00:00. The first term reflects

popularity and increases as a logarithmic function of the difference between number of

upvotes and downvotes (see Figure 5.4). The second term ensures the freshness of content.

Since the score does not decrease over time, newer posts always get a higher score than

previous posts, and older posts eventually get overtaken by new posts within hours.

Given the scoring function, we can design a cover function to measure how much sub-

reddit i ∈ I is covered by posts in S ,

coverS(i) =
∑

j∈Pi∩S
H(j), (5.2)

where Pi represents all posts that belong to subreddit i, and H(j) represents hot-score of

post j. In order to measure the overall coverage of subreddits in I, we can define the

following utility function,

F (S) =
∑
i∈I

coverS(i), (5.3)

5Reddit is open-sourced and its code can be found here: https://github.com/reddit/reddit
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which simply sums over the total coverage of each subreddit the user is subscribed to. Since

the number of posts are very high, and users have limited time to discover the content, one

might aim to maximize the following objective function,

S∗ = argmax
S⊆P:|S|≤n

F (S), (5.4)

subject to a cardinality constraint n, which denotes total number of posts in set S∗. Thus,

finding a set of posts the user is interested in becomes a budgeted maximum coverage

problem [68]. However, not only maximizing this function is NP-hard, but it also does

not respect diversity. In other words, the value of covering a particular subreddit never

diminishes. This contradicts with our notion of coverage since we would like to provide

a good coverage of all subreddits the user is interested in. One of the popular approaches

to solve this problem is to use a submodular function which exhibits a natural diminishing

returns property [68, 69]. Next, we discuss a simple solution to substitute Equation (5.3).

5.2.2 Covering Subreddits

One popular approach especially used in document summarization tasks to make a

function respect diversity, is to apply a concave function to the coverage [69],

F (S) =
I∑

i=1

√
coverS(i). (5.5)

This objective function satisfies the submodularity property which exhibits a natural di-

minishing returns, that is, given two sets R and S from a finite ground set V where

R ⊆ S ⊆ V \ v, the incremental value of an item v decreases as the context in which

v is considered grows from R to S. More formally, submodularity is a property of set func-

tions, i.e., the class of functions f : 2V → R that map subsets S ⊆ V to a value f(S). The

function f can be thought as a black box function which maps any given subset to a real

number.

Definition 5.2.1 The function f is called submodular if the following inequality holds for

any S: f(S ∪ {v})− f(S) ≤ f(R ∪ {v})− f(R), where f is submodular if R ⊆ S ⊆ V
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Figure 5.5. An illustration of how posts p1, . . . , pn are structured into different

subreddits and topics.

and v ∈ V \ S. This form of submodularity directly satisfies the property of diminishing

returns; the value of adding v never increases when the context gets larger. [67]

Even though finding the exact subset that maximizes Equation (5.5) is intractable, it has

been shown that the maximization of a monotone submodular function under a cardinality

constraint can be solved near-optimally using a greedy algorithm [67]. In particular, if a

function f is submodular and monotone, and takes only non-negative values, then a greedy

algorithm approximates the optimal solution of Equation (5.5) within a factor of (1− 1/e)

[67]. Due to the large number of subreddits with hundreds of incoming posts every hour,

the naive greedy approach is not efficient. Therefore, we use CELF [70] which provides an

efficient way to optimize this function based on a lazy-forward optimization.

Before we move on, let us provide some intuition behind Equation (5.5). The idea

here is to apply a diminishing return to reward of posts coming from the same subreddit.

In other words, the gain of selecting posts from the same subreddit diminishes due to the

concave function. By adapting the example of [69], let us demonstrate the intuition behind

this concave function. Consider a user is subscribed to two subreddits; AskReddit and

worldnews. Assume that candidate posts in AskReddit are p1 and p2, having a hot-

score of 5000 and 4000, respectively. Similarly, worldnews has one candidate post, p3
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with a hot-score of 3000. Evaluating this function for the first time on this set selects p1

since it has the largest marginal gain. However, the next time we select p3 even though

the hot-score of p2 is higher since
√
5000 + 4000 <

√
5000 +

√
3000. Intuitively, this

means that selecting a post from a subreddit that is not yet explored has a higher gain than

selecting a post from a subreddit that we already covered. Therefore, the objective function

will reward diversity by having items chosen from different subreddits, and will not let

popular subreddits to dominate.

However, even though this function respects diversity, it does not consider several im-

portant aspects. First, most of the subreddits are often related to each other. For instance,

Cooking, cookingvideos, cookingforbeginners, recipes are among sev-

eral cooking-related subreddits covering essentially the same interest. One way to alleviate

this problem might be using a topic model on every post and identify similar posts in

terms of content. Then, we could select posts covering different topics. However, given

the dynamic nature of Reddit with thousands of posts, such approaches are prohibitively

expensive. Finally, this framework does not allow users to discover new subreddits that

are aligned with their interests. Next, we discuss an extension of this framework which

addresses above problems.

5.2.3 Covering Topics

There exist a large number of subreddits that share similar characteristics, and they can

be grouped into topics. Therefore, instead of covering individual subreddits, one might

cover topics that a user is interested in. For this purpose, we used Latent Dirichlet Alloca-

tion (LDA) [71], a generative model that discovers the underlying topics in a text document

by assuming that each document d ∈ D is associated with a K-dimensional topic distribu-

tion. In other words, each document covers K latent topics, where each topic is defined as

a distribution over words drawn from a Dirichlet distribution. Given such a model, an ideal

approach would be directly inferring the topics a user is interested in. However, we only

have an explicit signal about the interests of the user by means of subscribed subreddits.
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Therefore, directly inferring the latent interests of the user is a difficult task. We alleviate

this problem as follows. We first construct a set of D documents where each document di

represents a subreddit i ∈ I. The document di contains the text of all posts submitted to

subreddit i in the dataset. After building a model using K topics, we obtain a topic distri-

bution for a given subreddit i, and use cosine similarity to compute most similar subreddits

for i. After that, given a subreddit i that the user is subscribed to, we simply instantiate

a pseudo-topic which consists of the subreddit i and top m most similar subreddits to i.

Intuitively, this means that Reddit is clustered into topics, and topics themselves consist

of subreddits, as shown in Figure 5.5. Note that under this assumption, even though two

instantiated topics might contain very similar subreddits, their coverage will be adjusted ac-

cordingly since our model allows overlapping subreddits. In other words, when we cover

a post from a subreddit i, the diminishing return property will be reflected to all topics

that i is participated in. Table 5.2 illustrates some topics obtained by using this approach.

As can be seen from the table, we are able to discover similar subreddits such as food,

Cooking, cookingforbeginners. On the other hand, we also discovered some

niche subreddits. For instance, given that a user is subscribed to food subreddit, we can

now recommend ketorecipes; a subreddit that shares low-carb keto recipes.

We now extend Equation (5.5) to consider the similarity between subreddits and to

inject posts from related subreddits that the user is not subscribed. For this purpose, we

formulate the following objective function,

F (S) =
∑
k∈K

√ ∑
i∈Rk∩I

ϕi coverS(i) , (5.6)

where K represents a set of topics, k represent an arbitrary subreddit from this set, Rk

represents the set of subreddits that belongs to topic k, I represents the set of subreddits

in the corpus, and coverS(i) represents how much subreddit i is covered by posts in set S ,

as in Equation (5.2). ϕi is simply added as a penalization term to prevent the framework

favoring subreddits that belong to multiple topics, and chosen as ϕi = 1/|K̂i| where K̂i

represent the set of topics the subreddit i belongs to.
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Theorem 5.2.1 Given two functions F : 2V → R and f : R → R, the composition

F ′ = f oF : 2V → R is non-decreasing submodular, if f is non-decreasing concave and

F is non-decreasing submodular. [69]

Claim 5.2.2 The topic-based coverage function in Equation (5.6) is submodular.

Proof coverS(i) is a modular function with non-negative weights (hence, monotone).

Similarly, sum of coverS(i) function is also monotone. This monotone function is sur-

rounded by a square root function, which is a non-decreasing concave function. Using a

concave function to this monotone function yields a submodular function (see Theorem

5.2.1). Finally, the sum of a collection of submodular functions are submodular [72], thus

F (S) is submodular.

Equation (5.6) satisfies two important aspects we would like to emphasize. First, it

respects the similarity between subreddits. In other words, subreddits that belong to the

same topic get diminishing returns. This is an important feature since we do not want to

overwhelm the frontpage by covering posts from similar topics. On the other hand, by using

the notion of topics, we are able to consider subreddits that the user is not even subscribed.

Thus, this function naturally encourages discoverability of new subreddits.

Note that in both Equation (5.5) and Equation (5.6), we used hot-score to assign a

reward to the posts. This function is not an ideal scoring function that we desire, since it

causes a strong power-law behavior between scores of popular and un-popular subreddits.

A more sophisticated scoring algorithm can be designed by advancing probabilistic models

such as Chinese Restaurant Processes [73]. However, as of 20146, Reddit no longer shares

the actual upvote and downvote counts, and only provides the computed hot-score value

for individual posts. Therefore, we use hot-score to associate a reward to the posts.

6https://www.reddit.com/r/announcements/comments/28hjga/reddit_changes_
individual_updown_vote_counts_no.
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5.2.4 Personalization

In Equation (5.6), we introduced a topic-based coverage function that captures the de-

sired properties of our framework. However, this function does not respect the personal

preferences of the users. This is an important problem since users might be interested

in certain topics more than others. Moreover, even if a user is interested in a particular

topic, it might be the case that the user is interested in certain subreddits in that topic more

than others. To address these problems, we first introduce a personalized weight for each

topic in Section 5.2.4, and then extend this model by introducing a personalized weight for

subreddits in a given topic in Section 5.2.4.

Personalizing topic weights To address the first problem, we now introduce a personal-

ized weight for each topic and obtain a personalized coverage function for a fixed user u,

as follows:

Fu(S) =
∑
k∈K

wk

√ ∑
i∈Rk∩I

ϕi coverS(i), (5.7)

where wk represents the preference of the user on topic k. Our main goal is to learn a

personalized coverage function Fu(S) by learning the weight vector of the user for all

topics. Given a topic k, the marginal gain of adding a new post v to set S can be computed

as follows,

ΔFu(v|S) := Fu(S ∪ {v})− Fu(S), (5.8)

which corresponds to,

ΔFu(v|S) :=
√ ∑

i∈Rk∩I
ϕi coverS∪{v}(i)−

√ ∑
i∈Rk∩I

ϕi coverS(i). (5.9)

Our user-interaction model considers the current interface of Reddit, that is, the users

interact with the posts by means of upvotes and downvotes. We adapt a similar scheme

and present the set of posts S to the user, sorted by submodular reward of each post in

decreasing order. Then, for each post j in set S , we receive a feedback of fj ∈ {−1, 0,+1},
corresponding to upvote, no-vote, and downvote, respectively. After presenting a set of
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posts S to the user with weight vector w and getting feedback vector f , the total loss we

get can be written as follows,

Lu(S, w, f) = −
∑
k∈K

wk

∑
j∈S

fjΔFu(j|S). (5.10)

Note that we included a negative sign in the formulation since we are considering the loss

instead of a reward. The total loss we get by using the current weight vector w depends on

the marginal gain of each post in set S , and the type of the feedback we receive for that

post.

