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Abstract— Electron tomography (ET) is a key technique for 

examining the three-dimensional morphologies of 

nanostructures. ET involves the reconstruction of a set of 2D 

projection images into a volumetric image by solving an inverse 

problem. However, due to limitations in the acquisition, 

reconstruction usually degraded by missing wedge artifacts (e.g., 

streak, blurring, and elongation artifacts). Assuming piece-wise 

constant image, total variation minimization has been applied to 

ET and showed promising results in preserving sharp 

boundaries. For many samples in Electron microscopy, this 

assumption is no longer valid causing undesired staircase 

artifacts. In this work, we describe the application of Total 

Generalized Variation (TGV) to ET reconstruction under CS 

theorem and demonstrate the effectiveness of CS-TGV to 

produce results with higher fidelity using simulation and 

experimental study.  

I. INTRODUCTION

In materials science, Electron tomography (ET) is 
considered an effective technique that provides indispensable 
information for the study of particles and structures in the 
Nanoworld. The 3D morphology of nanostructures can be 
provided by reconstructing an aligned set of 2D TEM images 
acquired around a single or double tilting axis. The 
reconstruction step in ET is performed using image 
reconstruction algorithm such as weighted back projection 
(WBP) or simultaneous iterative reconstruction technique 
(SIRT). SIRT algorithm provides reconstruction of a relatively 
higher Signal-to-noise ratio than those obtained using WBP. 
However, the reconstruction still suffers from elongation, 
blurring and artifacts due to the missing wedge limitation in 
ET. The number of projections that can be recorded is limited 
by the maximum tilt angle (typically ±72 degrees) above which 
projections cannot be acquired. A segmentation step is usually 
needed to overcome such artifacts and to distinguish between 
artifacts and main components in the reconstruction. This 
segmentation process is often performed manually leading to a 
potentially subjective and time-consuming interpretation of the 
data.  

The reconstruction process of ET can be explained by 
considering a 3D object as a set of 2D sections. The 
reconstruction of that object can then be created by 
reconstructing each 2D section from the corresponding 1D 
projection. An object may be reconstructed from its projections 

by inverting the projection process which, in the presence of 
noise, can be modelled as: 

                � � �� � � (1) 

Where � is the discrete Radon transform that projects the 
real object �  (2D imaged object) into measurements �  (1D-
projections) and �  is an error term modeling noise in the 
measurements. To conduct a reconstruction (tomogram), the 
unknown vector � needs to be recovered from measurements �. 
However, due to limitations in the acquisition process, this 
inverse problem is ill-posed (i.e. unique solution may not 
exist). Also, the reconstruction will be further degraded with 
the presence of noise and alignment errors. 

A technique has recently been developed, named 
compressive sensing (CS) [11-12] which created a complete 
paradigm shift to the area of sampling. CS provides a 
theoretical justification for the possibility recovering an under-
sampled signal at lower sampling rate than that required by the 
Nyquist sampling theorem. With the assumption, that the signal 
is sparse in a selected domain (i.e. DCT, Wavelet, etc.), it is 
possible to reconstruct a signal at high quality. CS has been 
applied with great success in Magnetic Resonance Imaging 
(MRI) [5] and more recently been applied to ET [13-18]. It has 
been demonstrated that, even with reduced datasets, it is 
possible to reconstruct tomograms with high fidelity and a 
reduced missing wedge artifacts [14]. Such promising 
advantages make CS   an effective method for reducing beam 
damage, obtaining reliable, high-resolution morphology, and 
enabling quantitative measurements from 3D tomograms. The 
quality of a tomographic reconstruction can be enhanced by 
including additional prior knowledge about the specimen 
throughout the reconstruction process.  

The key prior knowledge employed in CS is that the signal 
likely to be sparse in a transform domain. One common 
sparsifying transform in CS image processing is spatial finite-
differences. Sparsity in finite differences is evaluated as the �1-
norm of the Discrete Gradient Transform (DGT) coefficients of 
an image, which is often referred to as the Total Variation (TV) 
[24]. TV is well-known in image restoration problems like 
denoising [1], CS [2], [3] and has been suggested for 
tomographic reconstruction in ET problem [5, 9, 10]. Saghi et 
al. in [14, 15] were able to recover iron oxide nanoparticles 
(i.e., object with concave surfaces morphology) with only 9 
projections.  



