8 research outputs found

    Constrained Output Embeddings for End-to-End Code-Switching Speech Recognition with Only Monolingual Data

    Full text link
    The lack of code-switch training data is one of the major concerns in the development of end-to-end code-switching automatic speech recognition (ASR) models. In this work, we propose a method to train an improved end-to-end code-switching ASR using only monolingual data. Our method encourages the distributions of output token embeddings of monolingual languages to be similar, and hence, promotes the ASR model to easily code-switch between languages. Specifically, we propose to use Jensen-Shannon divergence and cosine distance based constraints. The former will enforce output embeddings of monolingual languages to possess similar distributions, while the later simply brings the centroids of two distributions to be close to each other. Experimental results demonstrate high effectiveness of the proposed method, yielding up to 4.5% absolute mixed error rate improvement on Mandarin-English code-switching ASR task.Comment: 5 pages, 3 figures, accepted to INTERSPEECH 201

    Language-specific Acoustic Boundary Learning for Mandarin-English Code-switching Speech Recognition

    Full text link
    Code-switching speech recognition (CSSR) transcribes speech that switches between multiple languages or dialects within a single sentence. The main challenge in this task is that different languages often have similar pronunciations, making it difficult for models to distinguish between them. In this paper, we propose a method for solving the CSSR task from the perspective of language-specific acoustic boundary learning. We introduce language-specific weight estimators (LSWE) to model acoustic boundary learning in different languages separately. Additionally, a non-autoregressive (NAR) decoder and a language change detection (LCD) module are employed to assist in training. Evaluated on the SEAME corpus, our method achieves a state-of-the-art mixed error rate (MER) of 16.29% and 22.81% on the test_man and test_sge sets. We also demonstrate the effectiveness of our method on a 9000-hour in-house meeting code-switching dataset, where our method achieves a relatively 7.9% MER reduction

    Adaptive Contextual Biasing for Transducer Based Streaming Speech Recognition

    Full text link
    By incorporating additional contextual information, deep biasing methods have emerged as a promising solution for speech recognition of personalized words. However, for real-world voice assistants, always biasing on such personalized words with high prediction scores can significantly degrade the performance of recognizing common words. To address this issue, we propose an adaptive contextual biasing method based on Context-Aware Transformer Transducer (CATT) that utilizes the biased encoder and predictor embeddings to perform streaming prediction of contextual phrase occurrences. Such prediction is then used to dynamically switch the bias list on and off, enabling the model to adapt to both personalized and common scenarios. Experiments on Librispeech and internal voice assistant datasets show that our approach can achieve up to 6.7% and 20.7% relative reduction in WER and CER compared to the baseline respectively, mitigating up to 96.7% and 84.9% of the relative WER and CER increase for common cases. Furthermore, our approach has a minimal performance impact in personalized scenarios while maintaining a streaming inference pipeline with negligible RTF increase

    Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning

    Get PDF
    Developing artificial learning systems that can understand and generate natural language has been one of the long-standing goals of artificial intelligence. Recent decades have witnessed an impressive progress on both of these problems, giving rise to a new family of approaches. Especially, the advances in deep learning over the past couple of years have led to neural approaches to natural language generation (NLG). These methods combine generative language learning techniques with neural-networks based frameworks. With a wide range of applications in natural language processing, neural NLG (NNLG) is a new and fast growing field of research. In this state-of-the-art report, we investigate the recent developments and applications of NNLG in its full extent from a multidimensional view, covering critical perspectives such as multimodality, multilinguality, controllability and learning strategies. We summarize the fundamental building blocks of NNLG approaches from these aspects and provide detailed reviews of commonly used preprocessing steps and basic neural architectures. This report also focuses on the seminal applications of these NNLG models such as machine translation, description generation, automatic speech recognition, abstractive summarization, text simplification, question answering and generation, and dialogue generation. Finally, we conclude with a thorough discussion of the described frameworks by pointing out some open research directions.This work has been partially supported by the European Commission ICT COST Action “Multi-task, Multilingual, Multi-modal Language Generation” (CA18231). AE was supported by BAGEP 2021 Award of the Science Academy. EE was supported in part by TUBA GEBIP 2018 Award. BP is in in part funded by Independent Research Fund Denmark (DFF) grant 9063-00077B. IC has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 838188. EL is partly funded by Generalitat Valenciana and the Spanish Government throught projects PROMETEU/2018/089 and RTI2018-094649-B-I00, respectively. SMI is partly funded by UNIRI project uniri-drustv-18-20. GB is partly supported by the Ministry of Innovation and the National Research, Development and Innovation Office within the framework of the Hungarian Artificial Intelligence National Laboratory Programme. COT is partially funded by the Romanian Ministry of European Investments and Projects through the Competitiveness Operational Program (POC) project “HOLOTRAIN” (grant no. 29/221 ap2/07.04.2020, SMIS code: 129077) and by the German Academic Exchange Service (DAAD) through the project “AWAKEN: content-Aware and netWork-Aware faKE News mitigation” (grant no. 91809005). ESA is partially funded by the German Academic Exchange Service (DAAD) through the project “Deep-Learning Anomaly Detection for Human and Automated Users Behavior” (grant no. 91809358)
    corecore