Due to the dynamic setting of the problem, a natural way to learn the weights w is to use

an online learning algorithm such as Stochastic Gradient Descent (SGD) [74] or Exponen-

tiated Gradient Descent (EG) algoritm [75]. However, SGD is not a suitable algorithm for

our application since (i) weights might become negative and hence, violate the submodular

property, (ii) the weights do not adapt to the interest of the users quickly enough. On the

other hand, EG preserves the non-negativeness property while adjusting the weights in a

shorter time [76]. More formally, given an old weight vector wt at time t, EG estimates the

new vector wt+1 at time t+1 by minimizing a combination of KL-divergence [77] between

the new and old weight vector, and the loss of the new weights,

∑
k∈K

wt+1
k log

wt+1
k

wt
k

+ ηLu(S, wt+1
k , f) (5.11)

where η is the learning rate, balancing the two terms. By taking the gradient of Equation

(5.11), we get the following update rule for the weights wt+1,

wt+1
k =

1

Zw

wt
k exp

(
η
∑
j∈S

fjΔFu(j|S)
)

(5.12)

where Zw is the normalization factor that ensures that the new weights sum to one. Next,

we address the second problem, and learn a personalized weight for individual subreddits

associated with a topic.

Personalizing subreddit-topic weights By learning the weight vector w, we aim to learn

a personalized coverage function for the user. However, learning only the topic weights is
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not enough to achieve the desired notion of coverage. It might be the case that the user is

interested in a given topic, however might not be interested in some of the subreddits that

are presented in that topic. For instance, make-up topic includes MakeupAddiction,

makeupexchange and AustralianMakeup subreddits among others. Even though

the user is interested in the make-up topic, it might be the case that user is not interested in

AustralianMakeup subreddit simply because it targets users in Australia. Or similarly,

the user might like certain subreddits in a given topic more than others. Therefore, using

pre-defined weights on the subreddits within a topic is not ideal, and we need to learn

the personal preference of the user for individual subreddits in a given topic. Thus, we

extend the personalized coverage function in Equation (5.7) by introducing topic-subreddit

weights αki for a given topic k and subreddit i as follows,

F̂u(S) =
∑
k∈K

wk

√ ∑
i∈Rk∩I

αki ϕi coverS(i). (5.13)

where
∑

i αki = 1. Note that we have a similar loss function as in Equation (5.10), where

the marginal gain of adding a new post v now includes the αki terms as follows,

ΔF̂u(v|S) :=
√ ∑

i∈Rk∩I
αki ϕi coverS∪{v}(i)−

√ ∑
i∈Rk∩I

αki ϕi coverS(i). (5.14)

and the new loss becomes,

L̂u(S, wk, α, f) = −
∑
k∈K

wk

∑
j∈S

fjΔF̂u(j|S). (5.15)

Similar to Equation (5.11), we would like to minimize the KL-divergence between new and

old weight vectors and a loss term,∑
k∈K

wt+1
k log

wt+1
k

wt
k

+
∑
k∈K

wt+1
k

∑
i∈Rk

αt+1
ki log

αt+1
ki

αt
ki

+ η L̂u(S, wt+1
k , αt+1

ki , f).

Setting the derivatives of this function with respect to wt+1
k and αki, we get the following

updates:

wt+1
k =

1

Zw

wt
k exp

(
η
∑
j∈S

fj ΔF̂u(j|S)
)

, (5.16)

αt+1
ki =

1

Zαk

αt
ki exp

(
η
∑
j∈S

fj
∂

∂αt
ki

(ΔF̂u(j|S))
)

(5.17)
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where in Equation (5.17) we use the gradient evaluated at the current parameter αt
ki, thus,

the updates are explicit. Note that the subreddit-topic weights α reside inside of the concave

function, and subject to diminishing returns. This is a desirable property, since we want the

reward of covering posts from a given subreddit to diminish as we select more posts from

this subreddit.

The blessing of multiplicative updates is their speed, in the sense that they converge

quickly to the best expert (i.e. topic) when the data generating process is static [76]. That

is, the good weights grow exponentially, and the remaining weights rapidly get wiped out.

However, this property becomes a caveat when the data generating process changes over

time since the previously selected expert might not perform well on the new data. This

phenomenon is often referred as the curse of the multiplicative updates [76]. This problem

is particularly apparent in our application since the interest of the user might shift over

time due to the dynamic nature of Reddit. For instance, the user might express a keen

interest towards nfl and related subreddits due to the recent hype about the Super Bowl

championship. This causes our framework to adjust the weight of the sports topic and

promote sports-related subreddits and posts. However, even though we want to adapt to

the new topic, it might not be reasonable to allow the weight of that topic to take over

completely. In other words, instead of concentrating on one expert, we would like to have

more variety in the long term. Note that the same observation also holds for the weights

of the subreddits for a given topic. Decaying Past [78] is an elegant solution to make

EG algorithm robust against data that changes over time by preventing the currently good

weights from taking over completely. In an essence, this algorithm produces a new weight

vector by taking a mixture of the past observations with weights decaying backward in time.

Thus, the current observation always has the largest mixture coefficient. Let wt+1 represent

the weight vector that we obtained from EG algorithm in Equation (5.12). Decaying Past

algorithm transforms the weight of topic k as follows,

wt+1
k ← (1− β)wt+1

k + β
1

Zt

t∑
q=0

wq
k

(t+ 1− q)γ
(5.18)
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over, our submodular function is different that that proposed by [68] and [79] (see Section

5.2.4 for details). Another subtle but important difference is that [68] use Exponentiated

Gradient (EG) of [75] to update the user profile weights, while [79] use stochastic gradient

descent. As we argue in Section 5.2.4, both these algorithms are unable to capture drift

in user interests. Therefore, we update the personalized weights of users with Decaying

Past algorithm of [78]. Consequently, our framework is able to adapt the changes in user’s

interests (see Section 5.4).

Despite being one of the most popular websites in the world, there has been few stud-

ies that focus on Reddit data. To best of our knowledge, this work is among the first to

investigate relationships between communities and use it to design a recommendation sys-

tem for subreddits. [80] studied how factors such as submission titles and submission times

determine the popularity of social media content by studying re-submissions. [81] studied

how user submissions have evolved and how the community’s perception of submissions

changed over time. [82] studied comment threads on Reddit by investigating what extent

discussion threads resemble a topical hierarchy and whether threads can be used to enhance

Web search. [83] studied the problem of subreddit classification using graph kernels.

There has been also external websites such as subredditfinder.com to recom-

mend subreddits. They provide a searchable database of subreddits based on activity, pop-

ularity or keywords. However, they do not curate a frontpage, nor do they perform any sort

of personalization.

5.4 Experiments

We evaluate our framework with three different approaches. First, we perform an of-

fline experiment using real user data from Reddit, and evaluate our framework in terms of

average click position (see Section 5.4.1). We then perform two kinds of qualitative experi-

ments; we simulate a hypothetical user, and investigate the quality of the recommendations

(see Section 5.4.2). After that, we perform a user study and evaluate our framework in

terms of interestingness, diversity, discoverability, and personalization (see Section 5.4.2).
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5.4.1 Quantitative Experiments

In this section, we perform an offline experiment using data7 of actual Reddit users, who

chose to share their information for research purposes between 2007-2010. The dataset is

composed of unique Reddit id of the users, and corresponding links they upvoted or down-

voted. Additionally, we used the public API8 of Reddit and collected subreddit, creation

date, hot-score value, and number of comments for each link since such metadata was not

included in the voting dataset. After removing deleted posts, the dataset includes 2,046,401

links from 31,452 users with 5,856,725 total number of votes. This dataset covers a diverse

set of communities, having 6,497 different subreddits.

We evaluate our framework in terms of average click-position. Given a user u who

casts a vote against link l, and a frontpage fM generated by a method M, the average

click-position is simply defined as the average position of link l in fM. Thus, an ideal

method should place the links that user likes to an upper position in the frontpage. Since

we do not have access to the list of subreddits that the user has subscribed to, we split the

data into training and testing (90%− 10%) and created a user profile using the training set.

After that, we simply assume that a user is subscribed to a subreddit if there are at least

five votes for this subreddit in the training set. Then, for each date the user casts a vote in

the test set, we generate a frontpage of 500 posts from the subreddits that user is interested

in. This information is then used to compute the average click position. Since we do not

have access to a live environment where we learn personalized topic weights through the

interactions the user has expressed, we only evaluate the core framework introduced in

Section 5.2.2. We compare our method, Submodular, against four baselines, as follows:

• Date: In this method, we sort links by date in decreasing order, thus, users are always

exposed to the freshest content.

7Dataset can be accessed at: http://www.reddit.com/r/redditdev/comments/bubhl/csv_
dump_of_reddit_voting_data.
8Public API of Reddit: https://www.reddit.com/dev/api.
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• Controversy: This is an alternate method that Reddit provides for its users9, and sorts

links by taking a ratio between the total number of votes and the difference between

upvotes and downvotes. Thus, a controversial post is defined as having a relatively

equal number of upvotes and downvotes.

• Hot-score: This method simply uses the hot-score function in Equation (5.1), and

sorts the set of links for each subreddit in decreasing order. It then generates the

frontpage by selecting one link from each subreddit in a round-robin fashion, until

the frontpage is filled.

Figure 5.6 (left) illustrates the average click positions for all methods. As can be seen

from the figure, our method has a significantly better average click position than baseline

methods, meaning that we are able to put the links that user likes to an upper position in

the frontpage. Figure 5.6 (right) compares hot-score based ranking to our method. In this

case, the x-axis represents the difference of average click position between hot-score and

our algorithm. As can be seen from the figure, our method significantly outperforms the

hot-score method. Moreover, our framework is not prohibitively expensive, and takes only

an additional 0.25 seconds per frontpage generation comparing to baselines.

5.4.2 Qualitative Experiments

In the previous experiment, we quantitatively demonstrated our algorithm’s ability to

rank posts in an upper position. However, this measure does not reflect how well our

algorithm performs in terms of other important aspects such as diversity, discoverability

and personality. In this section, we first demonstrate the quality of our framework from a

simulated user’s point of view, and then perform a user study to test our framework.

