5,859 research outputs found

    Advanced Denoising for X-ray Ptychography

    Get PDF
    The success of ptychographic imaging experiments strongly depends on achieving high signal-to-noise ratio. This is particularly important in nanoscale imaging experiments when diffraction signals are very weak and the experiments are accompanied by significant parasitic scattering (background), outliers or correlated noise sources. It is also critical when rare events such as cosmic rays, or bad frames caused by electronic glitches or shutter timing malfunction take place. In this paper, we propose a novel iterative algorithm with rigorous analysis that exploits the direct forward model for parasitic noise and sample smoothness to achieve a thorough characterization and removal of structured and random noise. We present a formal description of the proposed algorithm and prove its convergence under mild conditions. Numerical experiments from simulations and real data (both soft and hard X-ray beamlines) demonstrate that the proposed algorithms produce better results when compared to state-of-the-art methods.Comment: 24 pages, 9 figure

    Blind Ptychographic Phase Retrieval via Convergent Alternating Direction Method of Multipliers

    Get PDF
    Ptychography has risen as a reference X-ray imaging technique: it achieves resolutions of one billionth of a meter, macroscopic field of view, or the capability to retrieve chemical or magnetic contrast, among other features. A ptychographyic reconstruction is normally formulated as a blind phase retrieval problem, where both the image (sample) and the probe (illumination) have to be recovered from phaseless measured data. In this article we address a nonlinear least squares model for the blind ptychography problem with constraints on the image and the probe by maximum likelihood estimation of the Poisson noise model. We formulate a variant model that incorporates the information of phaseless measurements of the probe to eliminate possible artifacts. Next, we propose a generalized alternating direction method of multipliers designed for the proposed nonconvex models with convergence guarantee under mild conditions, where their subproblems can be solved by fast element-wise operations. Numerically, the proposed algorithm outperforms state-of-the-art algorithms in both speed and image quality.Comment: 23 page

    Noise Robustness of a Combined Phase Retrieval and Reconstruction Method for Phase-Contrast Tomography

    Get PDF
    Classical reconstruction methods for phase-contrast tomography consist of two stages: phase retrieval and tomographic reconstruction. A novel algebraic method combining the two was suggested by Kostenko et al. (Opt. Express, 21, 12185, 2013) and preliminary results demonstrating improved reconstruction compared to a two-stage method given. Using simulated free-space propagation experiments with a single sample-detector distance, we thoroughly compare the novel method with the two-stage method to address limitations of the preliminary results. We demonstrate that the novel method is substantially more robust towards noise; our simulations point to a possible reduction in counting times by an order of magnitude
    corecore