816 research outputs found

    Diagnosis of Non-Small Cell Lung Cancer via Liquid Biopsy Highlighting a <em>Fluorescence-in-situ-Hybridization</em> Circulating Tumor Cell Approach

    Get PDF
    Lung cancer (LC), is the most common and lethal cancer worldwide. It affects both sexes and in its early stages is clinically silent, until it reaches a more advanced stage, when it becomes highly incurable. In order to improve the high mortality associated with LC there has been an urgent need for screening high risk patients by low dose CT scan (LDCT) for the early detection of small resectable malignant tumors. However, while highly sensitive to detect small lung nodules, LDCT is non-specific, resulting in a compelling need for a complementary diagnostic tool. For example, a non-invasive blood test or liquid biopsy, (LB), could prove quite useful to confirm a diagnosis of malignancy prior to definitive therapy. With the advent of LB becoming increasingly clinically accepted in the diagnosis and management of LC, there has been an explosion of publications highlighting new technologies for the isolation of and detection of circulating tumor cells (CTCs) and cell free tumor DNA (cfDNA). The enormous potential for LB to play an important role in the diagnosis and management of LC to obtain valuable diagnostic information via an approach that may yield equivalent information to a surgical biopsy, regarding the presence of cancer and its molecular landscape is described

    CARDIAC STEM CELLS AND BIOMATERIALS: INDUCTION OF MYOGENIC DIFFERENTIATION AND IMPLANTION OF BIOSYNTHETIC AND NATURAL MATRICES IN THE ADULT HEART

    Get PDF
    Principal purpose of regenerative medicine for the cardiac tissue is to find the best way to inoculate stem cells in a specific myocardial area damage, improving their homing, integration and survival. To achieve this goal, the field of biomaterials is important to bypass this obstacles, modulating the environment for implanted cells and enhance CSC function in the heart. Biomaterials can mimic or include naturally occurring extracellular matrix and instruct stem cell function in different ways: promoting angiogenesis, enhancing stem cell engraftment and differentiation, and accelerating electromechanical integration of transplanted cells. The aim of this thesis was to assess whether the properties of three-dimensional polymer matrices in synthetic biomaterial such as polylactic acid and in natural origin as silk fibroin, if and how influence differentiative process of stem cells cardiac c-kit +. Another point considered was been the evaluation of expression of cardiac markers and sarcomeric proteins of cells isolated, inoculated in different types of scaffold and maintained in colture for 21gg in vitro and analyzed in RT-PCR and Real-time quantitative RT–PCR analysis. Also it was analyzed the immunogenicity of the scaffold when implanted in the dorsal subcutaneous region of nude mice, nude rats and SCID mice in order a possible use in vivo in the cardiac regeneration. These experiments showed a myocardial-like differentiation, in which the CSCs acquired a muscle-like shape, with the formation of initial intercalated disks, and a striated-like myofilament organization. In results shown below highlights evidence of an higher degree of differentiation using 3D scaffold for CSCs c-Kit+ that can be induced to differentiate definitely into cardiomyocytes thanks to three-dimensional culture of the scaffold, where is possible an environment similar to a cardiac niche in vivo

    Developing Zebrafish embryos as a model to study host-material Interactions and wound healing

    Get PDF
    Inappropriate wound healing represents a considerable medical challenge associated with high mortality. However, improving on current wound healing therapies has proven difficult due to the complex and dynamic wound environment. The complexity of the wound healing process also puts high demands on the animal models used in wound research, since ideally such models should encompass the full complexity of the wound healing process, and at the same time be accessible for advanced biomedical analysis methods. In this thesis, the aim was to further develop the use of zebrafish embryos in wound healing research. Key advantages of zebrafish embryo models are the ability to visualize complex biological processes in high detail in intact tissues, as well as highly tractable genetics. The first part of the work describes the development of a zebrafish embryo model for investigating the immunomodulatory properties of hydrogels derived from decellularized extracellular matrix (ECM). The results demonstrate that the hydrogels can be properly injected into the embryos and that the host-materials interactions can be explored in detail inside live zebrafish embryos during wound healing. This constitutes a new in vivo model for investigating immunomodulatory materials in a realistic wound healing context. The second part of the work describes the development of a confocal Raman spectrometry imaging (cRSI) method for biomolecular characterization and the study of biological processes in zebrafish. This represents a new imaging modality that enables simultaneous inspection of a multitude of biomolecules in a label-free manner. The use of cRSI was demonstrated for biomolecular discrimination of mycobacteria in a zebrafish infection model, and for live in vivo imaging of zebrafish during the early wound response. Taken together, the work in this thesis has provided a new methodologies and insight for the use in zebrafish embryo models in wound healing research.Open Acces
    • …
    corecore