In order to build subreddit similarities, we collected data using public API of Reddit

between November 2014-2015, having a total of 6.2 million links from 225,785 subred-

dits. We removed all subreddits and links that are marked as NSFW (i.e. adult content)

and removed subreddits that are having less than 1000 subscribed users. After this filtering

9https://www.reddit.com/controversial.
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content, the proportion of them should be smaller than subreddits with distinct topics, such

as MakeupAddiction.

Figure 5.7 (left) illustrates the covered subreddits by the hot-score algorithm. Note

that, since links are selected from each subreddit in a round-robin fashion, all subreddits

are covered equally. However, this method does not consider the similarity between the

subreddits, thus, it might repeatably cover posts from food and Cooking subreddits and

overwhelm the user with similar content. Figure 5.7 (center) shows the coverage of subred-

dits from our framework. As we hypothesized, our framework demonstrates two important

aspects. First, the coverage of similar subreddits diminish due to submodularity. On the

other hand, in addition to the subreddits which the user is subscribed to, we also show

posts from related subreddits, such as, keto, painting, AnimalsBeingJerks

and makeupexchange. Therefore, our framework promotes discoverability.

Secondly, we would like to simulate the effect of personalization on this hypothetical

user. In particular, we assume that a set of posts shown to the user every day for a period of

ten days. In the first five days, the user only upvotes posts related to the make-up topic. We

hypothesize that as user keeps expressing an interest towards this topic, the weight associ-

ated with the make-up topic will increase accordingly. Figure 5.7 (right) illustrates the cov-

erage of the user after five epochs. As can be seen from the figure, the coverage of make-up

related topics is higher than others. Moreover, given the intense interest of the user towards

this topic, we inject more links related to make-up from subreddits user is not subscribed to,

in particular, from makeupexchange, MakeupAddicts, RedditLaqueristas.

Finally, we would like to see how our system is able to adapt to the changes. Therefore,

we assume that user has developed a sudden interest towards fitness topic for the remaining

five epochs, and only upvotes posts related to this topic. Figure 5.8 illustrates how the

weights change over time (updates by our algorithm denoted by non-dashed lines). Note

that for the sake of brevity, we only illustrate the weight of three topics, food, make-up, and

fitness. As can be seen from the figure, the weight of make-up topic grows over the first

five epochs, indicating that the coverage of this particular topic will increase. On the other

hand, during the next five days, the weight of fitness topic starts to overtake. Figure 5.8 also







94

are interested in injected links 80% of the time. Therefore, our framework encourages

discoverability. For our final experiment, we evaluated how well our algorithm learns under

limited user feedback. Figure 5.10 (right) illustrates the average number of upvotes over

five epochs and we can see that we are able to learn the personal preferences of the users

since the number of upvotes increase over time. On the other hand, since hot-score method

is not performing any personalization, the average number of liked posts are uniformly

distributed.

5.5 Conclusions

In this chapter, we proposed a framework to tailor a personalized set of posts that takes

coverage, diversity and discoverability into account. We formulated a simple and elegant

submodular objective function for which we can efficiently provide a near-optimal solution.

We then projected subreddits into topical space, and discovered novel relationships between

communities. We then used this relationship to encourage discoverability of new content

and communities. Finally, we extended our framework to learn a two-step personalized

coverage function.

We evaluated our framework both quantitatively and qualitatively. Our offline evalua-

tion with real user data from Reddit demonstrates that our framework ranks posts to an up-

per position, and significantly outperforms baseline algorithms. Moreover, our user-study

shows that our that our algorithm provides better coverage and diversity while encouraging

discoverability.

Finally, even though we demonstrated Reddit as a use-case, our framework is applica-

ble to any setting where the items are distributed into categories (i.e. cuisines on Yelp),

and the goal is to select a representative and diverse subset of items (i.e. restaurants on

Yelp). Moreover, in cases where inferring to similarity between categories is not possible

by building a topic-model, one can use collaborative filtering approaches to infer category

similarities.
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6 A SUBMODULAR FRAMEWORK TO SUMMARIZE TED TALKS

In this chapter, we propose a novel summarization framework to summarize TED talks.

We formulate our objective function as a submodular framework that balances coverage

and diversity. Our coverage function covers the ideas that speaker is promoting while also

leveraging aspects that audience is focused on. Our diversity function measures the diver-

sity of the summary in terms of latent dimensions, and incorporates state-of-the-art word

embedding methods from deep learning and neural language models. Our experiments

show that both our coverage function, and the diversity function outperforms the baseline

methods. Moreover, our method is applicable to any setting where a feedback from the

audience is available, such as videos on Youtube, or lectures in Coursera.

6.1 Motivation

TED is a non-profit organization devoted to “Ideas Worth Spreading”1. Since 1984,

TED invites “the world’s most fascinating thinkers and doers to give the talk of their lives”,

and brings inspirational speakers from Technology, Entertainment, Design areas together.

As of today, more than 1,500 talks are available on TED.com, meaning over 1,500 ideas

worth spreading. However, watching all videos on TED.com, and extracting useful ideas

is prohibitively expensive. If fact, according to TED speaker Sebastian Wernicke’s ‘1000

TED Talks, 6 words” talk, it would take over 250 hours to watch 1,000 TED talks which

brings a total of $15,000 cost per person2.

In this work, we propose a novel framework to summarize TED talks. Unlike tradi-

tional document summarization tasks, an important feature of TED talks is the notion of

an audience. TED.com makes the best talks and performances available by posting video

1 TED Talks: http://www.ted.com/pages/view/id/5
2“1000 TED Talks, 6 words”: https://www.ted.com/talks/sebastian_wernicke_1000_
tedtalks_6_words
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recordings of the talks along with their subtitles. The users then can leave comments for

individual talks, and criticize the points they agree or disagree. For instance, consider Ken

Robinson’s infamous “Do schools kill creativity?” talk, where the description is given as

follows3:

“Sir Ken Robinson makes an entertaining and profoundly moving case for cre-

ating an education system that nurtures (rather than undermines) creativity.”

Figure 6.1 illustrates the word cloud for the speaker where the most dominant words

are education, people and children. Similarly, Figure 6.2 illustrates the word cloud for

the audience which focuses on words such as creativity, school, education. One can see

that even though there are common concepts such as education where both the speaker and

the audience focus on, there are also concepts such as creativity where audience is more

interested in. In this work, we conjecture that an ideal summarization framework should

not only cover the diverse points the speaker is focuses on, but should also leverage the

audience’s point of view.

Our second contribution in this work is to measure the diversity of the summary in

terms of latent dimensions. Our framework uses the latest advancements in deep learning

and neural language models, and incorporates the latent representations of the words to

encourage diversity.

This chapter is structured as follows. In Section 6.3 we discuss related work. In Section

6.2, we propose the coverage and the diversity components of our framework. In Section

6.4 we compare our framework with several baseline methods. Section 6.5 concludes the

chapter.

6.2 Methodology

In this study, we are interested in designing a system to perform extractive summariza-

tion on TED talks. In particular, we are interested in selecting a subset of sentences from

3“Do schools kill creativity?”: https://www.ted.com/talks/ken_robinson_says_
schools_kill_creativity
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Figure 6.1. Top words of speaker where words sizes are positively correlated

with frequency of each word, and colors are assigned randomly. We can see

that the speaker focuses on words such as education, people, children.

Figure 6.2. Top words of audience where words sizes are positively correlated

with frequency of each word, and colors are assigned randomly. We can see

that the audience focuses on words such as education, school, creativity.
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the talk that covers important aspects the speaker is promoting, while also leveraging con-

cepts that audience is focused on. Formally, let T represent a TED talk that is divided into

n units, and let i ∈ T represent a single unit in T . Then, we are interested in selecting a

subset S ⊆ T to represent the entirety of ground set T , subject to a cardinality constraint

k ≤ n. In other words, we would like to select k units from the ground set T to form a

summary. Let us assume that we have a set function F : 2T that measures the quality of

set S . Then, we are interested in finding the optimal solution to the following optimization

task,

S∗ = argmax
S⊆T :|S|≤k

F(S)

where S∗ represents the optimal solution subject to a cardinality constraint k which denotes

the total number of units in the summary set S . Thus, the summarization task we are

interested in becomes a budgeted maximum coverage problem [86]. This is a well-known

NP-hard problem [67], however, it has been shown that if F is monotone submodular, then

a greedy algorithm can solve the problem near-optimally with (1 − 1/e) approximation

factor [67]. In addition to providing an efficient solution with a constant factor guarantee,

submodular algorithms are shown to naturally model coverage and diversity notions [69,

87]. Several existing frameworks for automatic summarization are instances of submodular

functions [69], and they achieve state-of-the-art results for many summarization problems.

Therefore, we formulate our problem as a submodular task for which we can efficiently

find the optimal solution within (1− 1/e) by using a greedy algorithm.

An important aspect of a good summarization system is to balance coverage and diver-

sity. Maximal Marginal Relevance (MMR) [88] is one of the most popular summarization

frameworks that positively reward coverage while negatively penalizing the redundancy

in the summary set S . However, even though this function is submodular, the negativity

factor violates monotonicity and constant-factor approximation of the greedy algorithm is

not guaranteed [69]. Instead, [69] proposes a framework that positively reward diversity

instead of negatively penalizing redundancy. In particular, their framework is defined as

follows,

F(S) = FL(S) + λFR(S) ,
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where FL(S) measures the coverage (i.e. how similar S to the rest of the document),

and FR(S) measures the diversity (i.e. how diverse the sentences in set S). The FR(S)
term can be interpreted as a regularization term that exists in traditional machine learning

frameworks. Next, we discuss how to design the relevancy, and the diversity components.

6.2.1 Designing the Relevancy Component

Most of the existing summarization frameworks including [69,87] operate on sentence-

level summaries where one aims to select a subset of sentences from the document. How-

ever, unlike traditional text, the transcript of the talks are directly derived from speech.

This brings unique challenges when selecting individual sentences as the single units in the

summarization task since sentences are often connected to each other via conjunctions. For

instance, the following set of sentences from Ken Robinson’s “Do schools kill creativity?”

talk should be considered as one unit since they are topically coherent:

“What TED celebrates is the gift of the human imagination. We have to be

careful now that we use this gift wisely and that we avert some of the scenarios

that we’ve talked about. And the only way we’ll do it is by seeing our creative

capacities for the richness they are and seeing our children for the hope that

they are. And our task is to educate their whole being, so they can face this

future.”

