609,717 research outputs found

    Total Generalized Variation for Manifold-valued Data

    Full text link
    In this paper we introduce the notion of second-order total generalized variation (TGV) regularization for manifold-valued data in a discrete setting. We provide an axiomatic approach to formalize reasonable generalizations of TGV to the manifold setting and present two possible concrete instances that fulfill the proposed axioms. We provide well-posedness results and present algorithms for a numerical realization of these generalizations to the manifold setup. Further, we provide experimental results for synthetic and real data to further underpin the proposed generalization numerically and show its potential for applications with manifold-valued data

    Iterative algorithms for total variation-like reconstructions in seismic tomography

    Full text link
    A qualitative comparison of total variation like penalties (total variation, Huber variant of total variation, total generalized variation, ...) is made in the context of global seismic tomography. Both penalized and constrained formulations of seismic recovery problems are treated. A number of simple iterative recovery algorithms applicable to these problems are described. The convergence speed of these algorithms is compared numerically in this setting. For the constrained formulation a new algorithm is proposed and its convergence is proven.Comment: 28 pages, 8 figures. Corrected sign errors in formula (25

    Post-Reconstruction Deconvolution of PET Images by Total Generalized Variation Regularization

    Full text link
    Improving the quality of positron emission tomography (PET) images, affected by low resolution and high level of noise, is a challenging task in nuclear medicine and radiotherapy. This work proposes a restoration method, achieved after tomographic reconstruction of the images and targeting clinical situations where raw data are often not accessible. Based on inverse problem methods, our contribution introduces the recently developed total generalized variation (TGV) norm to regularize PET image deconvolution. Moreover, we stabilize this procedure with additional image constraints such as positivity and photometry invariance. A criterion for updating and adjusting automatically the regularization parameter in case of Poisson noise is also presented. Experiments are conducted on both synthetic data and real patient images.Comment: First published in the Proceedings of the 23rd European Signal Processing Conference (EUSIPCO-2015) in 2015, published by EURASI

    Strain Analysis by a Total Generalized Variation Regularized Optical Flow Model

    Full text link
    In this paper we deal with the important problem of estimating the local strain tensor from a sequence of micro-structural images realized during deformation tests of engineering materials. Since the strain tensor is defined via the Jacobian of the displacement field, we propose to compute the displacement field by a variational model which takes care of properties of the Jacobian of the displacement field. In particular we are interested in areas of high strain. The data term of our variational model relies on the brightness invariance property of the image sequence. As prior we choose the second order total generalized variation of the displacement field. This prior splits the Jacobian of the displacement field into a smooth and a non-smooth part. The latter reflects the material cracks. An additional constraint is incorporated to handle physical properties of the non-smooth part for tensile tests. We prove that the resulting convex model has a minimizer and show how a primal-dual method can be applied to find a minimizer. The corresponding algorithm has the advantage that the strain tensor is directly computed within the iteration process. Our algorithm is further equipped with a coarse-to-fine strategy to cope with larger displacements. Numerical examples with simulated and experimental data demonstrate the very good performance of our algorithm. In comparison to state-of-the-art engineering software for strain analysis our method can resolve local phenomena much better
    corecore