5,173 research outputs found

    Multimodal Machine Learning for Automated ICD Coding

    Full text link
    This study presents a multimodal machine learning model to predict ICD-10 diagnostic codes. We developed separate machine learning models that can handle data from different modalities, including unstructured text, semi-structured text and structured tabular data. We further employed an ensemble method to integrate all modality-specific models to generate ICD-10 codes. Key evidence was also extracted to make our prediction more convincing and explainable. We used the Medical Information Mart for Intensive Care III (MIMIC -III) dataset to validate our approach. For ICD code prediction, our best-performing model (micro-F1 = 0.7633, micro-AUC = 0.9541) significantly outperforms other baseline models including TF-IDF (micro-F1 = 0.6721, micro-AUC = 0.7879) and Text-CNN model (micro-F1 = 0.6569, micro-AUC = 0.9235). For interpretability, our approach achieves a Jaccard Similarity Coefficient (JSC) of 0.1806 on text data and 0.3105 on tabular data, where well-trained physicians achieve 0.2780 and 0.5002 respectively.Comment: Machine Learning for Healthcare 201

    Deepr: A Convolutional Net for Medical Records

    Full text link
    Feature engineering remains a major bottleneck when creating predictive systems from electronic medical records. At present, an important missing element is detecting predictive regular clinical motifs from irregular episodic records. We present Deepr (short for Deep record), a new end-to-end deep learning system that learns to extract features from medical records and predicts future risk automatically. Deepr transforms a record into a sequence of discrete elements separated by coded time gaps and hospital transfers. On top of the sequence is a convolutional neural net that detects and combines predictive local clinical motifs to stratify the risk. Deepr permits transparent inspection and visualization of its inner working. We validate Deepr on hospital data to predict unplanned readmission after discharge. Deepr achieves superior accuracy compared to traditional techniques, detects meaningful clinical motifs, and uncovers the underlying structure of the disease and intervention space

    Supporting the Billing Process in Outpatient Medical Care: Automated Medical Coding Through Machine Learning

    Get PDF
    Reimbursement in medical care implies significant administrative effort for medical staff. To bill the treatments or services provided, diagnosis and treatment codes must be assigned to patient records using standardized healthcare classification systems, which is a time-consuming and error-prone task. In contrast to ICD diagnosis codes used in most countries for inpatient care reimbursement, outpatient medical care often involves different reimbursement schemes. Following the Action Design Research methodology, we developed an NLP-based machine learning artifact in close collaboration with a general practitioner’s office in Germany, leveraging a dataset of over 5,600 patients with more than 63,000 billing codes. For the code prediction of most problematic treatments as well as a complete code prediction task, we achieved F1-scores of 93.60 % and 78.22 %, respectively. Throughout three iterations, we derived five meta requirements leading to three design principles for an automated coding system to support the reimbursement of outpatient medical care

    Automated machine learning for healthcare and clinical notes analysis

    Get PDF
    Machine learning (ML) has been slowly entering every aspect of our lives and its positive impact has been astonishing. To accelerate embedding ML in more applications and incorporating it in real-world scenarios, automated machine learning (AutoML) is emerging. The main purpose of AutoML is to provide seamless integration of ML in various industries, which will facilitate better outcomes in everyday tasks. In healthcare, AutoML has been already applied to easier settings with structured data such as tabular lab data. However, there is still a need for applying AutoML for interpreting medical text, which is being generated at a tremendous rate. For this to happen, a promising method is AutoML for clinical notes analysis, which is an unexplored research area representing a gap in ML research. The main objective of this paper is to fill this gap and provide a comprehensive survey and analytical study towards AutoML for clinical notes. To that end, we first introduce the AutoML technology and review its various tools and techniques. We then survey the literature of AutoML in the healthcare industry and discuss the developments specific to clinical settings, as well as those using general AutoML tools for healthcare applications. With this background, we then discuss challenges of working with clinical notes and highlight the benefits of developing AutoML for medical notes processing. Next, we survey relevant ML research for clinical notes and analyze the literature and the field of AutoML in the healthcare industry. Furthermore, we propose future research directions and shed light on the challenges and opportunities this emerging field holds. With this, we aim to assist the community with the implementation of an AutoML platform for medical notes, which if realized can revolutionize patient outcomes

    Automated Clinical Coding:What, Why, and Where We Are?

    Get PDF
    Clinical coding is the task of transforming medical information in a patient's health records into structured codes so that they can be used for statistical analysis. This is a cognitive and time-consuming task that follows a standard process in order to achieve a high level of consistency. Clinical coding could potentially be supported by an automated system to improve the efficiency and accuracy of the process. We introduce the idea of automated clinical coding and summarise its challenges from the perspective of Artificial Intelligence (AI) and Natural Language Processing (NLP), based on the literature, our project experience over the past two and half years (late 2019 - early 2022), and discussions with clinical coding experts in Scotland and the UK. Our research reveals the gaps between the current deep learning-based approach applied to clinical coding and the need for explainability and consistency in real-world practice. Knowledge-based methods that represent and reason the standard, explainable process of a task may need to be incorporated into deep learning-based methods for clinical coding. Automated clinical coding is a promising task for AI, despite the technical and organisational challenges. Coders are needed to be involved in the development process. There is much to achieve to develop and deploy an AI-based automated system to support coding in the next five years and beyond.Comment: accepted for npj Digital Medicin

    Automated clinical coding:What, why, and where we are?