As can be seen from this example, treating “And the only way we’ll do it is by seeing

our creative capacities for the richness they are and seeing our children for the hope that

they are.” sentence as a single unit will lower the quality of the summary since it is not

clear what it refers to in the sentence. Therefore, instead of selecting individual sentences

to add to the summary set S , we treat the set of coherent sentences as a single unit. For this

purpose, we use the segmentation that is manually generated by the TED.com staff.
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An important aspect of the relevance component FL(S) is to measure the similarity

of the summary set S to the overall talk. In particular, we would like to cover important

aspects that speaker is focused on. For this purpose, we define the FL(S) as follows,

FL(S) =
∑
i∈S

∑
j∈T
〈wi,wj〉α . (6.1)

Here, i represents an arbitrary unit from the summary set S , j represents an arbitrary

unit from the ground set T , wi (and similarly, wj) is a vector of size |V| where V is a

vocabulary that is constructed as the set of all unique words in talk T , and each element

w ∈ wi simply represents the number of times that word w appears in unit i. 〈·, ·〉 represents

a dot product, and α represents the weight vector of the speaker over the vocabulary V
that is simply generated by counting the frequency of each word w ∈ V over the entire

transcript.

FL(S) measures the similarity of the summary set S to the talk T . However, it only

captures the aspects that the speaker is focused on. Ideally, we would also like to pro-

mote the aspects that the audience is interested in. Therefore, we define another coverage

function similar to FL(S),

FA(S) =
∑
i∈S

∑
j∈T
〈wi,wj〉β , (6.2)

where β represents the weight vector of the audience over the vocabulary V that is generated

by counting the frequency of each word w ∈ V in the comments of the audience for the

talk T . However, both FL(S) and FA(S) are monotone functions that do not encourage

diminishing returns. Thus, we need to design another component that will encourage the

objective function to encourage diversity in the summary set S .
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6.2.2 Designing the Diversity Component

Diversity component should be designed to reflect the notion of diminishing returns,

such that selecting units that are similar to the already selected sentences will have less

gain. FR(S) function of [69] is defined as follows,

FR(S) =
K∑

k=1

√ ∑
i∈Pk∩S

ri , (6.3)

where Pk, k = 1, . . . ,K is a partition of the ground set T into separate clusters that is

generated by using K-means algorithm on the sentences, and ri is the reward of adding

item i to the empty set S . This function rewards diversity since selecting a unit from a

cluster that is not yet having one of its elements already chosen has more benefit. Then,

then the cluster start to demonstrate diminishing returns effect as we start to select more

units from it due to the concave square root function. Thus, the partitions P of the ground

set T is simply performed to group similar items together under a concave function so that

we can apply the diminishing returns effect.

One important observation we propose in this chapter is that the diversity can be mea-

sured by means of latent dimensions on the vocabulary set V . Thus, selecting units that

represent dimensions that are not yet covered will have more gain. Word embeddings are

popular methods to generate distributed vector representations of words where each word

w ∈ V is represented as a vector over D dimensions. Unlike traditional language models,

word embeddings [37] take advantage of the notion of a context that is defined as a fixed

number of preceding words. Thus, similar words are mapped to similar positions in the

vector space. The learned word vectors are empirically shown to preserve semantics, for

instance, word vectors can be used to answer analogy questions using simple vector algebra

where the result of a vector calculation v(“Madrid”) − v(“Spain”) + v(“France”)

is closer to v(“Paris”) than any other word vector [35].

Let us assume that we have a word embedding modelM overD dimensions. Then, we

can define a diversity component as follows,

FR(S) =
D∑

d=1

√∑
i∈S

ϕi,d , (6.4)
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where d is an arbitrary dimension from D, and ϕi,d represents how much unit i covers

the dimension d ∈ D. Thus, we measure the diversity in terms of latent dimensions that

words are embedded in. Since the word representations do not depend on the dataset, this

approach allows us to plug high quality word representations that are trained on external

sources, such as Google’s pre-trained word vectors on Google News dataset that consists

of 100 billion words4. Note that this approach does not require us to explicitly cluster sen-

tences in a document as in [69], and thus, provides an alternative way to measure diversity

even when the documents are too short and do not carry enough signals for clustering.

Thus, our final framework becomes the following,

F(S) = FL(S) + FA(S) + λFR(S) , (6.5)

where FL(S) is defined as Equation (6.1), FA(S) is defined as Equation (6.2), FR(S) is

defined as Equation (6.4) and λ is a weight between 0 ≤ λ ≤ 1 that balances the relevancy

and the diversity.

Claim 6.2.1 The summarization algorithm in Equation (6.5) defined by Equation (6.1),

Equation (6.2) and Equation (6.4) is submodular.

Proof Equation (6.1) and Equation (6.2) are modular functions with non-negative weights

(hence, monotone). Similarly,
∑

i∈S ϕi,d in Equation (6.4) is also monotone with non-

negative weights. This monotone function is surrounded by a square root, which is a non-

decreasing concave function. Applying a concave function to a monotone function yields a

submodular function (see Theorem 5.2.1). The sum of a collection of submodular functions

are submodular [72], thus FR(S) is submodular. The summation of the modular functions

FL(S) and FA(S) with submodular function FR(S) preserves the submodular property,

and hence F(S) is submodular.

4https://code.google.com/archive/p/word2vec/
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6.3 Related Work

Automatic summarization is a well-studied problem in the literature. Several methods

have been proposed for single and multi-document summarization, including [88] and [89].

There has been also extensive work in submodular summarization frameworks such as [69]

and [87]. Our work is different from related works in the sense that our coverage function

is based on both speaker and the audience, and our diversity function evaluates the diversity

in terms of latent dimensions of the words.

There also has been several works that use TED data. [90] explores content-based and

collaborative recommendation methods for TED talks. [91] introduces a model for multi-

ple instance learning and uses the comments from TED talks to predict talk-level emotion

dimensions. [92] studies TED talks to design a system that detects and enables the explo-

ration of relevant fragments inside educational videos. [93] studies finding metadiscourse

concepts in TED talks with a crowdsourced approach. [94] proposes a model to analyze

memorable spoken quote corpora from TED talks. [95] proposes a system to create video

digests to support browsing and skimming videos, and uses TED talks as one of the case

studies. [96] analyzes comments of TED talks that are left on both TED.com and Youtube,

and investigates whether there exists a significant difference in type of comments accord-

ing to platform, and whether there exists significant differences in commenting observed

according to presenter characteristics.

6.4 Experiments

Here, we first introduce our dataset in Section 6.4.1, then discuss how we evaluate our

algorithms in Section 6.4.2. In Section 6.4.3, we compare our method with several baseline

methods.
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6.4.1 Datasets

We crawled TED.com website between February 24-25, 2016 and obtained raw HTML

files of the talks, and top-level comments associated with each talk. We then parsed HTML

files to extract metadata, and applied basic pre-processing steps such as stopword and punc-

tuation removal. While extracting transcripts of the talks via speech to text methods is pos-

sible, TED.com provides robust transcripts for the talks along with the videos. Thus, we

directly use the obtained transcripts from the collected HTML files. The collected TED

talks cover a wide range of interests such as topics including music, gaming, gender, and

themes including How the Mind Works, Tales of Invention and Women Reshaping the World.

Figure 6.3 shows top topics (left), and top themes (right).

6.4.2 Evaluation

In order to evaluate the quality of the generated summaries, we use a benchmark eval-

uation metric called Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [97].

ROUGE is officially adopted as the evaluation metric for The Document Understanding

Conference (DUC)5, the main forum that provides benchmarks for researchers on docu-

ment summarization. This metric simply computes the recall between the automatically

produced summary and a set of human-produced reference summaries. Let S represent

the candidate summary extracted from the ground set T , and ci : 2
T → Z+ represent the

number of times n-gram i occurs in summary S . Similarly, let R represent a set of refer-

ence summaries where Rj represent n-grams contained in the reference summary j, and

rj,i represent number of times n-gram i occurs in reference summary j. Then, ROUGE

score is defined as,

Frouge(S) =
∑|R|

j=1

∑
i∈Rj

min(ci, rj,i)∑|R|
i=1

∑
i∈Rj

rj,i
.

Unlike traditional documents used in document summarization tasks, the transcript of

the talks are often short documents. Therefore, we adapted ROUGE score with n = 1 for

5http://duc.nist.org
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n-grams. In other words, we measure the unigram recall between the automatic summary

and the reference summaries. Thus, a high level of overlap between the shared concepts

indicates a high quality of summary.

In order to evaluate ROUGE score, we need reference summaries. tedsummaries.

com is a website that shares manually generated short summaries of TED talks. Thus,

each reference summary collected from this website corresponds to a reference setR when

computing the ROUGE score.

6.4.3 Results

Our experiments are three-fold. First, we would like to understand how the speaker-

based modular function in Equation (6.1) performs against a randomly generated summary.

Then, we would like to understand how audience-based function in Equation (6.2) improves

over the speaker-based function. Finally, we would like to see how results improve with the

diversity component. In particular, we compare the diversity component of [69] in Equation

(6.3) that is based on K-means, and our diversity component in Equation (6.4) that is based

on word embeddings. In all experiments, we select k = 5 units to form a summary since

the the median number of segments for each talk is n = 20. Thus, we are selecting 25% of

the talk to form a summary. More formally, the baseline methods we compare in this study

is as follows:

1. Random: We randomly select k segments from the talk to form a summary.

2. Speaker: We use Equation (6.1) to select k segments from the talk to form a sum-

mary.

3. Speaker + Audience: We Equation (6.1) and Equation (6.2) to select k segments

from the talk to form a summary.

4. Speaker + Audience + Diversity (K-means): We used Equation (6.1) and Equation

(6.2) as the relevancy component, and Equation (6.3) as the diversity component.

Following [69], we selected the number of clusters for each talk k = 0.2 × n where
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Table 6.1.

ROUGE measures on 80 TED talks for different methods. Numbers represent

percentages.

Method ROUGE

Random 24.69

Speaker 35.21

Speaker + Audience 36.29

Speaker + Audience + Diversity (K-means) 36.79

Speaker + Audience + Diversity (Word2vec) 38.23

n is the total number of segments in the talk. On median, the segments are clustered

into k = 4 clusters. We used Scipy [98] library for K-means, and applied TF-IDF

before feeding the segments into the clustering algorithm. Following the paper of

[69], the reward ri of adding a segment to the empty set is computed as ri =
1
n

∑
j pi,j

where pi,j where pi,j is computed as follows,

pi,j =

∑
w∈i TFw,i × TFw,j × IDF2

w√∑
w∈i TF2

w,iIDF2
w

√∑
w∈j TF2

w,jIDF2
w

.

5. Speaker + Audience + Diversity (word embedding): We used Equation (6.1) and

Equation (6.2) as the relevancy component, and Equation (6.4) as the diversity com-

ponent. We used Google’s pre-trained word vectors on Google News dataset that

consists of 100 billion words6. This model is constructed using word2vec tool [37]

with Negative Sampling method with Skip-gram representation on d = 300 latent

dimensions. ϕi,d in Equation (6.4) is simply defined as ϕi,d =
∑

w∈iMw,d where

M corresponds to a word embedding model, andMw,d corresponds to the weight of

word w of the dimension d in modelM. Since the weights can be negative in word

embedding models, we used a logistic function on weights where a weightMw,d is

transformed toMw,d =
1

1+e
−Mw,d

.

