4 research outputs found

    Space Subdivision For Indoor Navigation: A Systematic Literature Review

    Get PDF
    Along with the increasing demand for indoor navigation, many attempts were made to improve indoor navigation performance. Information about the room becomes important, because one of the characteristics of indoor navigation is the dynamic indoor conditions. Space subdivision is an effort made to make indoor navigation even more accurate. The purpose of this study is to create a systematic literature review (SLR) regarding the topic of space subdivision for indoor navigation which is based on a SLR method, previously defined research question. This study examines several previous works specifically in the field of space subdivision for indoor navigation with the SLR. This research is expected to be the basis for further research to improve the quality of indoor navigation based on space subdivision

    La Détection des changements tridimensionnels à l'aide de nuages de points : Une revue

    Full text link
    peer reviewedChange detection is an important step for the characterization of object dynamics at the earth’s surface. In multi-temporal point clouds, the main challenge is to detect true changes at different granularities in a scene subject to significant noise and occlusion. To better understand new research perspectives in this field, a deep review of recent advances in 3D change detection methods is needed. To this end, we present a comprehensive review of the state of the art of 3D change detection approaches, mainly those using 3D point clouds. We review standard methods and recent advances in the use of machine and deep learning for change detection. In addition, the paper presents a summary of 3D point cloud benchmark datasets from different sensors (aerial, mobile, and static), together with associated information. We also investigate representative evaluation metrics for this task. To finish, we present open questions and research perspectives. By reviewing the relevant papers in the field, we highlight the potential of bi- and multi-temporal point clouds for better monitoring analysis for various applications.11. Sustainable cities and communitie

    Towards 3D Indoor Cadastre Based on Change Detection from Point Clouds

    Get PDF
    3D Cadastre models capture both the complex interrelations between physical objects and their corresponding legal rights, restrictions, and responsibilities. Most of the ongoing research on 3D Cadastre worldwide is focused on interrelations at the level of buildings and infrastructures. So far, the analysis of such interrelations in terms of indoor spaces, considering the time aspect, has not been explored yet. In The Netherlands, there are many examples of changes in the functionality of buildings over time. Tracking these changes is challenging, especially when the geometry of the spaces changes as well; for example, a change in functionality, from administrative to residential use of the space or a change in the geometry when merging two spaces in a building without modifying the functionality. To record the changes, a common practice is to use 2D plans for subdivisions and assign new rights, restrictions, and responsibilities to the changed spaces in a building. In the meantime, with the advances of 3D data collection techniques, the benefits of 3D models in various forms are increasingly being researched. This work explores the opportunities for using 3D point clouds to establish a platform for 3D Cadastre studies in indoor environments. We investigate the changes in time of the geometry of the building that can be automatically detected from point clouds, and how they can be linked with a Land Administration Model (LADM) and included in a 3D spatial database, to update the 3D indoor Cadastre. The results we have obtained are promising. The permanent changes (e.g., walls, rooms) are automatically distinguished from dynamic changes (e.g., human, furniture) and are linked to the space subdivisions

    Indoor Mapping and Reconstruction with Mobile Augmented Reality Sensor Systems

    Get PDF
    Augmented Reality (AR) ermöglicht es, virtuelle, dreidimensionale Inhalte direkt innerhalb der realen Umgebung darzustellen. Anstatt jedoch beliebige virtuelle Objekte an einem willkürlichen Ort anzuzeigen, kann AR Technologie auch genutzt werden, um Geodaten in situ an jenem Ort darzustellen, auf den sich die Daten beziehen. Damit eröffnet AR die Möglichkeit, die reale Welt durch virtuelle, ortbezogene Informationen anzureichern. Im Rahmen der vorliegenen Arbeit wird diese Spielart von AR als "Fused Reality" definiert und eingehend diskutiert. Der praktische Mehrwert, den dieses Konzept der Fused Reality bietet, lässt sich gut am Beispiel seiner Anwendung im Zusammenhang mit digitalen Gebäudemodellen demonstrieren, wo sich gebäudespezifische Informationen - beispielsweise der Verlauf von Leitungen und Kabeln innerhalb der Wände - lagegerecht am realen Objekt darstellen lassen. Um das skizzierte Konzept einer Indoor Fused Reality Anwendung realisieren zu können, müssen einige grundlegende Bedingungen erfüllt sein. So kann ein bestimmtes Gebäude nur dann mit ortsbezogenen Informationen augmentiert werden, wenn von diesem Gebäude ein digitales Modell verfügbar ist. Zwar werden größere Bauprojekt heutzutage oft unter Zuhilfename von Building Information Modelling (BIM) geplant und durchgeführt, sodass ein digitales Modell direkt zusammen mit dem realen Gebäude ensteht, jedoch sind im Falle älterer Bestandsgebäude digitale Modelle meist nicht verfügbar. Ein digitales Modell eines bestehenden Gebäudes manuell zu erstellen, ist zwar möglich, jedoch mit großem Aufwand verbunden. Ist ein passendes Gebäudemodell vorhanden, muss ein AR Gerät außerdem in der Lage sein, die eigene Position und Orientierung im Gebäude relativ zu diesem Modell bestimmen zu können, um Augmentierungen lagegerecht anzeigen zu können. Im Rahmen dieser Arbeit werden diverse Aspekte der angesprochenen Problematik untersucht und diskutiert. Dabei werden zunächst verschiedene Möglichkeiten diskutiert, Indoor-Gebäudegeometrie mittels Sensorsystemen zu erfassen. Anschließend wird eine Untersuchung präsentiert, inwiefern moderne AR Geräte, die in der Regel ebenfalls über eine Vielzahl an Sensoren verfügen, ebenfalls geeignet sind, als Indoor-Mapping-Systeme eingesetzt zu werden. Die resultierenden Indoor Mapping Datensätze können daraufhin genutzt werden, um automatisiert Gebäudemodelle zu rekonstruieren. Zu diesem Zweck wird ein automatisiertes, voxel-basiertes Indoor-Rekonstruktionsverfahren vorgestellt. Dieses wird außerdem auf der Grundlage vierer zu diesem Zweck erfasster Datensätze mit zugehörigen Referenzdaten quantitativ evaluiert. Desweiteren werden verschiedene Möglichkeiten diskutiert, mobile AR Geräte innerhalb eines Gebäudes und des zugehörigen Gebäudemodells zu lokalisieren. In diesem Kontext wird außerdem auch die Evaluierung einer Marker-basierten Indoor-Lokalisierungsmethode präsentiert. Abschließend wird zudem ein neuer Ansatz, Indoor-Mapping Datensätze an den Achsen des Koordinatensystems auszurichten, vorgestellt
    corecore