130 research outputs found

    SNOMED CT standard ontology based on the ontology for general medical science

    Get PDF
    Background: Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT, hereafter abbreviated SCT) is acomprehensive medical terminology used for standardizing the storage, retrieval, and exchange of electronic healthdata. Some efforts have been made to capture the contents of SCT as Web Ontology Language (OWL), but theseefforts have been hampered by the size and complexity of SCT. Method: Our proposal here is to develop an upper-level ontology and to use it as the basis for defining the termsin SCT in a way that will support quality assurance of SCT, for example, by allowing consistency checks ofdefinitions and the identification and elimination of redundancies in the SCT vocabulary. Our proposed upper-levelSCT ontology (SCTO) is based on the Ontology for General Medical Science (OGMS). Results: The SCTO is implemented in OWL 2, to support automatic inference and consistency checking. Theapproach will allow integration of SCT data with data annotated using Open Biomedical Ontologies (OBO) Foundryontologies, since the use of OGMS will ensure consistency with the Basic Formal Ontology, which is the top-levelontology of the OBO Foundry. Currently, the SCTO contains 304 classes, 28 properties, 2400 axioms, and 1555annotations. It is publicly available through the bioportal athttp://bioportal.bioontology.org/ontologies/SCTO/. Conclusion: The resulting ontology can enhance the semantics of clinical decision support systems and semanticinteroperability among distributed electronic health records. In addition, the populated ontology can be used forthe automation of mobile health applications

    Contributions to information extraction for spanish written biomedical text

    Get PDF
    285 p.Healthcare practice and clinical research produce vast amounts of digitised, unstructured data in multiple languages that are currently underexploited, despite their potential applications in improving healthcare experiences, supporting trainee education, or enabling biomedical research, for example. To automatically transform those contents into relevant, structured information, advanced Natural Language Processing (NLP) mechanisms are required. In NLP, this task is known as Information Extraction. Our work takes place within this growing field of clinical NLP for the Spanish language, as we tackle three distinct problems. First, we compare several supervised machine learning approaches to the problem of sensitive data detection and classification. Specifically, we study the different approaches and their transferability in two corpora, one synthetic and the other authentic. Second, we present and evaluate UMLSmapper, a knowledge-intensive system for biomedical term identification based on the UMLS Metathesaurus. This system recognises and codifies terms without relying on annotated data nor external Named Entity Recognition tools. Although technically naive, it performs on par with more evolved systems, and does not exhibit a considerable deviation from other approaches that rely on oracle terms. Finally, we present and exploit a new corpus of real health records manually annotated with negation and uncertainty information: NUBes. This corpus is the basis for two sets of experiments, one on cue andscope detection, and the other on assertion classification. Throughout the thesis, we apply and compare techniques of varying levels of sophistication and novelty, which reflects the rapid advancement of the field

    Ontology-Based Clinical Information Extraction Using SNOMED CT

    Get PDF
    Extracting and encoding clinical information captured in unstructured clinical documents with standard medical terminologies is vital to enable secondary use of clinical data from practice. SNOMED CT is the most comprehensive medical ontology with broad types of concepts and detailed relationships and it has been widely used for many clinical applications. However, few studies have investigated the use of SNOMED CT in clinical information extraction. In this dissertation research, we developed a fine-grained information model based on the SNOMED CT and built novel information extraction systems to recognize clinical entities and identify their relations, as well as to encode them to SNOMED CT concepts. Our evaluation shows that such ontology-based information extraction systems using SNOMED CT could achieve state-of-the-art performance, indicating its potential in clinical natural language processing

    Towards semantic interpretation of clinical narratives with ontology-based text mining

    Get PDF
    In the realm of knee pathology, magnetic resonance imaging (MRI) has the advantage of visualising all structures within the knee joint, which makes it a valuable tool for increasing diagnostic accuracy and planning surgical treatments. Therefore, clinical narratives found in MRI reports convey valuable diagnostic information. A range of studies have proven the feasibility of natural language processing for information extraction from clinical narratives. However, no study focused specifically on MRI reports in relation to knee pathology, possibly due to the complexity of knee anatomy and a wide range of conditions that may be associated with different anatomical entities. In this thesis, we describe KneeTex, an information extraction system that operates in this domain. As an ontology-driven information extraction system, KneeTex makes active use of an ontology to strongly guide and constrain text analysis. We used automatic term recognition to facilitate the development of a domain-specific ontology with sufficient detail and coverage for text mining applications. In combination with the ontology, high regularity of the sublanguage used in knee MRI reports allowed us to model its processing by a set of sophisticated lexico-semantic rules with minimal syntactic analysis. The main processing steps involve named entity recognition combined with coordination, enumeration, ambiguity and co-reference resolution, followed by text segmentation. Ontology-based semantic typing is then used to drive the template filling process. We adopted an existing ontology, TRAK (Taxonomy for RehAbilitation of Knee conditions), for use within KneeTex. The original TRAK ontology expanded from 1,292 concepts, 1,720 synonyms and 518 relationship instances to 1,621 concepts, 2,550 synonyms and 560 relationship instances. This provided KneeTex with a very fine-grained lexicosemantic knowledge base, which is highly attuned to the given sublanguage. Information extraction results were evaluated on a test set of 100 MRI reports. A gold standard consisted of 1,259 filled template records with the following slots: finding, finding qualifier, negation, certainty, anatomy and anatomy qualifier. KneeTex extracted information with precision of 98.00%, recall of 97.63% and F-measure of 97.81%, the values of which are in line with human-like performance. To demonstrate the utility of formally structuring clinical narratives and possible applications in epidemiology, we describe an implementation of KneeBase, a web-based information retrieval system that supports complex searches over the results obtained via KneeTex. It is the structured nature of extracted information that allows queries that encode not only search terms, but also relationships between them (e.g. between clinical findings and anatomical locations). This is of particular value for large-scale epidemiology studies based on qualitative evidence, whose main bottleneck involves manual inspection of many text documents. The two systems presented in this dissertation, KneeTex and KneeBase, operate in a specific domain, but illustrate generic principles for rapid development of clinical text mining systems. The key enabler of such systems is the existence of an appropriate ontology. To tackle this issue, we proposed a strategy for ontology expansion, which proved effective in fast–tracking the development of our information extraction and retrieval systems