In spite of the success of TV, it performs best with piece-
wise constant images, which can damage fine details, and cause 
staircase artifacts in reconstructions [4,19]. As a solution, Total 
Generalized Variation (TGV) [4,6,23] was proposed and 
become more popular in image restoration as a means to 
overcome staircase artifacts. In this paper, we validate the 
efficiency of TGV for the ET reconstruction problem through 
experimental results and test both noisy and noiseless cases in 
comparison with other established ET techniques. 

The paper is organized as following. Section II gives a brief 
introduction to Total Variation and its associated staircase 
artifacts. In order to overcome this drawback, the generalized 
version of TV, TGV, is delivered in Section III. In section IV 
and V, reconstructions using TGV is compared to TV and other 
established recovery methods in the ET problem using 
noisy/noisy-free experiments as well as with real data. Finally, 
conclusions in given in Section VI. 

II. TOTAL VARIATION MINIMIZATION (TVM) BASED 

RECONSTRUCTION TECHNIQUE

Among many sparsifying techniques, the well-known total 
variation minimization (TV) has been adopted to solve many 
problems in image processing such as denoising and 
tomography [14,19] with a promising capability to preserve 
sharp edges. Theoretical proof for TV is given in [8]. Due to 
the nature of ET images which are approximately sparse in the 
gradient domain; CS can be applied by minimising the gradient 
norm in the ET image reconstruction problem similar to [5]. In 
ET, tomogram can reconstruct by using following optimization: �� � �	
��
������ � ���� � �������� (2) 

where ��� � �  denotes regularization parameter and 

anisotropic version formulated as ����� � � ������ ! . The 

notation " denotes an open, convex, connected and non-empty 

set in #$ , %  represents gradient operator and &�  norm is 

defined as �'�� � �( �')��*)+, �, �- . Norm . equals 1 or 2 for 

anisotropic and isotropic TV, respectively.  

To improve reconstruction performance, TV was further 

combined with an L
1  cost function in [5] as following: �� � �	
��
������ � ���� � �/,�0��, � �������� (3) �/, is another regularization parameter to provides a balance 

between the loss of fine details and the elimination of ghosting 
artifacts. This landmark paper in [5], produced the current state 
of the art reconstruction method for MRI, and was further 
applied to ET as in [9,10].  

III. TOTAL GENERALIZED VARIATION MINIMIZATION 

(TGVM) BASED RECONSTRUCTION TECHNIQUE

Although using TV is successful in preserving sharp edges 
and outperform established ET reconstruction methods (such 
as, WBP and SIRT), it causes an undesirable artifact namely, 
staircase artifact as can be seen in Fig. 1. Many efforts have 
been made to overcome this limitation such as: nonlocal TV 
[1], nonlocal regularization [2], higher order TV [3].  

More recently, the TGV [4,6,7] as a generalized version of 
TV has been proposed. Instead of considering only first order 

derivatives as in TV, TGV involves orders >= 2 . Compared to 
TV, TGV preserves edges better due to the minimization of 
errors in higher derivatives. Therefore, with TGV 
regularization, image detail is well preserved as shown in Fig. 
1. In the context of ET, the reconstruction of TGV can be 
accomplished by the following optimization problem:

�� � �	
��
������ � ���� � 12�3�45���� (4) 

Where �3�45 of order 6  and positive weights 7 ��789 : 9 75;,� incorporates multiple order derivative as  

�3�45��� � <�.=> ��?�@5AB �� �C�A D EF5 G"9 HI�5�#J�K 9
������L?�@MALN O 7M 9 P � Q929 : 6 � Q R 

Notation EF5S"9 TUV5�#J�W  is the space of compactly 

supported symmetric tensor field and HI�5�#J� denotes the 

space of symmetric tensor of order 6  on #J . By setting 6 � Q9 7 � Q9 �3�,,  is nothing but exactly TV. In case of 6 � 2, the second order of �3�4� is given as 

