1,104 research outputs found

    Privacy-Preserving Synthetic Smart Meters Data

    Full text link
    Power consumption data is very useful as it allows to optimize power grids, detect anomalies and prevent failures, on top of being useful for diverse research purposes. However, the use of power consumption data raises significant privacy concerns, as this data usually belongs to clients of a power company. As a solution, we propose a method to generate synthetic power consumption samples that faithfully imitate the originals, but are detached from the clients and their identities. Our method is based on Generative Adversarial Networks (GANs). Our contribution is twofold. First, we focus on the quality of the generated data, which is not a trivial task as no standard evaluation methods are available. Then, we study the privacy guarantees provided to members of the training set of our neural network. As a minimum requirement for privacy, we demand our neural network to be robust to membership inference attacks, as these provide a gateway for further attacks in addition to presenting a privacy threat on their own. We find that there is a compromise to be made between the privacy and the performance provided by the algorithm

    NeuGuard: Lightweight Neuron-Guided Defense against Membership Inference Attacks

    Full text link
    Membership inference attacks (MIAs) against machine learning models can lead to serious privacy risks for the training dataset used in the model training. In this paper, we propose a novel and effective Neuron-Guided Defense method named NeuGuard against membership inference attacks (MIAs). We identify a key weakness in existing defense mechanisms against MIAs wherein they cannot simultaneously defend against two commonly used neural network based MIAs, indicating that these two attacks should be separately evaluated to assure the defense effectiveness. We propose NeuGuard, a new defense approach that jointly controls the output and inner neurons' activation with the object to guide the model output of training set and testing set to have close distributions. NeuGuard consists of class-wise variance minimization targeting restricting the final output neurons and layer-wise balanced output control aiming to constrain the inner neurons in each layer. We evaluate NeuGuard and compare it with state-of-the-art defenses against two neural network based MIAs, five strongest metric based MIAs including the newly proposed label-only MIA on three benchmark datasets. Results show that NeuGuard outperforms the state-of-the-art defenses by offering much improved utility-privacy trade-off, generality, and overhead
    corecore