6,220 research outputs found

    Automatic annotation of bioinformatics workflows with biomedical ontologies

    Full text link
    Legacy scientific workflows, and the services within them, often present scarce and unstructured (i.e. textual) descriptions. This makes it difficult to find, share and reuse them, thus dramatically reducing their value to the community. This paper presents an approach to annotating workflows and their subcomponents with ontology terms, in an attempt to describe these artifacts in a structured way. Despite a dearth of even textual descriptions, we automatically annotated 530 myExperiment bioinformatics-related workflows, including more than 2600 workflow-associated services, with relevant ontological terms. Quantitative evaluation of the Information Content of these terms suggests that, in cases where annotation was possible at all, the annotation quality was comparable to manually curated bioinformatics resources.Comment: 6th International Symposium on Leveraging Applications (ISoLA 2014 conference), 15 pages, 4 figure

    Automatic vs Manual Provenance Abstractions: Mind the Gap

    Full text link
    In recent years the need to simplify or to hide sensitive information in provenance has given way to research on provenance abstraction. In the context of scientific workflows, existing research provides techniques to semi automatically create abstractions of a given workflow description, which is in turn used as filters over the workflow's provenance traces. An alternative approach that is commonly adopted by scientists is to build workflows with abstractions embedded into the workflow's design, such as using sub-workflows. This paper reports on the comparison of manual versus semi-automated approaches in a context where result abstractions are used to filter report-worthy results of computational scientific analyses. Specifically; we take a real-world workflow containing user-created design abstractions and compare these with abstractions created by ZOOM UserViews and Workflow Summaries systems. Our comparison shows that semi-automatic and manual approaches largely overlap from a process perspective, meanwhile, there is a dramatic mismatch in terms of data artefacts retained in an abstracted account of derivation. We discuss reasons and suggest future research directions.Comment: Preprint accepted to the 2016 workshop on the Theory and Applications of Provenance, TAPP 201

    Preventing Hospital Acquired Infections Through a Workflow-Based Cyber-Physical System

    Full text link
    Hospital acquired infections (HAI) are infections acquired within the hospital from healthcare workers, patients or from the environment, but which have no connection to the initial reason for the patient's hospital admission. HAI are a serious world-wide problem, leading to an increase in mortality rates, duration of hospitalisation as well as significant economic burden on hospitals. Although clear preventive guidelines exist, studies show that compliance to them is frequently poor. This paper details the software perspective for an innovative, business process software based cyber-physical system that will be implemented as part of a European Union-funded research project. The system is composed of a network of sensors mounted in different sites around the hospital, a series of wearables used by the healthcare workers and a server side workflow engine. For better understanding, we describe the system through the lens of a single, simple clinical workflow that is responsible for a significant portion of all hospital infections. The goal is that when completed, the system will be configurable in the sense of facilitating the creation and automated monitoring of those clinical workflows that when combined, account for over 90\% of hospital infections.Comment: Proceedings of ENASE 2016, ISBN: 978-989-758-189-

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    Common motifs in scientific workflows: An empirical analysis

    Get PDF
    While workflow technology has gained momentum in the last decade as a means for specifying and enacting computational experiments in modern science, reusing and repurposing existing workflows to build new scientific experiments is still a daunting task. This is partly due to the difficulty that scientists experience when attempting to understand existing workflows, which contain several data preparation and adaptation steps in addition to the scientifically significant analysis steps. One way to tackle the understandability problem is through providing abstractions that give a high-level view of activities undertaken within workflows. As a first step towards abstractions, we report in this paper on the results of a manual analysis performed over a set of real-world scientific workflows from Taverna and Wings systems. Our analysis has resulted in a set of scientific workflow motifs that outline i) the kinds of data intensive activities that are observed in workflows (data oriented motifs), and ii) the different manners in which activities are implemented within workflows (workflow oriented motifs). These motifs can be useful to inform workflow designers on the good and bad practices for workflow development, to inform the design of automated tools for the generation of workflow abstractions, etc
    corecore