6https://code.google.com/archive/p/word2vec/
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Table 4 shows the obtained ROUGE statistics for different methods. As can be seen

from the results, using a coverage function and selecting segments that covers the aspects

the speaker is focused on performs significantly better than using a random model. Fur-

thermore, using the audience weights in the coverage function improves the results. This

is aligned with our intuition that considering the concepts the audience is engaged in ad-

dition to the speaker is important. Using the diversity component with K-means slightly

improves the results. We conjecture this is due to the fact that TED talks are short com-

paring to traditional text in document summarization tasks, and clustering segments do not

reflect our desired notion of diversity. Finally, we obtain the best results with the diversity

component that is based on latent dimensions. This result is aligned with our intuition that

evaluating diversity of the units in terms of latent dimensions performs well.

6.5 Conclusions

In this chapter, we proposed a novel summarization framework that balances coverage

and diversity. Our coverage function not only takes the speaker’s aspect into account, but

it also incorporates the important concepts that the audience is focused on. Our diversity

component is not dataset independent, and measures the diversity in terms of latent dimen-

sions of the words that forms the sentences. Our framework is flexible in the sense that

any general or domain-specific word embedding model can be plugged to measure diver-

sity. Moreover, this approach inherently allows us to incorporate external resources, such

as pre-trained word embedding models that is trained on billions of documents. Finally, we

demonstrate our framework to summarize TED talks as a novel application.

A similar setting to TED talks is to summarize Youtube videos by using the comments

from the audience, summarizing movie scripts using IMDB comments, or summarizing

lecture videos on Coursera using the questions and comments of the students in the discus-

sion forum.
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7 CROWDSOURCED RESOURCE-SIZING OF VIRTUAL APPLIANCES

In this chapter, we use a population of VMware Virtual Center Virtual Appliances (VCVA)

and their respective workloads and describe techniques for constructing a model of their

resource consumption by mining logs of application performance. We use our model to

provide sizing recommendations for the virtual appliance and identify features that can be

used to provide estimates of expected memory consumption. We show results of better than

70% prediction accuracy for predicting physical memory usage. We describe modeling

techniques from statistical machine learning that are amenable to representing complex,

non-linear systems.

7.1 Motivation

Virtual Appliances are pre-packaged virtual machine images that run on a specific vir-

tualization platform, and they are common modalities of application deployment in public,

private and hybrid cloud environments. These virtual machine images include the software

components of the application along with meta data about their anticipated aggregate re-

source requirements such as amount of RAM and number of GHz desired for the virtual

machine. Accurate estimates of resource requirements can influence the configured size

such as number of virtual CPUs (vCPU), amount of RAM, and the settings of resource

reservations or limits [99].

Specifying the appropriate resource size is a critical but challenging task. Allocat-

ing insufficient resources potentially impacts the performance, reliability and stability of

the virtual appliance, while allocating too many resources is wasteful. In this chapter we

conduct a case study of estimating the resource usage of the VCVA [100]. VCVA is a crit-

ical component in VMware’s virtualized infrastructure since it is the administrative point

of contact for managing hypervisors, virtual machines, virtual networks, and storage. A
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straightforward strategy to respect the resource sizing would be to make a rough estima-

tion of the resources needed by using domain expert knowledge, and then over provision

the resources. However, the complexity of the VCVA, administrative requirements, provi-

sioning and monitoring workflows make it difficult to reason about what to factor into the

estimation.

One contribution of our work is to use data mining techniques to identify those factors.

In particular, we analyze 200GB compressed profiler logs of VCVAs that run on various

platforms. Each profiler log consists of 12,000 features, and create a significant information

overload for our estimates. Thus, we first employ feature selection and exploratory data

analysis techniques to reduce the information overload in the profiler logs, and identify

critical features that are associated with changes in memory consumption. The selected

features are then corroborated and validated by domain experts.

Furthermore, while VCVA presented as a single monolithic entity, it is actually a col-

lection of interacting services and components. These interactions result in a non-linear

relationship between the infrastructure being managed by the VCVA, the active workflows

and component interactions. Due to these dynamics, rough rules of thumb for sizing VCVA

depend on the particulars of a given environment [101]. However, no guidance is given on

how much these factors may influence the final setting, leaving it to the user to determine

an appropriate sizing by trial and error. A second contribution of our work is to attempt to

construct a resource estimation model in the presence of the service, component, workload

and deployment dynamics.

Modeling the resource usage of a non-trivial application is a challenging task. Compo-

nent interactions and application complexity can result in complex, non-linear relationships

between application performance and resource usage. The novelty in our work stems from

taking advantage of the deployment of multiple instances of an application in public, pri-

vate or hybrid clouds and coping with the inevitable noise and disparities introduced by the

different deployment conditions. We use data from multiple instances of the same virtual

appliance or application to detect and diagnose performance anomalies [102] and estimate
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Table 7.1.

List of environments and their characteristics. The data for each sample comes

from multiple log statements that share the same time interval in the VCVA’s

profiler log.

Environment Windows Samples Linux Samples Number of Runs

Hands on lab N/A 39414 24

Nimbus N/A 10619 1

Onecloud 10554 N/A 8

Perf 8999 9704 200

Private N/A 28823 2

Featurestress 3088 695 10

VoV 11107 N/A 8

resource usage and application performance to make better provisioning and consolidation

decisions.

The remainder of this chapter is organized as follows. Section 7.2 briefly describes the

seven environments where we collect data from the deployed instances of the VCVA. Sec-

tion 7.3 outlines our data processing, feature-selection, visualization and model pipeline.

Section 7.4 presents our evaluation results. Section 7.5 describes related work and Section

7.6 presents our conclusions and future work.

7.2 Datasets

VMware vCenter Server (vCenter or VC) provides centralized management of virtual-

ized hosts and virtual machines from a single console. VCVA is a self-contained virtual

machine image that can be deployed and run as a virtual machine on the VMware ESXi

hypervisor. VCVA contains all of the components used by or needed by VC. Each instance

of the VCVA produces profiler logs, which provide some insight into the activities taking

place inside the appliance. The profiler logs contain, among other things, performance met-
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Table 7.2.

List of example categories, ProcessStats, InventoryStats, SessionStats and

RateCounter with associated features from the profiler logs.

Category Description Features

ProcessStats physical memory usage, User Cpu Usage 10

InventoryStats Number of Clusters, Virtual Machines 10

SessionStats Number of Sessions 1

RateCounter FilterCreates, FilterDestroys 30

rics such as memory, cpu usage, information on the inventory such as the number of virtual

machines, operation activities such as the frequency of powering on or cloning virtual ma-

chines. The VCVA is packaged as a pre-configured Linux or Windows virtual machine

where we consider each operating system platform separately during the modeling phase.

We collected and analyzed profiler logs for the VCVA from seven different deploy-

ments with instances of VC running on both Windows and Linux. Each profiler log bundle

includes a set of workloads that are recorded for different runs of the VC application. This

gives us the ability to observe different workloads on different operating systems for the

VCVA. We collect profiler logs from the VCVA instances in the environments listed below:

Hands on Lab (Hol): Collected from Hands on Lab at VMworld 2012. During the HoL

customers try out new or soon-to-be-released versions of VMware products and familiarize

themselves by doing exercises that focus on key activities, operations or workflows against

virtualized infrastructure. We collect logs from the vCenter instances that manage the

deployments of virtual infrastructure that support the exercises.

Performance (Perf): Collected from the Performance Group at VMware during their

nightly tests of vCenter performance. This particular workload includes several high-load

tests to ensure the performance of vCenter.

VMware on VMware (VoV): This environment is used internally for providing ser-

vices within VMware.
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Table 7.3.

The list of features that are discovered by mutual information test. All features

are common to both Linux and Windows platforms.

IncomingCalls VpxdCache/Size

NumSessions NumPoweredOnVMs

NumVirtualMachines RetrieveContents

HostSync HostSyncVpxaCalls

TaskInfoCalls TotalOutgoingCalls

PropertyAssigns PropertyRemoves

Private: Small single-developer instances of the VCVA used for managing vSphere

workloads such as performance testing and debugging applications.

Nimbus: This environment is an internal cloud for developers inside VMware.

Featurestress: This environment is used for running stress tests of various Virtual

Center features.

Onecloud: This environment is VMware’s internal cloud to run applications.

Table 7.1 shows the number of samples per deployment and operating system platforms.

In some cases, VCVA deployment is operated only on a single operating system platform.

Table 7.2 shows a sample list of features from the profiler logs. The total size of compressed

collected profiler logs are 200GB and include 12,000 such features.

7.3 Methodology

In this section, we first select informative and non-redundant features (Section 7.3.1).

Then, we use exploratory data visualization methods to investigate the relationship between

selected features and performance metric of interest (Section 7.3.2).
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Table 7.4.

Top triple features with high mutual information. All features are validated by

domain experts.

NumSessions + IncomingCalls + PropertyAssings

NumSessions + IncomingCalls + TotalOutgoingCalls

NumSessions + IncomingCalls + VpxdCacheSize

7.3.1 Feature Selection

Feature Selection component will help us to identify important and intuitive features

that have an impact on a particular performance metric of interest and help us analyze how

these features are related. Original feature space has approximately 12,000 features and

many of them are redundant or irrelevant to the performance metrics of interest. By per-

forming feature selection on the data, we expect to select relevant and informative features

and improve the interpretability of the model.

Mutual Information (MI) measures how much knowing a particular feature reduces

uncertainty about the performance metric of interest. Our main intuition is that we can

eliminate the features that do not contribute to making a decision towards the performance

metric of interest. Similarly, we can treat the features with high MI as intuitive and impor-

tant since they significantly reduce the uncertainty about the performance metric of interest.

Mutual Information has been shown [103] to be a submodular function which intuitively

agrees with the diminishing return property since selecting an informative feature reduces

the uncertainty.

We computed MI between features extracted from the logs, and performance metric

of interest (e.g. physical memory usage). Then, we identified top features with highest

MI out of 12,000 features. Figure 7.1 visualizes a subset of top features for both Linux

and Windows platforms. After identifying top features with MI, we conduct additional

experiments to investigate whether there is an agreement or overlap in the top features

between different platforms such as Linux and Windows. Table 7.3 shows a list of features
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which are identified as common features across both platforms. Finally, we computed MI

between a linear combination of triple features and the performance metric of interest and

identified top features. Our main intuition for this experiment is to see whether we can

come up with a set of three features that have an impact on the performance metric of

interest and whether domain experts can validate top triple-features as intuitive (see Table

7.4).

