3,777 research outputs found

    TangiPaint: Interactive tangible media

    Get PDF
    Currently, there is a wide disconnection between the real and virtual worlds in computer graphics. Art created with textured paints on canvases have visual effects which naturally supplement simple color. Real paint exhibits shadows and highlights, which change in response to viewing and lighting directions. The colors interact with this environment and can produce very noticeable effects. Additionally, the traditional means of human-computer interaction using a keyboard and mouse is unnatural and inefficient---gestures and actions are not performed on the objects themselves. These visual effects and natural interactions are missing from digital media in the virtual world. The absence of these visual characteristics disconnects users from their content. Our research looks into simulating these missing pieces and reconnecting users. TangiPaint is an interactive, tangible application for creating and exploring digital media. It gives the experience of working with real materials, such as oil paints and textured canvases, on a digital display. TangiPaint implements natural gestures and allows users to directly interact with their work. The Tangible Display technology allows users to tilt and reorient the device and screen to see the subtle gloss, shadow, and impasto lighting effects of the simulated surface. To simulate realistic lighting effects we use a Ward BRDF illumination model. This model is implemented as an OpenGL shader program. Our system tracks the texture and relief of a piece of art by saving topographical information. We implement height fields, normal vectors, and parameter maps to store this information. These textures are submitted to the lighting model that renders a final product. TangiPaint builds on previous work and applications in this area, but is the first to integrate these aspects into a single software application. The system is entirely self-contained and implemented on the Apple iOS platforms, the iPhone, iPad, and iPod Touch. No additional hardware is required and the interface is easy to learn and use. TangiPaint is a step in the direction of interactive digital art media that looks and behaves like real materials

    Evaluation of Physical Finger Input Properties for Precise Target Selection

    Get PDF
    The multitouch tabletop display provides a collaborative workspace for multiple users around a table. Users can perform direct and natural multitouch interaction to select target elements using their bare fingers. However, physical size of fingertip varies from one person to another which generally introduces a fat finger problem. Consequently, it creates the imprecise selection of small size target elements during direct multitouch input. In this respect, an attempt is made to evaluate the physical finger input properties i.e. contact area and shape in the context of imprecise selection

    Interactive exploration of historic information via gesture recognition

    Get PDF
    Developers of interactive exhibits often struggle to �nd appropriate input devices that enable intuitive control, permitting the visitors to engage e�ectively with the content. Recently motion sensing input devices like the Microsoft Kinect or Panasonic D-Imager have become available enabling gesture based control of computer systems. These devices present an attractive input device for exhibits since the user can interact with their hands and they are not required to physically touch any part of the system. In this thesis we investigate techniques to enable the raw data coming from these types of devices to be used to control an interactive exhibit. Object recognition and tracking techniques are used to analyse the user's hand where movement and clicks are processed. To show the e�ectiveness of the techniques the gesture system is used to control an interactive system designed to inform the public about iconic buildings in the centre of Norwich, UK. We evaluate two methods of making selections in the test environment. At the time of experimentation the technologies were relatively new to the image processing environment. As a result of the research presented in this thesis, the techniques and methods used have been detailed and published [3] at the VSMM (Virtual Systems and Multimedia 2012) conference with the intention of further forwarding the area

    Investigating Selection above a Multitouch Surface

    Get PDF
    Above-surface interaction is a new and exciting topic in the field of human-computer interaction (HCI). It focuses on the design and evaluation of systems that humans can operate by moving their hands in the space above or in front of interactive displays. While many technologies emerge that make such systems possible, much research is still needed to make this interaction as natural and effortless as possible. First this thesis presents a set of guidelines for designing above-surface interactions, a collection of widgets that were designed based on these guidelines, and a system that can approximate the height of hands above a diffused surface illumination (DSI) device without any additional sensors. Then the thesis focuses on interaction techniques for activating graphical widgets located in this above-surface space. Finally, it presents a pair of studies that were conducted to investigate item selection in the space above a multitouch surface. The first study was conducted to elicit a set of gestures for above-table widget activation from a group of users. Several gestures were proposed by the designers to be compared with the user-generated gestures. The follow-up study was conducted to evaluate and compare these gestures based on their performance. The findings of these studies showed that there was no clear agreement on what gestures should be used to select objects in mid-air, and that performance was better when using gestures that were chosen less frequently, but predicted to be better by the designers, as opposed to those most frequently suggested by participants

    Physically Interacting With Four Dimensions

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2009People have long been fascinated with understanding the fourth dimension. While making pictures of 4D objects by projecting them to 3D can help reveal basic geometric features, 3D graphics images by themselves are of limited value. For example, just as 2D shadows of 3D curves may have lines crossing one another in the shadow, 3D graphics projections of smooth 4D topological surfaces can be interrupted where one surface intersects another. The research presented here creates physically realistic models for simple interactions with objects and materials in a virtual 4D world. We provide methods for the construction, multimodal exploration, and interactive manipulation of a wide variety of 4D objects. One basic achievement of this research is to exploit the free motion of a computer-based haptic probe to support a continuous motion that follows the \emph{local continuity\/} of a 4D surface, allowing collision-free exploration in the 3D projection. In 3D, this interactive probe follows the full local continuity of the surface as though we were in fact \emph{physically touching\/} the actual static 4D object. Our next contribution is to support dynamic 4D objects that can move, deform, and collide with other objects as well as with themselves. By combining graphics, haptics, and collision-sensing physical modeling, we can thus enhance our 4D visualization experience. Since we cannot actually place interaction devices in 4D, we develop fluid methods for interacting with a 4D object in its 3D shadow image using adapted reduced-dimension 3D tools for manipulating objects embedded in 4D. By physically modeling the correct properties of 4D surfaces, their bending forces, and their collisions in the 3D interactive or haptic controller interface, we can support full-featured physical exploration of 4D mathematical objects in a manner that is otherwise far beyond the real-world experience accessible to human beings

