11 research outputs found

    Enhancing satellite & terrestrial networks integration through NFV/SDN technologies

    Get PDF
    NFV and SDN technologies can become key facilitators for the combination of terrestrial and satellite networks. Enabling NFV into the SatCom domain will provide operators with appropriate tools and interfaces in order to establish end-to-end fully operable virtualized satellite networks to be offered to third-party operators/service providers. Enabling SDNbased, federated resource management paves way for a unified control plane that would allow operators to efficiently manage and optimize the operation of the hybrid network. The proposed solution is expected to bring improved coverage, optimized communication resources use and better network resilience, along with improved innovation capacity and business agility for deploying communications services over combined networks.Postprint (author's final draft

    On the virtualization and dynamic orchestration of satellite communication services

    Get PDF
    Key features of satellite communications such as wide-scale coverage, broadcast/multicast support and high availability, together with significant amounts of new satellite capacity coming online, anticipate new opportunities for satellite communications services as an integral part within upcoming 5G systems. To materialize these opportunities, satellite communications services have to be provisioned and operated in a more flexible, agile and cost-effective manner than done today. In this context, this paper describes a solution for the virtualization and dynamic orchestration of satellite communication services that builds on the introduction of Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies within the satellite ground segment systems. Along with the description of the main system architecture traits, the flowchart of a general procedure for the dynamic instantiation of virtualized satellite networks on top of a SDN/NFV-enabled satellite ground segment system is provided. The paper also presents experimental results for the dynamic customization of satellite network services through the implementation of a set of virtualized satellite network functions that can be orchestrated over general purpose open virtual platforms.Peer ReviewedPostprint (author's final draft

    Satellite gateway diversity in SDN/NFV-enabled satellite ground segment systems

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper explores how to use Software Defined Networking (SDN) and Network Functions Virtualization (NFV) as two emerging technologies to support Satellite Gateway Diversity (GWD) solution in the forward link to provide next generation satellite system with higher capacity enhancement, failover and resiliency management. In this context, the gateway handover along with efficient traffic steering techniques are used to cope with the cases where gateway feeder links experience outage due to meteorological conditions or gateway failure. The handover typically implies that additional traffic is addressed towards another satellite gateway to handle the capacity reduction. Toward this objective, we propose an architecture framework to support GWD using SDN/NFV-enabled satellite ground segment and we evaluate our solution on a proof of concept experimental testbed based on OpenSAND emulated satellite network. The results show that our proposal can provide reasonably flexibility to handle failover and resiliency.Peer ReviewedPostprint (author's final draft

    Towards SDN/NFV-enabled satellite ground segment systems: bandwidth on demand use case

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Key features of satellite communications such as wide-scale coverage, broadcast/multicast support and high availability, together with significant amounts of new satellite capacity coming online, anticipate new opportunities for satellite communications services as an integral part within upcoming 5G systems. To materialize these opportunities, satellite communications services have to be provisioned and operated in a more flexible, agile and cost-effective manner than done today. In this context, this paper describes the architecture of a satellite ground segment system that is built on the introduction of Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies and examines the use case for delivering a Satellite Bandwidth on Demand (BoD) solution.Peer ReviewedPostprint (author's final draft

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    Towards SDN/NFV-enabled satellite ground segment systems: End-to-End Traffic Engineering Use Case

    Get PDF
    Key features of satellite communications such as wide-scale coverage, broadcast/multicast support and high availability, together with significant amounts of new satellite capacity coming online, anticipate new opportunities for satellite communications services as an integral part within upcoming 5G systems. To materialize these opportunities, satellite communications services have to be provisioned and operated in a more flexible, agile and cost-effective manner than done today. In this context, this paper firstly describes the architecture of a satellite ground segment system that builds on the introduction of Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies and then examines a use case for the realization of End-to-End Traffic Engineering in a combined terrestrial-satellite network used for mobile backhauling.Peer ReviewedPostprint (author's final draft

    On-demand network slicing using SDN/NFV-enabled satellite ground segment systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes an architecture framework for the realization of on-demand satellite network slicing that is built on the introduction of Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies. In this way, service delivery with satellite networks is shifted from a network for connectivity model to a network for service model with a high degree of service customization and adaptability, including satellite bandwidth on-demand. Under this framework, we study the resource orchestration of satellite network services by formulating the on-demand network slicing as an optimization problem that provides flexible service chaining and provisioning taking into account diversified service requirements. The objective is to determine the optimal resource allocation for supporting a satellite network slice that minimizes resources consumption while meeting service specification requirements such as the end-to-end delay.Peer ReviewedPostprint (author's final draft

    SDN-based traffic engineering for improved resilience in integrated satellite-terrestrial backhaul networks

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Resilience and high availability are considered as essential requirements in 5G networks. To fullfil these requirements, the integration of a satellite component within mobile backhaul networks arises as a compelling proposition to provide backup connectivity to critical cell sites and divert traffic from congested areas so that a limited capacity in their terrestrial links could be supplemented during peak-time or even replaced in case of total/partial failure or maintenance. This is especially of interest for public protection and disaster relief (PPDR) communications in remote/rural areas that might require the fast deployment of nework capacity as well as in distressed areas where the terrestrial backhaul infrastructure might have suffered damages. This paper first describes an architectural framework that enables the integration and management of the satellite capacity as a constituent part of a Software Defined Networking (SDN) -based traffic engineered mobile backhaul network. Then, a SDN-based Traffic Engineering (TE) application is proposed to manage some amount of dynamically steerable satellite capacity provisioned for resilience purposes to maximize a network utility function under both failure and nonfailure conditions in the terrestrial links. Numerical results are presented to assess the benefits of the proposed TE application and its performance is compared to that of a traditional overflow solution.Peer ReviewedPostprint (author's final draft

    Experimental proof of concept of an SDN-based traffic engineering solution for hybrid satellite-terrestrial mobile backhauling

    Get PDF
    This is the peer reviewed version of the following article: Mendoza, F, Ferrus, R, Sallent, O. Experimental proof of concept of an SDN‐based traffic engineering solution for hybrid satellite‐terrestrial mobile backhauling. Int J Satell Commun Network. 2019; 37: 630– 645, which has been published in final form at https://doi.org/10.1002/sat.1303. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingSatellite networks are expected to be an integral part of 5G service deployment. One compelling use case is mobile backhauling, where the exploitation of a satellite component can improve the reach, robustness, and economics of 5G rollout. The envisaged availability of new satellite capacity, together with the development of better integration approaches for the provisioning and operation of the satellite component in a more flexible, agile, and cost-effective manner than done today, are expected to revamp such use case within the 5G ecosystem. In this context, sustained in the architectural designs proposed within H2020 VITAL research project, this paper presents an experimental proof of concept (PoC) of a satellite-terrestrial integration solution that builds upon software-defined networking (SDN) technologies for the realization of end-to-end traffic engineering (E2E TE) in mobile backhauling networks with a satellite component. A laboratory test bed has been developed and validated, consisting of a small-scale private mobile network with a backhaul setting that combines Ethernet-wired links, a satellite link emulator (OpenSAND), OpenFlow switches, and an OpenFlow controller running the network application for E2E TE. Provided results show the operation of a E2E TE application able to enforce different traffic routing and path failure restoration policies as well as the performance impact that it has on the mobile network connectivity services.Peer ReviewedPostprint (author's final draft
    corecore