After performing MI experiments, we validate whether identified feature sets are intu-

itive and informative by consulting to domain experts. Domain experts identified Num-

Sessions, IncomingCalls and VpxdCache as top three features that have an impact on

physical memory usage, which is a subset of features we identify automatically in Table

7.4.

7.3.2 Exploratory Data Analysis

Since our goal is to construct a model from a set of heterogeneous sources, we would

like to to determine (1) the diversity of the sources used for training and predicting and (2)

understand the limitations of our model when attempting to generalize to new or previously

unseen instances of the VCVA. We use a number of visualizations to highlight both issues.

We first perform a 2-D projection of the data by using Principal Component Analysis to

identify whether there is a structural consistency between different environments on both

platforms. We then perform a 3D heatmap analysis based on the top 3 features identified

in previous section to see whether there is a similarity in terms of Physical Memory Usage

between different platforms.

Principal Component Analysis We perform Principal Component Analysis (PCA) on

the dataset to provide a simpler representation of the data and to understand the relationship

between different environments on both platforms. PCA allows us to project the data from

a higher dimension to a lower dimensional manifold such that each feature is represented

by its projection along the line. We decided to perform a 2D projection of the data due to

visualization purposes.
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Figure 7.2. 2D projection via PCA Analysis on Windows platform. All envi-

ronments on Windows platform except Featurestress have some overlap along

both dimensions.

Figure 7.2 shows 2D projection for different environments on Windows platform. We

can see that all environments on Windows platform except Featurestress have some overlap

along both dimensions. However, Featurestress environment have almost no overlap along

Dimension 1 and very little overlap along Dimension 2. On the other hand, there is a

structural similarity along both dimensions between Onecloud, Vmware on Vmware and

Perf datasets, which means that one should expect to get reasonable results if we perform

a holdout experiment. However, a good generalization for Featurestress dataset does not

seem to be possible since it has a quite different characteristic than the other observed

datasets.

Figure 7.3 shows 2D projection for different environments on Linux platform. Sim-

ilarly to the previous case, we observe an agreement among different environments on

Linux platform except Featurestress which only has some overlap along first dimension.

There is structural similarity along both dimensions between Hol, Nimbus, Perf and Pri-

vate datasets. We expect to get reasonable results if we perform a holdout experiment
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Figure 7.3. 2D projection via PCA Analysis (Linux Platform). We observe an

agreement among different environments on Linux platform except Feature-
stress which only has some overlap along first dimension.

within these datasets. Even though we do expect to get a good generalization for Feature-

stress environment, we expect to get a better performance than Featurestress in Windows

platform due to the commonality along the first dimension.

3D Heatmap Analysis For this component, we plot 3D visualization of the environments

using the top three features that selected by Mutual Information experiment and validated

by domain experts. We further applied a heatmap coloring to the points such that each point

in 3D space takes its color based on the actual physical memory usage value it corresponds.

Our main intuition in this experiment is to see whether there is a color-based consis-

tency between nearest neighbors. If two points are close to each other in 3D space, we

expect them to share similar shades of the same color tone since three coordinates have a

significant impact on the value of physical memory usage. Figure 7.4 shows the heatmap-

based 3D plot for Linux platform. We can see that there are many consistent color-based

clusterings in the plot which indicates that if two points are close to each other in 3D
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Figure 7.4. 3D plot with a heatmap based on physical memory usage on Linux

platform.

space, then they tend to share similar physical memory usage values. Figure 7.5 shows the

heatmap-based 3D plot for Windows platform and we can see that most of the environments

have consistent color-clusterings except Featurestress environment.

7.4 Experiments

Model Selection We first would like to identify a model family to perform the predic-

tion task we are interested in. PCA-based visualizations in the previous section demon-

strates various level of disparities in the characteristics of individual datasets. For instance,

datasets such as Featurestress can significantly bias the predictions on function-based fam-

ilies since the characteristics of the dataset is quite different than others. On the other

hand, using a similarity-based model, such as K-Nearest Neighbors, where a prediction is

made based on the closest datapoints can lessen the extent of skewness in the predictions.

Futhermore, 3D heatmap visualization in the previous section also suggests that a near-
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Figure 7.5. 3D plot with a heatmap based on physical memory usage on Win-

dows platform.

est neighbor based model would be a good fit for our problem since there is a reasonable

consistency for physical memory usage within neighborhoods.

Evaluation Metrics We use Recall as our main metric of merit which is defined as

Recall =
True Positives

True Positives + False Negatives
(7.1)

We consider a true positive as one where our predicted Physical memory usage is

greater than or equal to (≥) the observed value and a false negative as one where our

predicted resource usage is less than (<) the observed value. We also pay attention to the

Root Mean Squared Error (RMSE) of our predictions – we prefer smaller RMSE values –

cognizant of the fact that predicting an extremely high value for Physical Memory Usage

would mislead the model into thinking the results were very positive when in fact gross

over estimates for Physical Memory Usage would be wasteful and overly conservative.
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Table 7.5.

Physical memory usage on Linux platform where we trained on 70% of the

data and tested on 30% of the data.

Source RMSE (GB) Recall

Featurestress 0.66 0.77

HoL 1.56 0.76

Nimbus 0.45 0.74

Perf 2.33 0.75

Private 0.23 0.75

Results The first question we seek to answer is whether our nearest neighbor model

works within a dataset, e.g., train on a portion of the Perf dataset on Windows and pre-

dict the physical memory usage of the unseen portion of the Perf dataset on Windows.

Tables 7.5 and 7.6 show that we can obtain good predictions (> 70% Recall and within

3GB RMSE) within each dataset. For our evaluation we repeatedly partition each dataset

(10 times/folds) into a randomly selected 70% of the datapoints for training and 30% for

testing. We use the max of the nearest k = 3 neighbors as the prediction of physical

memory usage.

The second question we seek to answer is whether hold-out experiments are possible,

i.e., training a model by holding out a portion of the dataset, and predicting the resource

usage on the left-out part. This allows us to reason about whether the behavior of the

VCVA on a given platform is consistent enough given the disparities in the environments

and workloads in different environments.

Results in Tables 7.7 and Table 7.8 suggests that we are able to perform hold-out exper-

iments with reasonable performances. In particular, on Linux platform, we achieve good

recall results (> 80% with a RMSE within 5GB) for three of the five datasets (Feature-

stress, Perf and Private). However, we perform poorly on Nimbus and HoL when we try to

predict their memory usage by using only the left-out portion of the datasets. In the case



122

Table 7.6.

Physical memory usage on Windows platform where we trained on 70% of the

data and tested on 30% of the data.

Source RMSE (GB) Recall

Featurestress 1.33 0.78

OneCloud 0.58 0.76

Perf 0.39 0.77

VoV 0.01 0.74

of Nimbus, we consistently underestimate the physical memory usage. These underesti-

mates are due to the narrow range of physical memory usage values in the Nimbus dataset

itself, the minimum value observed in our Nimbus data is 12GB, the max is 15.5GB and

the mean is 14.2GB with a standard deviation of 0.3GB. The relatively narrow band of

physical memory usage values in Nimbus means that regardless of the variations in the key

features we have identified the physical memory usage remains relatively flat, i.e., their in-

fluence of our key features on the physical memory usage in Nimbus is very different from

the influence these same features exert in the other datasets. In the case of HoL the RMSE

of our estimates is off by ∼ 4 GB, wich may be a result of the very different workloads

that are executed in the HoL as compared to the other environments. For instance, the use

of pre-prepared pools of virtual infrastructure such as VMs and datastores to support the

exercises may result in fewer VC interactions related to managing virtual infrastructure,

and triggered by administrators while customers are running exercises. Further, adminis-

trative and management activities may be deferred to times before or after peak demand

for exercises which would result in a different profile of interactions with Virtual Center,

influencing the contents of the profiler logs.

Results on Windows platform results in smaller RMSE values. The model performs the

worst on Featurestress as a function of the other datasets. This is an expected behavior (see

Figure 7.2) since Featurestress has little in common with the other datasets. Thus, building
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Table 7.7.

Physical memory usage on Linux platform where we train on k-1 datasets and

predict the left-out dataset.

Prediction target RMSE (GB) Recall

Featurestress 4.80 0.97

HoL 4.19 0.23

Nimbus 3.78 0.00

Perf 3.46 0.93

Private 0.983 0.82

a model from the others and trying to predict Featurestress consistently underestimates the

physical memory usage. Whereas the Recall for OneCloud is relatively low (20%), and our

estimate of its physical memory usage results in a small underestimate, e.g. ∼ 500 MB.

Similarly, our estimates for Perf have an RMSE of less than 1 GB.

7.5 Related Work

The work most similar to ours is [102]. In that work the authors crowdsource telemetry

data to automatically identify virtual machines that run the same application and then use

that for collective/collaborative debugging. In our work, the application of interest is fixed

(we only focus on the VCVA) and we focus on gathering information from profiler log-

data from different deployments of this application and trying to construct a resource usage

model that is robust and accurate despite the differences in workloads, number of VMs

managed, the complexity of the VCVA etc. in each of the deployments. Our results show

that for the VCVA we can identify a consistent set of features that describe its memory

usage across environments and operating system platforms.

The idea of using group behavior to reason about the behavior and characteristics of an

application deployed in various settings was discussed in [104] in the context of security

and dependability – collections of independent instances of the same application coopera-



124

Table 7.8.

Physical memory usage on Windows platform where we train on k-1 datasets

and predict the left-out dataset.

Prediction target RMSE (GB) Recall

Featurestress 3.38 0.09

OneCloud 0.55 0.20

Perf 0.93 0.69

VoV 0.30 0.91

tively monitor their execution for flaws and attacks and notify the community when such

events are detected. In our work, we focus on resource usage and performance rather than

reliability.

Carat [105] crowdsources a model of the factors influencing energy usage from a pop-

ulation of mobile handsets running various applications. The authors distinguish between

energy bugs – specific instances of an application that drain the battery much faster than

other instances of that same application – and energy hogs – an application that drains the

battery faster than the average application.

Building a model of a complex application is easier if the application has purpose-

fully been constructed and instrumented in a way that makes it easy to collect the relevant

data/metrics [106]. Our experience with the VCVA highlighted the richness of the data

contained in the profiler logs (we consider the detailed logs a strength in light of our ability

to employ statistical techniques to select critical features and build accurate models).

7.6 Conclusions

In this chapter, we developed techniques for sizing Virtual Center Virtual Appliances

(VCVAs) by mining the profiler log data from multiple deployments. We use feature selec-

tion techniques to automate the identification of key features – our automatically selected

features agree with features selected by experts. We use various data visualization tech-
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niques to understand the data and differences between the platforms. Finally we use a

structural model to account for the disparities of different VCVA deployments and the rel-

ative complexity of the VCVA. We show results of better than ∼70% prediction accuracy

for predicting physical memory usage.
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8 FUTURE WORK

In this chapter, we discuss two future directions of our research. In particular, we first

present a submodular framework for graph comparison. Our framework is inspired by lat-

est state-of-the-art submodular document summarization models and extends the graphlet

kernel to encourage diversity while avoiding redundancy. Our experiments on several

benchmark datasets show that our framework outperforms the graphlet kernel in terms of

classification accuracy by using 50% less samples.