�3�45+���� � <�. X> ��?�@�AB �� �C�A D EF��"9 TJYJ�9�A�N O 789 �?�@�A�N O 7, Z 

where the divergences and infinity norms are defined as 

�?�@�A�) � [ \A)]\ ]J
]+, ^

?�@�A � [ \�A))\ )�J
)+, �[ 2 \�A)]\ )\ ])_]  

�A�N � `abMDB c[ dA)]�P�d�J
)9]+, e, �-

�?�@�A�N � `abMDB c[ d�?�@�A�]�P�d�J
)9]+, e, �-

We can further refine the formula of �3�4��as minimum of all 

complex vector field A
�3�4���� � �	
��
f�7,��� � A�, � 78�g�A��, (5) 

 

Figure. 1. Image denoising results Comparison of TV and 

TGV, extracted from [4] 



where g�A� � ,� ��A � �A�� represent the symmetrized 

gradient of a complex-valued vector field . An example of �3�4�  minimizing higher orders of variation, and reducing 
staircase artifact is shown in Fig. 1. We found parameter 
settings  7, � Q and 78 � 2 provided the optimal performance 
in practice as suggested in [4, 6].   In this paper, we adopt the 
solver [6] for �3�4�  which use primal-dual methods and its 
C++ and CUDA implementation in the AGILE package [7]. 

IV. SIMULATION RESULTS

To evaluate performance, simulation was performed using a 
phantom image (Fig. 2, first row) and (Fig. 3a). The first 
phantom includes a large   “hole” with   intensity varying 
inversely with square of radius in the background, while the 
second contains sixteen low-contrast disks of varying radii. 
Both phantoms are not sparse under a gradient transformation. 
Such phantoms with a gradual intensity variation can simulate 
realistic materials in a normal TEM experiment such as solar 
cells [20] as in experimental TEM images in Fig. 4. To provide 
completed comparison, simulations were performed at different 
under-sampling factors, and noise setting. Moreover, the 
experimental test in real ET data was performed on tilt series 
similar to Fig. 4(A). 

For comparisons, we compared the proposed algorithm 
with established techniques in ET namely, WBP, SIRT[21] and 
state of the art CS-based Total variation (CS-TV)[5,14]. The 
output is assessed in terms of two commonly used metrics: 
Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity 
(SSIM) index. All implementations were executed on Matlab 
v7.12 (R2011a) installed on a 64-bit Windows 7 operating 
system with an Intel Core i5 processor running at 3.10 GHz 
with 24 GB memory and NVIDIA GeForce GTX 460 with 
Cuda compiler V4.1. 

A. Experiment Setting 

In order to avoid committing 'inverse crimes', which 
happens when the data is inappropriately simulated [22], the tilt 
series were generated using the parallel projection discrete 
Radon transform, while reconstruction was coded using 
Fourier-based methods so that a different system matrix is used 
for creating projections than in the reconstruction methods. 
Furthermore, the tilt series was misaligned by randomly 

shifting each projection by a maximum of ±0.5
�
 to account for 

the alignment imperfection of experimental ET data. This gives 
a more realistic simulation of the problems present in real ET 
data. The input data in each case was then prepared by taking 
the 1D Fourier transform of each projection in a tilt series and 
sampling it to the corresponding radial line in the 2D Fourier 
domain followed by an inverse transform. 

The WBP reconstruction was performed with a Ramp filter, 
and used to initialize other algorithms. SIRT was performed 
using 32 iterations. CSTV reconstruction was performed using 
the method provided by Lustig et al [5] seeking sparsity in the 
gradient and image domains with default regularization 
weighting of ���  = 6 and �/, = 1, respectively. In case of CS-
TV, 150 conjugate gradient iterations were performed with a 
re-initialization every 50 iterations to decreasing the likelihood 
of falling into local minima. 

B. Denoising Case 

As denoising is the natural application of both TV and 
TGV, in this section, the performance of CS-TGV is evaluated 
for noisy cases. Three simulation setups were generated. Setups 
1 and 2: high angular sampled projections with low level of 
noise. Phantom in Fig. 2a was projected into the sinogram 
domain between ±90� with 1� tilt increment. This was then 
corrupted by applying 1) Poisson noise to simulate the shot 
noise and 2) Gaussian noise with low (left column in Fig. 2) 
and high (middle column in Fig. 2) standard deviations �, to 
reach a SNR of 52dB and 15dB, respectively. In Setup 3: low 
angular sampled projections were simulated between ±70� with 
5� tilt increment and corrupted by shot noise (right column in 
Fig. 2).  

