5,228 research outputs found

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Pervasive Displays Research: What's Next?

    Get PDF
    Reports on the 7th ACM International Symposium on Pervasive Displays that took place from June 6-8 in Munich, Germany

    Mobile Device Interaction in Ubiquitous Computing

    Get PDF

    TOBE: Tangible Out-of-Body Experience

    Get PDF
    We propose a toolkit for creating Tangible Out-of-Body Experiences: exposing the inner states of users using physiological signals such as heart rate or brain activity. Tobe can take the form of a tangible avatar displaying live physiological readings to reflect on ourselves and others. Such a toolkit could be used by researchers and designers to create a multitude of potential tangible applications, including (but not limited to) educational tools about Science Technologies Engineering and Mathematics (STEM) and cognitive science, medical applications or entertainment and social experiences with one or several users or Tobes involved. Through a co-design approach, we investigated how everyday people picture their physiology and we validated the acceptability of Tobe in a scientific museum. We also give a practical example where two users relax together, with insights on how Tobe helped them to synchronize their signals and share a moment

    The Ambient Horn: Designing a novel audio-based learning experience

    Get PDF
    The Ambient Horn is a novel handheld device designed to support children learning about habitat distributions and interdependencies in an outdoor woodland environment. The horn was designed to emit non-speech audio sounds representing ecological processes. Both symbolic and arbitrary mappings were used to represent the processes. The sounds are triggered in response to the children’s location in certain parts of the woodland. A main objective was to provoke children into interpreting and reflecting upon the significance of the sounds in the context in which they occur. Our study of the horn being used showed the sounds to be provocative, generating much discussion about what they signified in relation to what the children saw in the woodland. In addition, the children appropriated the horn in creative ways, trying to ‘scoop’ up new sounds as they walked in different parts of the woodland

    RTST Trend Report: lead theme Contextualisation

    Get PDF
    Specht, M., Börner, D., Tabuenca, B., Ternier, S., De Vries, F., Kalz, M., Drachsler, H., & Schmitz, B. (2012). RTST Trend Report: lead theme Contextualisation. Deliverable 1.7 of STELLAR network of excellence. Heerlen, The Netherlands.In summary this trend-scouting report highlights different design dimensions of contextualizing learning. On the one hand designing educational context: the components and constituents of the educational setting, which also have to be orchestrated in an instructional design or the process of orchestration (Luckin, 2010, Specht, 2009) on the other hand bridging and linking learning contexts for seamless learning support: Wong et al. define design dimensions of seamless learning experiences and which gaps they identify and what challenges must be tackled to create seamless learning experiences (Wong, 2011).STELLAR Network of Excellence, Grant 23191

    Enhancing learning with technology

    Get PDF
    Specht, M., & Klemke, R. (2013, 26-27 September). Enhancing Learning with Technology. In D. Milosevic (Ed.), Proceedings of the fourth international conference on eLearning (eLearning 2013) (pp. 37-45). Belgrade Metropolitan University, Belgrade, Serbia. http://econference.metropolitan.ac.rs/We are living in a technology-enhanced world. Also learning is affected by recent, upcoming, and foreseen technological changes. This paper gives a bird’s eye view to technological trends and reflects how learning can benefit from them
    • 

    corecore