Then, we present a submodular framework to automatically generate color palettes from

an image. We formulate color palette generation problem as a coverage task and propose

a submodular framework for which we can provide an efficient solution with near-optimal

approximation guarantees. Our method balances the coverage and the diversity of colors

presented in an image, and exploits the notion of diminishing returns.

8.1 A Submodular Approach for Graph Sampling

A commonly used paradigm for representing graphs is to use a vector that contains

normalized frequencies of occurrence of certain motifs or sub-graphs. The graphlet kernel

of [16] uses induced sub-graphs of k nodes (christened as graphlets by [15]) as motifs in

the vector representation, and computes the kernel via a dot product between these vectors.

However, existing sampling methods for graphlets suffer from a few drawbacks.

Redundancy: The graphlet frequency distribution exhibits a power-law behavior, that is,

the frequency of certain graphlets grows as a power of others. This becomes a significant

problem when the frequency of informative graphlets are overwhelmed by graphlets that do

not carry any discriminating power across graphs. Figure 8.1 illustrates such an example

where graphlet G20 occurs significantly higher than more informative graphlets such as G32
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Figure 8.1. A sample graph from MUTAG [46] dataset that illustrates the

decomposed graphlets where size of each graphlet is positively correlated with

its frequency in the graph.

and G34. An ideal framework should take this observation into account and avoid selecting

redundant graphlets.

Diversity: It can be observed that graphlets of a given size k are related to each other [83].

For instance, graphlets G36, G37 and G40 only differ by one node and one edge. Therefore,

a sampling scheme that does not take the inherent similarity between graphlets does not

respect the diversity among the samples. An ideal framework should encourage diverse

graphlets when performing sampling.

8.1.1 Proposed Solution

Our algorithm takes advantage of the inherent similarity between graphlets of size ≤ k

and k + 1. The key observation of our proposal is that, one can use this relationship to

represent a graphlet of size k+1 as a probability distribution over size≤ k graphlets. Let Gi

represent a graphlet of size k+1, Gj represent a graphlet of size k and nij denote the number

of times Gj occurs as a sub-graph of Gi. Computation of nij is done by deleting a node

of Gi and counting how many times graphlet Gj is produced as a result [107]. Repeating

the same process for all graphlets of size 1 ≤ l ≤ k and normalizing the frequencies, we

obtain a distribution for graphlet Gi by means of smaller-sized graphlets (see Figure 8.2 for

an example decomposition).
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of size < k, p represent an arbitrary graphlet in P<k, i represent an arbitrary neighborhood

and j represent a graphlet in that neighborhood. We then define our submodular objective

function as follows:

F (S) =
∑

p∈P<k

(∑
i∈S

∑
j∈i

rpj

)α

(8.1)

where rpj is the weight of graphlet p in j and α is curvature parameter that determines

the rate that reward diminishes over time. Interpretation of this framework is as follows:

we measure the diversity of the selected set S in terms of graphlets of size < k. For each

graphlet p in the set of unique graphlets of size < k, we quantify the amount that is already

covered by the selected neighborhoods in S. Thus, for each selected neighborhood i in the

set S, we sum how much we already covered the < k-sized graphlet p.

Proof Equation 8.1 is submodular. (x)α is a non-decreasing concave function. Inside of

(x)α, we have a modular function with non-negative weights, thus monotone. Applying

(x)α to such a monotone submodular function yields a submodular function, and summing

submodular functions retains submodularity property. Therefore, F (S) is submodular.

8.1.2 Preliminary Experiments

We compare our framework against graphlet kernel. Both kernels are coded in Python

and normalized to have a unit length in the feature space. Moreover, we use 10-fold cross

validation with a binary C-Support Vector Machine (SVM) where the C value for each

fold is independently tuned using training data from that fold. In order to exclude random

effects of the fold assignments, this experiment is repeated 10 times and average prediction

accuracy of 10 experiments with their standard deviations are reported.

In order to achieve a fair comparison, we first sampled 100 neighborhoods of graphlets

from a given dataset. Then, we feed exactly the same set of graphlets into our framework

and submodularly selected 50 of them. Thus, our framework uses 50% less information

than the graphlet kernel in the following experiments.
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Table 8.1.

Comparison of classification accuracy for the graphlet kernel with our method

where STD standard deviation, and SE represents standard error.

DATA SET GRAPHLET KERNEL SUBMODULAR GRAPHLET KERNEL

MUTAG 77.11 (STD: 1.54, SE: 0.48) 80.22 (STD: 1.08, SE: 0.34)

PTC 55.82 (STD: 1.10, SE: 0.35) 57.14 (STD: 1.35, SE: 0.42)

ENZYMES 23.35 (STD: 1.30, SE: 0.41) 25.10 (STD: 0.92, SE: 0.29)

NCI109 62.15 (STD: 0.28, SE: 0.09) 62.28 (STD: 0.22, SE: 0.07)

Datasets We used the following benchmark datasets used in graph kernels: MUTAG,

PTC, ENZYMES and NCI1 (see Section 3.4.2 for a detailed description of the datasets).

We compare graphlet kernel with our method (see Table 8.1). As can be seen from

the results, our framework is able to outperform base kernel with statistically significant

improvements (shown in bold) while achieving a smaller standard error on most of the

datasets.

In this section, we propose a novel framework to incorporate diversity when performing

graph comparison. Even though we restricted ourselves to graph kernel literature in this

study, our framework introduces a new perspective to graph sampling and summarization.

For instance, our framework can be easily adoptable to summarize diverse aspects of a

given graph for exploration or visualization purposes.

8.2 A Submodular Approach for Color Palette Generation

A color palette is defined as a set of color swatches which can be used to represent

an image, and can be utilized in various areas. For instance, the usage of color palettes

in web design is a common practice to assign consistent but attractive colors to website

layouts [109].

Color palette generation has been extensively studied in the past. [118] proposes a

framework to generate harmonized colors from an image by utilizing harmonious color
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Figure 8.3. “The Arnolfini Portrait” by Jan van Eyck (left). Top k = 6 colors

extracted using k-means (center). Top k = 50 colors extracted using k-means

(right).

templates by the color theorist Yutaka Matsuda [119]. This work is followed by [120, 121]

which also utilizes Matsuda’s harmonious color templates. [117] proposes a framework by

using linguistic concepts associated with color moods. [122] proposes a framework to gen-

erate color palettes to enhance images by utilizing aesthetically popular color themes from

Adobe Kuler https://color.adobe.com. [110] proposes a framework based on a

regression model and utilizes six types of features among which saliency in used as the

main feature. Jahanian [111] proposes a framework that automatically extracts colors from

an image by using saliency maps.

In this work, we conjuncture that the notion of diminishing returns naturally arise in

color palette generation problem, and we approach the color palette generation as a cov-

erage task. We propose a submodular framework that generates a color palette with near-

optimal approximation guarantees (1−1/e). To best of our knowledge, our work is the first

to formulate color palette generation problem as a submodular optimization task. More-

over, our method is complimentary to the previously proposed approaches since our frame-

work can be configured to work with saliency maps as in [111], bag of colors [114] or

SIFT [115] to select a diverse set of colors.

One of the most common approaches to extract colors from an image is to use tradi-

tional clustering methods such as k-means [112, 113] and cluster the pixels in an image in

terms of colors. However, color palettes that are obtained by such techniques suffer from
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several drawbacks. First, the obtained color palettes are often dominated by background

and foreground colors of the image. Second, the selected colors are often similar to each

other, thus the color palette suffers from the redundancy problem. Figure 8.3 illustrates

top colors extracted from the “The Arnolfini Portrait” painting by Jan van Eyck using k-

means. As can be seen from the figure, diverse colors such as blue and white are dominated

by background and foreground colors, and do not appear in the color palette. An ideal

color extraction algorithm should cover dominant colors in the image while also encourag-

ing the selection of diverse colors. There has been recent approaches to produce a better

representation of the colors in an image. [110] proposes a regression model that is trained

on 1600 color palettes for 40 images from 160 human participants, and studies the concept

of saliency. However, their approach requires supervision through a training dataset, and is

not completely autonomous. Recently, [111] proposes an automated method that is based

on the saliency map of a given image in order to extract salient colors.

In this work, we approach color palette generation problem as a coverage task. Given

an image I and a budget k, we are interested in extracting a color palette S that consist of k

swatches such that the palette covers the entire image as relevant and as diverse as possible.

In particular, our method takes a set of candidate colors V extracted from the image I, and

the palette size k as input. Then, in each step, it greedily selects a color from the set V
by maximizing the overall similarity of the color to the image, while positively rewarding

the diversity. Diversity is an important component of our notion of coverage, that is, while

we want to select colors that are similar to the image as much as possible, we do not want

to select colors that are too similar to each other. Therefore, we formulate our framework

as a submodular optimization problem for which we can provide an efficient and near-

optimal solution within (1 − 1/e). Moreover, our method is completely automated, and

complementary to previous approaches. For instance, instead of using a color histogram

to generate the ground set, our framework can be configured to cover saliency maps [111],

bag of colors [114] or SIFT [115].
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8.2.1 Proposed Solution

Our main goal is to generate a color palette that covers the image while at the same time

respecting the diversity of the colors that form the palette. More formally, let the ground set

V represent a set of n colors that is extracted from an image I. We are interested in selecting

a subset S ⊆ V to represent the entirety of ground set V , subject to a cardinality constraint

k ≤ n. Let us assume that we have a set function F : 2V that measures the quality of set

S . Then, we can define the color palette problem as a combinatorial optimization task as

follows:

S∗ = argmax
S⊆V:|S|≤k

F(S)

where S∗ represents the optimal solution subject to a cardinality constraint k which denotes

the total number of swatches in the color palette S . Thus, funding a set of colors that covers

the image I becomes a budgeted maximum coverage problem [86]. This is a well-known

NP-hard problem [67], however, it has been shown that if F is monotone submodular, then

a greedy algorithm can solve the problem near-optimally with (1 − 1/e) approximation

factor [67].