    Freeform 3D interactions in everyday environments

    Get PDF
    PhD ThesisPersonal computing is continuously moving away from traditional input using mouse and keyboard, as new input technologies emerge. Recently, natural user interfaces (NUI) have led to interactive systems that are inspired by our physical interactions in the real-world, and focus on enabling dexterous freehand input in 2D or 3D. Another recent trend is Augmented Reality (AR), which follows a similar goal to further reduce the gap between the real and the virtual, but predominately focuses on output, by overlaying virtual information onto a tracked real-world 3D scene. Whilst AR and NUI technologies have been developed for both immersive 3D output as well as seamless 3D input, these have mostly been looked at separately. NUI focuses on sensing the user and enabling new forms of input; AR traditionally focuses on capturing the environment around us and enabling new forms of output that are registered to the real world. The output of NUI systems is mainly presented on a 2D display, while the input technologies for AR experiences, such as data gloves and body-worn motion trackers are often uncomfortable and restricting when interacting in the real world. NUI and AR can be seen as very complimentary, and bringing these two fields together can lead to new user experiences that radically change the way we interact with our everyday environments. The aim of this thesis is to enable real-time, low latency, dexterous input and immersive output without heavily instrumenting the user. The main challenge is to retain and to meaningfully combine the positive qualities that are attributed to both NUI and AR systems. I review work in the intersecting research fields of AR and NUI, and explore freehand 3D interactions with varying degrees of expressiveness, directness and mobility in various physical settings. There a number of technical challenges that arise when designing a mixed NUI/AR system, which I will address is this work: What can we capture, and how? How do we represent the real in the virtual? And how do we physically couple input and output? This is achieved by designing new systems, algorithms, and user experiences that explore the combination of AR and NUI

    Bringing the Physical to the Digital

    Get PDF
    This dissertation describes an exploration of digital tabletop interaction styles, with the ultimate goal of informing the design of a new model for tabletop interaction. In the context of this thesis the term digital tabletop refers to an emerging class of devices that afford many novel ways of interaction with the digital. Allowing users to directly touch information presented on large, horizontal displays. Being a relatively young field, many developments are in flux; hardware and software change at a fast pace and many interesting alternative approaches are available at the same time. In our research we are especially interested in systems that are capable of sensing multiple contacts (e.g., fingers) and richer information such as the outline of whole hands or other physical objects. New sensor hardware enable new ways to interact with the digital. When embarking into the research for this thesis, the question which interaction styles could be appropriate for this new class of devices was a open question, with many equally promising answers. Many everyday activities rely on our hands ability to skillfully control and manipulate physical objects. We seek to open up different possibilities to exploit our manual dexterity and provide users with richer interaction possibilities. This could be achieved through the use of physical objects as input mediators or through virtual interfaces that behave in a more realistic fashion. In order to gain a better understanding of the underlying design space we choose an approach organized into two phases. First, two different prototypes, each representing a specific interaction style – namely gesture-based interaction and tangible interaction – have been implemented. The flexibility of use afforded by the interface and the level of physicality afforded by the interface elements are introduced as criteria for evaluation. Each approaches’ suitability to support the highly dynamic and often unstructured interactions typical for digital tabletops is analyzed based on these criteria. In a second stage the learnings from these initial explorations are applied to inform the design of a novel model for digital tabletop interaction. This model is based on the combination of rich multi-touch sensing and a three dimensional environment enriched by a gaming physics simulation. The proposed approach enables users to interact with the virtual through richer quantities such as collision and friction. Enabling a variety of fine-grained interactions using multiple fingers, whole hands and physical objects. Our model makes digital tabletop interaction even more “natural”. However, because the interaction – the sensed input and the displayed output – is still bound to the surface, there is a fundamental limitation in manipulating objects using the third dimension. To address this issue, we present a technique that allows users to – conceptually – pick objects off the surface and control their position in 3D. Our goal has been to define a technique that completes our model for on-surface interaction and allows for “as-direct-as possible” interactions. We also present two hardware prototypes capable of sensing the users’ interactions beyond the table’s surface. Finally, we present visual feedback mechanisms to give the users the sense that they are actually lifting the objects off the surface. This thesis contributes on various levels. We present several novel prototypes that we built and evaluated. We use these prototypes to systematically explore the design space of digital tabletop interaction. The flexibility of use afforded by the interaction style is introduced as criterion alongside the user interface elements’ physicality. Each approaches’ suitability to support the highly dynamic and often unstructured interactions typical for digital tabletops are analyzed. We present a new model for tabletop interaction that increases the fidelity of interaction possible in such settings. Finally, we extend this model so to enable as direct as possible interactions with 3D data, interacting from above the table’s surface
    • …
    corecore