19,508 research outputs found
Keypad mobile phones are associated with a significant increased risk of microbial contamination compared to touch screen phones
The use of mobile phones in the clinical environment by healthcare workers has become widespread. Despite evidence that these devices can harbour pathogenic micro-organisms there is little guidance on how to reduce contamination. Recently touchscreen phones with a single flat surface have been introduced. We hypothesise that bacterial contamination of phones used in hospitals will be lower on touchscreen devices compared to keypad devices. Sixty seven mobile phones belonging to health care workers were sampled. The median colony count for touchscreen phones and keypad devices was 0·09 colony forming units (cfu)/cm2 (interquartile range (IQR) 0.05–0·14) and 0·77 cfu/cm2 (IQR range 0·45–3.52) respectively. Colony counts were significantly higher on the keypad phones (Fisher’s exact test p<0.001). Multivariate analysis showed the type of phone (keypad vs. touch screen) was associated with increased colony counts (F-statistic 14.13: p<0.001). Overall, nine (13%) phones grew either meticillin resistant Staphylococcus aureus or vancomycin resistant enterococci. Eight (24%) keypad phones were contaminated with these organisms compared with one touch screen phone (3%). Our data indicate that touchscreen mobile phones are less contaminated than their keypad counterparts, and they are less likely to harbour pathogenic bacteria in the clinical setting
Investigating the association between children’s screen media exposure and vocabulary size in the UK
Children are growing up in a digital age with increasing exposure to television and touchscreen devices. We tested whether exposure to screen media is associated with children’s early language development. One hundred and thirty-one highly educated caregivers of UK children aged 6–36 months completed a media exposure questionnaire and vocabulary measure. 99% of children were read to daily, 82% watched television, and 49% used mobile touchscreen devices daily. Regression analyses revealed that time spent reading positively predicted vocabulary comprehension and production scores at 6–18 months, but time spent engaging with television or mobile touchscreen devices was not associated with vocabulary scores. Critically, correlations revealed that time spent reading or engaging with other non-screen activities was not offset by time spent engaging with television or mobile touchscreen devices. Thus, there was no evidence to suggest that screen media exposure adversely influenced vocabulary size in our sample of highly educated families with moderate media use
An Evaluation of Input Controls for In-Car Interactions
The way drivers operate in-car systems is rapidly changing as traditional physical controls, such as buttons and dials, are being replaced by touchscreens and touch-sensing surfaces. This has the potential to increase driver distraction and error as controls may be harder to find and use. This paper presents an in-car, on the road driving study which examined three key types of input controls to investigate their effects: a physical dial, pressure-based input on a touch surface and touch input on a touchscreen. The physical dial and pressure-based input were also evaluated with and without haptic feedback. The study was conducted with users performing a list-based targeting task using the different controls while driving on public roads. Eye-gaze was recorded to measure distraction from the primary task of driving. The results showed that target accuracy was high across all input methods (greater than 94%). Pressure-based targeting was the slowest while directly tapping on the targets was the faster selection method. Pressure-based input also caused the largest number of glances towards to the touchscreen but the duration of each glance was shorter than directly touching the screen. Our study will enable designers to make more appropriate design choices for future in-car interactions
RoboJam: A Musical Mixture Density Network for Collaborative Touchscreen Interaction
RoboJam is a machine-learning system for generating music that assists users
of a touchscreen music app by performing responses to their short
improvisations. This system uses a recurrent artificial neural network to
generate sequences of touchscreen interactions and absolute timings, rather
than high-level musical notes. To accomplish this, RoboJam's network uses a
mixture density layer to predict appropriate touch interaction locations in
space and time. In this paper, we describe the design and implementation of
RoboJam's network and how it has been integrated into a touchscreen music app.
A preliminary evaluation analyses the system in terms of training, musical
generation and user interaction
Comparing recent reviews about touch screen for Dementia with lessons learnt from the field
Conclusions were synthesised from recent reviews on (touchscreen)technologies and people with dementia and lessons learnt, using these devices in projects in the UK, the Netherlands and Canada. The combined findings provide a strong basis for defining new strategies for exploiting touchscreen technology for people with dementia
- …