Submodular algorithms are widely used in document summarization area [69,87] where

the task is to select a subset of sentences from a document, similar to our color palette

problem. One option to obtain a coverage function that satisfies the desired properties of is

to design a framework similar to Maximal Marginal Relevance (MMR) [88]. MMR is one

of the most popular document summarization frameworks that greedily selects the most

relevant sentences to a document while at the same negatively penalizing the sentences that

are too similar to the ones already selected in the summary. In particular, the objective

function to add element si from the ground set V to set S is defined as,

λSim1(si, q)− (1− λ) max
sj∈S

Sim2(si, sj)

where Sim1 measures the similarity of element si to the query or user profile q, Sim2 mea-

sures the similarity between unit si and unit sj , and 0 ≤ λ ≤ 1 is the trade-off coefficient.

Thus, one can design a similar objective function that maximizes the similarity between
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a color ci ∈ V and the image I while minimizing the similarity between ci ∈ V and al-

ready selected colors cj ∈ S . However, even though MMR-type functions are known to be

submodular [69], they are not monotone due to the negative penalization term and do not

satisfy the constant-factor approximation guarantee of the greedy algorithm [69]. Since we

would like to design an objective function that produces a color palette with near-optimal

solution (1 − 1/e), this option is not viable to us. Therefore, we adapted the submodular

framework of [69] from document summarization task to color palette generation problem.

The framework of [69] balances relevance and non-redundancy,

F(S) = FL(S) + λFR(S) (8.2)

where FL(S) measures the coverage (i.e. how similar S to the rest of the document), and

FR(S) measures the diversity (i.e. how diverse the sentences in set S). Thus, instead of

negatively penalizing redundancy, they positively reward diversity.

Designing the relevancy component The first component of Equation (8.2) is to design

an appropriate function that captures the similarity of selected color palette to the image I.

We define the coverage component as follows:

FL(S) =
∑
ci∈V

∑
cj∈S

wci σ(ci, cj) (8.3)

where V represents the color histogram extracted from the image I, ci represents an ar-

bitrary color from the set V , wci represents the weight of color ci in the histogram, cj

represents a color from the selected color palette S and σ(ci, cj) measures the similarity of

color ci to color cj .

Generation of ground set V: Given an image I, we computed the histogram V by

using k-means algorithm where we cluster the pixels the image based on their color, and

created a histogram based on the number of pixels assigned to each cluster. Then, the

weight wci for each color ci ∈ V simply becomes a normalized frequency distribution, rep-

resenting how many pixels fall into the cluster ci ∈ V . Note that the number of clusters

when generating the ground set V should be large enough to capture a diverse range of
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colors present in the image in order to prevent foreground and background colors to dom-

inate as illustrated in Figure 8.3. Therefore, we extracted n = 50 colors as the ground set

V where each color ci ∈ V serves as a candidate color for the color palette S . Figure 8.3

(right) illustrates the extracted n = 50 colors from the “The Arnolfini Portrait”. As can be

seen from the figure, using a larger number of clusters allow k-means algorithm to capture

a diverse set of colors such as blue and white. Note that even though we are able to capture

diverse colors with a large number of clusters, the task we are interested in is to select a

small subset S ⊆ V to generate a compact color palette.

Similarity function σ(ci, cj): This function measures the similarity between two col-

ors ci and cj . For this purpose, we used CIE94 [116] based on L ∗ a ∗ b∗ colorimetric

system, and takes the differences in lightness, chroma and hue into account. Similar to the

generation of ground set V , this component is flexible and can be configured to work with

any type of similarity function as long as weights remain non-negative.

Designing the diversity component The other important aspect of our objective function

is to prevent redundant colors to dominate the color palette by encouraging diversity. Thus,

the design of FR(S) component should respect diversity of the colors in the selected set S ,

FR(S) =
P∑

m=1

√∑
ci∈S

1[ ci ∈ Pm ] (8.4)

where P represents the set of n clusters of the ground set V , m represent an arbitrary

cluster from this set, and Pm represents the set of colors that belong to cluster Pm. The

cluster set P is simply generated by using k-means on the ground set V . Similar to the

previous cases, the generation of P is flexible in the sense that the set of colors can be

distributed into clusters using different methods. For instance, in cases where linguistic

content is available on colors [117], one can cluster the colors in ground set V based on

linguistic features. The main intuition behind using a square root function in FR(S) is to

apply diminishing returns to the currently selected colors in S . For instance, whenever we

select a color that belongs to a particular cluster, the gain of adding colors from the same

cluster diminishes due to the concavity of the square root function. Thus, the objective
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function is encouraged to select colors from other clusters that not yet contributed to the

color palette S .

Proof of submodularity After defining the components of the objective function, we

now prove that F(S) defined by Equation (8.3) and Equation (8.4) is submodular.

Claim 8.2.1 The color-palette selection algorithm in Equation (8.2) defined by Equation

(8.3) and Equation (8.4) is submodular.

Proof Equation (8.3) is a modular function with non-negative weights (hence, monotone).

Similarly, sum of
∑

ci∈S 1[ ci ∈ Pm ] in Equation (8.4) is also monotone. The mono-

tone function in Equation (8.3) is surrounded by a square root function, which is a non-

decreasing concave function. Using a concave function to this monotone function yields

a submodular function [69]. The sum of a collection of submodular functions are sub-

modular [72], thus FR(S) is submodular. The summation of the modular function FL(S)
with submodular function FR(S) does not violate the submodularity, and hence F(S) is

submodular.

8.2.2 Preliminary Experiments

We qualitatively compared our method with two baseline methods as follows:

• Submodular: This approach usesF(S) defined by Equation (8.3) and Equation (8.4)

to select a color palette.

• Modular: This approach greedily selects top k colors from the histogramH to max-

imize the similarity of the set S to the image I. In other words, this approach only

uses FL(S) component of our framework.

• Top-k: This approach uses k-means algorithm to extract k clusters from the image I
where the center of each cluster is used as a color.
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Figure 8.4. “The Arnolfini Portrait” by Jan van Eyck (left) and the extracted

color palettes by Submodular, Modular and Top-k approaches (right).

Figure 8.4 illustrates the obtained color palettes for “The Arnolfini Portrait” by Jan

van Eyck. As discussed earlier, Top-k method fails to capture diverse colors, and domi-

nated by background and foreground colors of the painting. Modular approach completely

dominates the color palette with brown-ish colors since it maximizes the similarity of the

selected colors to the overall image. Submodular approach is able to generate a balanced

color palette since the gain of selecting colors that are similar to already selected ones

diminishes and allows diverse colors such as blue to get captured.

Color palettes are important aspects that are utilized in various areas in design, visual

media and image retrieval. In this chapter, we approached the color palette generation

problem as a coverage task, and proposed a submodular framework for automatic extraction

of color palettes from images. Our method balances relevancy and diversity, and provides a

near-optimal solutions with theoretical guarantees. Moreover, our approach is flexible and

can be configured to use different notions of relevancy, and diversity.
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9 CONCLUSIONS

In the recent years, there has been a significant increase in the amount of content generated

daily, which forces both users and systems to cope with information overload. In this

dissertation, we address challenges of information overload in two separate domains: (1)

information overload in graphs and (2) information overload in text.

In the first part of the dissertation, we focused on information overload problem in

graphs. In particular, we developed two frameworks to address existing problems in graph

kernels, and demonstrate that both studies improve over popular graph kernels, namely

Graphlet kernels, Weisfeiler-Lehman subtree kernels, and Shortest-Path kernels. In the first

framework, we propose a novel study that learns the latent representations of sub-structures

by leveraging the co-occurrence relationship of the features. In the second framework, we

propose a general smoothing framework for graph kernels by taking structural similarity

into account. Our framework is inspired by state-of-the-art smoothing techniques used in

natural language processing. However, unlike NLP applications that primarily deal with

strings, we show how one can apply smoothing to a richer class of inter-dependent sub-

structures that naturally arise in graphs.

In the second part of the dissertation, we focused on information overload problem

in text-related data. First, we focus on information overload in social news aggregation

websites and propose a framework that tailors a personalized frontpage for individual users.

Second, we focus on information overload arise in documents and video transcripts. In

particular, we propose a novel summarization framework to summarize TED talks and

formulate our objective function as a submodular framework that balances coverage and

diversity. Third, we focus on information overload in system logs. In particular, we use

a population of virtual machines from VMware [4], and demonstrate how to apply feature

filtering and selection techniques to reduce the information overload and identify important

features. Our contributions in this work are as follows.
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Finally, we discuss two possible future directions of our research. In particular, we

designed two submodular frameworks where information overload is present: we design a

submodular graph sampling framework, and we design a submodular color palette selection

algorithm. Both of these frameworks have promising directions that can be utilized in graph

summarization tasks or color palette generation tasks.
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Image Search. Association for Computing Machinery International Conference on
Multimedia, pages 1437–1440, 2011.

[115] Alaa E Abdel-Hakim and Aly A Farag. Csift: A Sift Descriptor with Color Invariant
Characteristics. Computer Vision and Pattern Recognition Conference, pages 1978–
1983, 2006.

[116] Roderick McDonald and Kenneth Smith. CIE94: A New Colour-difference Formula.
Journal of the Society of Dyers and Colourists, pages 376–379, 1995.

[117] Naila Murray, Sandra Skaff, Luca Marchesotti, and Florent Perronnin. Toward Au-
tomatic and Flexible Concept Transfer. Computers and Graphics, pages 622–634,
2012.

[118] Masataka Tokumaru, Noriaki Muranaka, and Shigeru Imanishi. Color Design Sup-
port System Considering Color Harmony. International Conference on Fuzzy Sys-
tems, pages 378–383, 2002.

[119] Yutaka Matsuda. Color Design. Asakura Shoten, 1995.

[120] Daniel Cohen-Or, Olga Sorkine, Ran Gal, Tommer Leyvand, and Ying-Qing Xu.
Color Harmonization. Association for Computing Machinery Transactions on
Graphics, pages 624–630, 2006.



148

[121] Lujin Wang, Joachim Giesen, Kevin McDonnell, Peter Zolliker, and Klaus Mueller.
Color Design for Illustrative Visualization. Visualization and Computer Graphics,
pages 1739–1754, 2008.

[122] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. Color Compatibility
from Large Datasets. Association for Computing Machinery Transactions on Graph-
ics, page 63, 2011.



VITA



149

VITA

Pinar Yanardag Delul hails from Istanbul, Turkey. She received her MSc in Computer

Engineering from Bogazici University, and was awarded a Fulbright fellowship to pur-

sue her PhD at Purdue University, Department of Computer Science. Pinar worked for

TUBITAK UEKAE (The Turkish Research Institute of Electronics and Cryptology) for

two years as a Security Team Leader and FLOSS developer for the Pardus GNU/Linux

project, and as a mentor for Google Summer of Code. She has also worked at VMware’s

Distributed Resource Scheduler team (two summers) and Amazon’s Personalization team

(one summer) as a machine learning scientist.


	Purdue University
	Purdue e-Pubs
	5-2016

	Information overload in structured data
	Pinar Yanardag Delul
	Recommended Citation


	untitled