    Real-World Evidence on the Clinical Characteristics and Management of Patients with Chronic Lymphocytic Leukemia in Spain Using Natural Language Processing: The SRealCLL Study

    Get PDF
    Artificial intelligence; Chronic lymphocytic leukemia; Natural language processingInteligencia artificial; Leucemia linfocítica crónica; Procesamiento del lenguaje naturalIntel·ligència artificial; Leucèmia limfocítica crònica; Processament del llenguatge naturalThe SRealCLL study aimed to obtain real-world evidence on the clinical characteristics and treatment patterns of patients with chronic lymphocytic leukemia (CLL) using natural language processing (NLP). Electronic health records (EHRs) from seven Spanish hospitals (January 2016–December 2018) were analyzed using EHRead® technology, based on NLP and machine learning. A total of 534 CLL patients were assessed. No treatment was detected in 270 (50.6%) patients (watch-and-wait, W&W). First-line (1L) treatment was identified in 230 (43.1%) patients and relapsed/refractory (2L) treatment was identified in 58 (10.9%). The median age ranged from 71 to 75 years, with a uniform male predominance (54.8–63.8%). The main comorbidities included hypertension (W&W: 35.6%; 1L: 38.3%; 2L: 39.7%), diabetes mellitus (W&W: 24.4%; 1L: 24.3%; 2L: 31%), cardiac arrhythmia (W&W: 16.7%; 1L: 17.8%; 2L: 17.2%), heart failure (W&W 16.3%, 1L 17.4%, 2L 17.2%), and dyslipidemia (W&W: 13.7%; 1L: 18.7%; 2L: 19.0%). The most common antineoplastic treatment was ibrutinib in 1L (64.8%) and 2L (62.1%), followed by bendamustine + rituximab (12.6%), obinutuzumab + chlorambucil (5.2%), rituximab + chlorambucil (4.8%), and idelalisib + rituximab (3.9%) in 1L and venetoclax (15.5%), idelalisib + rituximab (6.9%), bendamustine + rituximab (3.5%), and venetoclax + rituximab (3.5%) in 2L. This study expands the information available on patients with CLL in Spain, describing the diversity in patient characteristics and therapeutic approaches in clinical practice.This study was founded by AstraZeneca Farmacéutica Spain, S.A

    COHORT IDENTIFICATION FROM FREE-TEXT CLINICAL NOTES USING SNOMED CT’S SEMANTIC RELATIONS

    Get PDF
    In this paper, a new cohort identification framework that exploits the semantic hierarchy of SNOMED CT is proposed to overcome the limitations of supervised machine learning-based approaches. Eligibility criteria descriptions and free-text clinical notes from the 2018 National NLP Clinical Challenge (n2c2) were processed to map to relevant SNOMED CT concepts and to measure semantic similarity between the eligibility criteria and patients. The eligibility of a patient was determined if the patient had a similarity score higher than a threshold cut-off value, which was established where the best F1 score could be achieved. The performance of the proposed system was evaluated for three eligibility criteria. The current framework’s macro-average F1 score across three eligibility criteria was higher than the previously reported results of the 2018 n2c2 (0.933 vs. 0.889). This study demonstrated that SNOMED CT alone can be leveraged for cohort identification tasks without referring to external textual sources for training.Doctor of Philosoph

    Aquisição e Interrogação de Conhecimento de Prática Clínica usando Linguagem Natural

    Get PDF
    The scientific concepts, methodologies and tools in the Knowledge Representation (KR) sub- domain of applied Artificial Intelligence (AI) came a long way with enormous strides in recent years. The usage of domain conceptualizations that are Ontologies is now powerful enough to aim at computable reasoning over complex realities. One of the most challenging scientific and technical human endeavors is the daily Clinical Prac- tice (CP) of Cardiovascular (CV) specialty healthcare providers. Such a complex domain can benefit largely from the possibility of clinical reasoning aids that are now at the edge of being available. We research into a complete end-to-end solid ontological infrastructure for CP knowledge represen- tation as well as the associated processes to automatically acquire knowledge from clinical texts and reason over it
    corecore