    Get PDF
    Funding Information: The work is supported by WellCome Trust iTPA Awards (PIII009, PIII032), Health Data Research UK National Phenomics and Text Analytics Implementation Projects, and the United Kingdom Research and Innovation (grant EP/S02431X/1), UKRI Centre for Doctoral Training in Biomedical AI at the University of Edinburgh, School of Informatics. H.D. and J.C. are supported by the Engineering and Physical Sciences Research Council (EP/V050869/1) on “ConCur: Knowledge Base Construction and Curation”. HW was supported by Medical Research Council and Health Data Research UK (MR/S004149/1, MR/S004149/2); British Council (UCL-NMU-SEU international collaboration on Artificial Intelligence in Medicine: tackling challenges of low generalisability and health inequality); National Institute for Health Research (NIHR202639); Advanced Care Research Centre at the University of Edinburgh. We thank constructive comments from Murray Bell and Janice Watson in Terminology Service in Public Health Scotland, and information provided by Allison Reid in the coding department in NHS Lothian, Paul Mitchell, Nicola Symmers, and Barry Hewit in Edinburgh Cancer Informatics, and staff in Epic Systems Corporation. Thanks for the suggestions from Dr. Emma Davidson regarding clinical research. Thanks to the discussions with Dr. Kristiina RannikmĂ€e regarding the research on clinical coding and with Ruohua Han regarding the social and qualitative aspects of this research. In Fig. , the icon of “Clinical Coders” was from Freepik in Flaticon, https://www.flaticon.com/free-icon/user_747376 ; the icon of “Automated Coding System” was from Free Icon Library, https://icon-library.com/png/272370.html . Funding Information: The work is supported by WellCome Trust iTPA Awards (PIII009, PIII032), Health Data Research UK National Phenomics and Text Analytics Implementation Projects, and the United Kingdom Research and Innovation (grant EP/S02431X/1), UKRI Centre for Doctoral Training in Biomedical AI at the University of Edinburgh, School of Informatics. H.D. and J.C. are supported by the Engineering and Physical Sciences Research Council (EP/V050869/1) on “ConCur: Knowledge Base Construction and Curation”. HW was supported by Medical Research Council and Health Data Research UK (MR/S004149/1, MR/S004149/2); British Council (UCL-NMU-SEU international collaboration on Artificial Intelligence in Medicine: tackling challenges of low generalisability and health inequality); National Institute for Health Research (NIHR202639); Advanced Care Research Centre at the University of Edinburgh. We thank constructive comments from Murray Bell and Janice Watson in Terminology Service in Public Health Scotland, and information provided by Allison Reid in the coding department in NHS Lothian, Paul Mitchell, Nicola Symmers, and Barry Hewit in Edinburgh Cancer Informatics, and staff in Epic Systems Corporation. Thanks for the suggestions from Dr. Emma Davidson regarding clinical research. Thanks to the discussions with Dr. Kristiina RannikmĂ€e regarding the research on clinical coding and with Ruohua Han regarding the social and qualitative aspects of this research. In Fig. 1 , the icon of “Clinical Coders” was from Freepik in Flaticon, https://www.flaticon.com/free-icon/user_747376 ; the icon of “Automated Coding System” was from Free Icon Library, https://icon-library.com/png/272370.html. Publisher Copyright: © 2022, The Author(s).Clinical coding is the task of transforming medical information in a patient’s health records into structured codes so that they can be used for statistical analysis. This is a cognitive and time-consuming task that follows a standard process in order to achieve a high level of consistency. Clinical coding could potentially be supported by an automated system to improve the efficiency and accuracy of the process. We introduce the idea of automated clinical coding and summarise its challenges from the perspective of Artificial Intelligence (AI) and Natural Language Processing (NLP), based on the literature, our project experience over the past two and half years (late 2019–early 2022), and discussions with clinical coding experts in Scotland and the UK. Our research reveals the gaps between the current deep learning-based approach applied to clinical coding and the need for explainability and consistency in real-world practice. Knowledge-based methods that represent and reason the standard, explainable processof a task may need to be incorporated into deep learning-based methods for clinical coding. Automated clinical coding is a promising task for AI, despite the technical and organisational challenges. Coders are needed to be involved in the development process. There is much to achieve to develop and deploy an AI-based automated system to support coding in the next five years and beyond.Peer reviewe
    • 

    corecore