10 research outputs found

    Total domination versus paired domination

    Get PDF
    A dominating set of a graph G is a vertex subset that any vertex of G either belongs to or is adjacent to. A total dominating set is a dominating set whose induced subgraph does not contain isolated vertices. The minimal size of a total dominating set, the total domination number, is denoted by gamma_t . The maximal size of an inclusionwise minimal total dominating set, the upper total domination number, is denoted by Gamma_t . A paired dominating set is a dominating set whose induced subgraph has a perfect matching. The minimal size of a paired dominating set, the paired domination number, is denoted by gamma_p . The maximal size of an inclusionwise minimal paired dominating set, the upper paired domination number, is denoted by Gamma_p . In this paper we prove several results on the ratio of these four parameters: For each r ge 2 we prove the sharp bound gamma_p/gamma_t le 2 - 2/r for K_{1,r} -free graphs. As a consequence, we obtain the sharp bound gamma_p/gamma_t le 2 - 2/(Delta+1) , where Delta is the maximum degree. We also show for each r ge 2 that {C_5,T_r} -free graphs fulfill the sharp bound gamma_p/gamma_t le 2 - 2/r , where T_r is obtained from K_{1,r} by subdividing each edge exactly once. We show that all of these bounds also hold for the ratio Gamma_p / Gamma_t . Further, we prove that a graph hereditarily has an induced paired dominating set iff gamma_p le Gamma_t holds for any induced subgraph. We also give a finite forbidden subgraph characterization for this condition. We exactly determine the maximal value of the ratio gamma_p / Gamma_t taken over the induced subgraphs of a graph. As a consequence, we prove for each r ge 3 the sharp bound gamma_p/Gamma_t le 2 - 2/r for graphs that do not contain the corona of K_{1,r} as subgraph. In particular, we obtain the sharp bound gamma_p/Gamma_t le 2 - 2/Delta

    Total domination versus paired domination

    Get PDF
    A dominating set of a graph G is a vertex subset that any vertex of G either belongs to or is adjacent to. A total dominating set is a dominating set whose induced subgraph does not contain isolated vertices. The minimal size of a total dominating set, the total domination number, is denoted by gamma_t . The maximal size of an inclusionwise minimal total dominating set, the upper total domination number, is denoted by Gamma_t . A paired dominating set is a dominating set whose induced subgraph has a perfect matching. The minimal size of a paired dominating set, the paired domination number, is denoted by gamma_p . The maximal size of an inclusionwise minimal paired dominating set, the upper paired domination number, is denoted by Gamma_p . In this paper we prove several results on the ratio of these four parameters: For each r ge 2 we prove the sharp bound gamma_p/gamma_t le 2 - 2/r for K_{1,r} -free graphs. As a consequence, we obtain the sharp bound gamma_p/gamma_t le 2 - 2/(Delta+1) , where Delta is the maximum degree. We also show for each r ge 2 that {C_5,T_r} -free graphs fulfill the sharp bound gamma_p/gamma_t le 2 - 2/r , where T_r is obtained from K_{1,r} by subdividing each edge exactly once. We show that all of these bounds also hold for the ratio Gamma_p / Gamma_t . Further, we prove that a graph hereditarily has an induced paired dominating set iff gamma_p le Gamma_t holds for any induced subgraph. We also give a finite forbidden subgraph characterization for this condition. We exactly determine the maximal value of the ratio gamma_p / Gamma_t taken over the induced subgraphs of a graph. As a consequence, we prove for each r ge 3 the sharp bound gamma_p/Gamma_t le 2 - 2/r for graphs that do not contain the corona of K_{1,r} as subgraph. In particular, we obtain the sharp bound gamma_p/Gamma_t le 2 - 2/Delta