Figure. 2. Comparison between results of ET recovery 

methods - first and second columns is a reconstruction 

from denoising case (Setup 1 and 2 respectively), last 

column, shows reconstruction from under-sampling case 

(setup 3) (row images: a-ground truth with 256
2 

pixels, 

reconstructed using b-WBP, c-SIRT, d-CSTV, e-TGV). 

a1-a3 are identical images viewed for convenience. 



 As can be seen in Fig. 2, the WBP result is heavily 
contaminated with noise, SIRT produces slightly better 
performance with less noise but also blurs the sharp edges. CS-
TV instead produces much higher performance especially in 
preserving sharp edges and removes noise (to a certain degree). 
However,   staircase artifacts are apparent (arrow in Fig.2-d1) 
in the smooth region. The results produced by CS-TGV show a 
higher visual similarity to the test phantom with reduced 
staircase artifacts. The edges are preserved and noise is 
removed while staircase artifacts are hardly visible. Also, the 
missing wedge artifact was further suppressed in both CS-TV 
and CS-TGV based methods. However, limited blurring can be 
still observed in CS-TGV results at the edges region in 
comparison with CS-TV(see Fig. 2-d2 and e2). It is because 
CS-TV uses more prior information about sparsity in transform 
and gradient domains as combination of TV and L1 
minimization. Therefore, there still is a room for further 
improved CS-TGV performance. Table. I shows the quality 
index results for various reconstruction method given in Fig. 2. 

C. Undersampled case 

 In addition to Fig.2(a3-e3), in this section, we evaluate the 
performance of various algorithms in the presence of missing 
projections. This is also considered as under-sampling problem 
or generally a compressive sensing problem. In this 
experiment, the CS-phantom proposed in [22] was projected 
into the sinogram domain between ±70� with 5� tilt increment 
and then reconstructed using WBP, SIRT and CS-TGV. Fig. 3a 
shows the top left part of the reconstruction. CS-phantom is 
designed for testing the accuracy of CS solvers and the 
properties of CS reconstruction artifacts. As a consequence of 
the reduced number of projections, lower recovery 
performance is obtained. From this data, CS-TGV still provides 
the best recovery performance as we expected. Furthermore, 
streak artifact was reduced for these low-contrast features. 

V. MORPHOLOGY STUDY OF  POLYMER BLEND SAMPLE

In this section, the CS-TGV is used to study the morphology 

of solar cell (particularly the PTB7:PC71BM blends). The 

performance of such blends critically depends on the 

nanoscale organization and morphology of its particles.  This 

is why ET is an important tool to identify the local volume 

morphology with a nanometer resolution in order to improve 

its efficiency. For this purpose, a tilt series was acquired for a 

thin section of the polymer blend with thickness range 

between (120 to 150nm) making it electron transparent which 

is important to avoid shadowing at higher tilts. Electron 

microscopy was performed on FEI Tecnai T20 TEM. The 

Energy-filtered transmission electron microscopy (EFTEM) 

imaging mode was chosen. A tilt series was acquired over a 

tilt range of 62�, with an increment of 2� between consecutive 

projections. More details about imaging condition can be 

found in [20]. Fig. 4 (b-e), shows XY-orthogonal slice taken at 

the middle of reconstructed volume using different methods. 

The CS-TGV slice shows a reconstruction with higher fidelity 

for this noisy and reduced dataset. CS-TV results can be 

improved to reduce noise, by increasing the ���   term in (3), 

however, this will be at the cost of losing fine details. Such 

limitation can be avoided by using CS-TGV method. 

VI. CONCLUSION

In this paper, the efficiency of TGV minimization for ET 
reconstruction problem is validated for noisy and under-
sampled dataset. In both cases, TGV outperforms TV and 
traditional methods in term of objective and subjective quality. 
Staircase artifact and noise is significant reduced in CS-TGV. 
This will allow for a reconstruction with higher fidelity which 
is important for to determine the organization and morphology 
of nanoscale particles.  
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