8 research outputs found

    Automatic Segmentation of Human Placenta Images with U-Net

    Full text link
    © 2013 IEEE. Placenta is closely related to the health of the fetus. Abnormal placental function will affect the normal development of the fetus, and in severe cases, even endanger the life of the fetus. Therefore, accurate and quantitative evaluation of placenta has important clinical significance. It is a common method to segment human placenta with semantic segmentation. However, manual segmentation relies too much on the professional knowledge and clinical experience of the staff, and it will also consume a lot of time. Therefore, based on u-net, we propose an automatic segmentation method of human placenta, which reduces manual intervention and greatly speeds up the segmentation, making large-scale segmentation possible. The human placenta data set we used was labeled by experts, which was obtained from prenatal examinations of 11 pregnant women, about 1,110 images. It was a comprehensive and clinically significant data set. By training the network with such data set, the robustness of the model will be better. After testing on the data set, the segmentation effect is basically consistent with the manual segmentation effect

    AIDAN: An Attention-Guided Dual-Path Network for Pediatric Echocardiography Segmentation

    Get PDF
    Accurate segmentation of pediatric echocardiography images is essential for a wide range of diagnostic and pre-interventional planning, but remains challenging (e.g., low signal to noise ratio and internal variability in heart appearance). To address these problems, in this paper, we propose a novel Cardiac Attention-guided Dual-path Network (i.e., AIDAN). AIDAN comprises a convolutional block attention module (CBAM) attached to a spatial (i.e., SPA) and context paths (i.e., CPA), which can guide the network and learn the most discriminative features. The spatial path captures low-level spatial features, and the context path is designed to exploit high-level context. Finally, features learned from the two paths are fused efficiently using a specially designed feature fusion module (FFM), and these are used to predict the final segmentation map. We experiment on a self-collected dataset of 127 pediatric echocardiography cases which are videos containing at least a complete cardiac cycle, and obtain a Dice coefficient of 0.951 and 0.914, in the left ventricle and atrium segments, respectively. AIDAN outperforms other state-of-the-art methods and has great potential for pediatric echocardiography images analysis

    FetusMapV2: Enhanced Fetal Pose Estimation in 3D Ultrasound

    Full text link
    Fetal pose estimation in 3D ultrasound (US) involves identifying a set of associated fetal anatomical landmarks. Its primary objective is to provide comprehensive information about the fetus through landmark connections, thus benefiting various critical applications, such as biometric measurements, plane localization, and fetal movement monitoring. However, accurately estimating the 3D fetal pose in US volume has several challenges, including poor image quality, limited GPU memory for tackling high dimensional data, symmetrical or ambiguous anatomical structures, and considerable variations in fetal poses. In this study, we propose a novel 3D fetal pose estimation framework (called FetusMapV2) to overcome the above challenges. Our contribution is three-fold. First, we propose a heuristic scheme that explores the complementary network structure-unconstrained and activation-unreserved GPU memory management approaches, which can enlarge the input image resolution for better results under limited GPU memory. Second, we design a novel Pair Loss to mitigate confusion caused by symmetrical and similar anatomical structures. It separates the hidden classification task from the landmark localization task and thus progressively eases model learning. Last, we propose a shape priors-based self-supervised learning by selecting the relatively stable landmarks to refine the pose online. Extensive experiments and diverse applications on a large-scale fetal US dataset including 1000 volumes with 22 landmarks per volume demonstrate that our method outperforms other strong competitors.Comment: 16 pages, 11 figures, accepted by Medical Image Analysis(2023

    Deep Learning based 3D Segmentation: A Survey

    Full text link
    3D object segmentation is a fundamental and challenging problem in computer vision with applications in autonomous driving, robotics, augmented reality and medical image analysis. It has received significant attention from the computer vision, graphics and machine learning communities. Traditionally, 3D segmentation was performed with hand-crafted features and engineered methods which failed to achieve acceptable accuracy and could not generalize to large-scale data. Driven by their great success in 2D computer vision, deep learning techniques have recently become the tool of choice for 3D segmentation tasks as well. This has led to an influx of a large number of methods in the literature that have been evaluated on different benchmark datasets. This paper provides a comprehensive survey of recent progress in deep learning based 3D segmentation covering over 150 papers. It summarizes the most commonly used pipelines, discusses their highlights and shortcomings, and analyzes the competitive results of these segmentation methods. Based on the analysis, it also provides promising research directions for the future.Comment: Under review of ACM Computing Surveys, 36 pages, 10 tables, 9 figure
    corecore