    Upper paired domination versus upper domination

    Full text link
    A paired dominating set PP is a dominating set with the additional property that PP has a perfect matching. While the maximum cardainality of a minimal dominating set in a graph GG is called the upper domination number of GG, denoted by Γ(G)\Gamma(G), the maximum cardinality of a minimal paired dominating set in GG is called the upper paired domination number of GG, denoted by Γpr(G)\Gamma_{pr}(G). By Henning and Pradhan (2019), we know that Γpr(G)≤2Γ(G)\Gamma_{pr}(G)\leq 2\Gamma(G) for any graph GG without isolated vertices. We focus on the graphs satisfying the equality Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G). We give characterizations for two special graph classes: bipartite and unicyclic graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G) by using the results of Ulatowski (2015). Besides, we study the graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G) and a restricted girth. In this context, we provide two characterizations: one for graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G) and girth at least 6 and the other for C3C_3-free cactus graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G). We also pose the characterization of the general case of C3C_3-free graphs with Γpr(G)=2Γ(G)\Gamma_{pr}(G)= 2\Gamma(G) as an open question

    On the existence of total dominating subgraphs with a prescribed additive hereditary property

    Get PDF
    AbstractRecently, Bacsó and Tuza gave a full characterization of the graphs for which every connected induced subgraph has a connected dominating subgraph satisfying an arbitrary prescribed hereditary property. Using their result, we derive a similar characterization of the graphs for which any isolate-free induced subgraph has a total dominating subgraph that satisfies a prescribed additive hereditary property. In particular, we give a characterization for the case where the total dominating subgraphs are a disjoint union of complete graphs. This yields a characterization of the graphs for which every isolate-free induced subgraph has a vertex-dominating induced matching, a so-called induced paired-dominating set

    Paired and induced-paired domination in (E,net)-free graphs

    Get PDF
    A dominating set of a graph is a vertex subset that any vertex belongs to or is adjacent to. Among the many well-studied variants of domination are the so-called paired-dominating sets. A paired-dominating set is a dominating set whose induced subgraph has a perfect matching. In this paper, we continue their study. We focus on graphs that do not contain the net-graph (obtained by attaching a pendant vertex to each vertex of the triangle) or the E-graph (obtained by attaching a pendant vertex to each vertex of the path on three vertices) as induced subgraphs. This graph class is a natural generalization of (claw,net)-free graphs, which are intensively studied with respect to their nice properties concerning domination and hamiltonicity. We show that any connected (E,net)-free graph has a paired-dominating set that, roughly, contains at most half of the vertices of the graph. This bound is a significant improvement to the known general bounds. Further, we show that any (E,net, C_5 )-free graph has an induced paired-dominating set, that is a paired-dominating set that forms an induced matching, and that such set can be chosen to be a minimum paired-dominating sets. We use these results to obtain a new characterization of (E,net, C_5 )-free graphs in terms of the hereditary existence of induced paired-dominating sets. Finally, we show that the induced matching formed by an induced paired-dominating set in a (E,net, C_5 )-free graph can be chosen to have at most two times the size of the smallest maximal induced matching possible

    Paired and induced-paired domination in (E,net)-free graphs

    Get PDF
    A dominating set of a graph is a vertex subset that any vertex belongs to or is adjacent to. Among the many well-studied variants of domination are the so-called paired-dominating sets. A paired-dominating set is a dominating set whose induced subgraph has a perfect matching. In this paper, we continue their study. We focus on graphs that do not contain the net-graph (obtained by attaching a pendant vertex to each vertex of the triangle) or the E-graph (obtained by attaching a pendant vertex to each vertex of the path on three vertices) as induced subgraphs. This graph class is a natural generalization of (claw,net)-free graphs, which are intensively studied with respect to their nice properties concerning domination and hamiltonicity. We show that any connected (E,net)-free graph has a paired-dominating set that, roughly, contains at most half of the vertices of the graph. This bound is a significant improvement to the known general bounds. Further, we show that any (E,net, C_5 )-free graph has an induced paired-dominating set, that is a paired-dominating set that forms an induced matching, and that such set can be chosen to be a minimum paired-dominating sets. We use these results to obtain a new characterization of (E,net, C_5 )-free graphs in terms of the hereditary existence of induced paired-dominating sets. Finally, we show that the induced matching formed by an induced paired-dominating set in a (E,net, C_5 )-free graph can be chosen to have at most two times the size of the smallest maximal induced matching possible

    Total domination versus paired domination

    No full text
    A dominating set of a graph G is a vertex subset that any vertex of G either belongs to or is adjacent to. A total dominating set is a dominating set whose induced subgraph does not contain isolated vertices. The minimal size of a total dominating set, the total domination number, is denoted by γₜ. The maximal size of an inclusionwise minimal total dominating set, the upper total domination number, is denoted by Γₜ. A paired dominating set is a dominating set whose induced subgraph has a perfect matching. The minimal size of a paired dominating set, the paired domination number, is denoted by γₚ. The maximal size of an inclusionwise minimal paired dominating set, the upper paired domination number, is denoted by Γₚ. In this paper we prove several results on the ratio of these four parameters: For each r ≥ 2 we prove the sharp bound γₚ/γₜ ≤ 2 - 2/r for K1,rK_{1,r}-free graphs. As a consequence, we obtain the sharp bound γₚ/γₜ ≤ 2 - 2/(Δ+1), where Δ is the maximum degree. We also show for each r ≥ 2 that C5,Tr{C₅,T_r}-free graphs fulfill the sharp bound γₚ/γₜ ≤ 2 - 2/r, where TrT_r is obtained from K1,rK_{1,r} by subdividing each edge exactly once. We show that all of these bounds also hold for the ratio Γₚ/Γₜ. Further, we prove that a graph hereditarily has an induced paired dominating set if and only if γₚ ≤ Γₜ holds for any induced subgraph. We also give a finite forbidden subgraph characterization for this condition. We exactly determine the maximal value of the ratio γₚ/Γₜ taken over the induced subgraphs of a graph. As a consequence, we prove for each r ≥ 3 the sharp bound γₚ/Γₜ ≤ 2 - 2/r for graphs that do not contain the corona of K1,rK_{1,r} as subgraph. In particular, we obtain the sharp bound γₚ/Γₜ ≤ 2 - 2/Δ

    Total domination versus paired-domination in regular graphs

    No full text

    Total Domination Versus Paired-Domination in Regular Graphs

    No full text
    A subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the minimum cardinalities of a total dominating set and paired-dominating set are the total domination number, γt(G), and the paired-domination number, γpr(G), respectively. For k ≥ 2, let G be a connected k-regular graph. It is known [Schaudt, Total domination versus paired domination, Discuss. Math. Graph Theory 32 (2012) 435–447] that γpr(G)/γt(G) ≤ (2k)/(k+1). In the special case when k = 2, we observe that γpr(G)/γt(G) ≤ 4/3, with equality if and only if G ≅ C5. When k = 3, we show that γpr(G)/γt(G) ≤ 3/2, with equality if and only if G is the Petersen graph. More generally for k ≥ 2, if G has girth at least 5 and satisfies γpr(G)/γt(G) = (2k)/(k + 1), then we show that G is a diameter-2 Moore graph. As a consequence of this result, we prove that for k ≥ 2 and k ≠ 57, if G has girth at least 5, then γpr(G)/γt(G) ≤ (2k)/(k +1), with equality if and only if k = 2 and G ≅ C5 or k = 3 and G is the Petersen graph

    Total Domination Versus Paired-Domination in Regular Graphs

    No full text
    A subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the minimum cardinalities of a total dominating set and paired-dominating set are the total domination number, γt(G), and the paired-domination number, γpr(G), respectively. For k ≥ 2, let G be a connected k-regular graph. It is known [Schaudt, Total domination versus paired domination, Discuss. Math. Graph Theory 32 (2012) 435–447] that γpr(G)/γt(G) ≤ (2k)/(k+1). In the special case when k = 2, we observe that γpr(G)/γt(G) ≤ 4/3, with equality if and only if G ≅ C5. When k = 3, we show that γpr(G)/γt(G) ≤ 3/2, with equality if and only if G is the Petersen graph. More generally for k ≥ 2, if G has girth at least 5 and satisfies γpr(G)/γt(G) = (2k)/(k + 1), then we show that G is a diameter-2 Moore graph. As a consequence of this result, we prove that for k ≥ 2 and k ≠ 57, if G has girth at least 5, then γpr(G)/γt(G) ≤ (2k)/(k +1), with equality if and only if k = 2 and G ≅ C5 or k = 3 and G is the Petersen graph
    corecore