9 research outputs found

    Torque analysis on a double rotor electrical variable transmission with hybrid excitation

    Get PDF
    An electrical variable transmission (EVT) can be used as a power splitting device in hybrid electrical vehicles. The EVT analyzed in this paper is a rotating field electrical machine having two concentric rotors. On the outer rotor, permanent magnets (PMs) are combined with a dc-field winding, being the first implementation of its kind. The magnetic field in the machine as well as the electromagnetic torque on both rotors are a function of the q- and d-axis currents of the stator and inner rotor, as well as the dc-field current. To describe and fully understand this multiple-input multiple-output machine, this paper gives an overview of the influence of the different current inputs on the flux linkage and torque on both rotors. Focus is given to the hybrid excitation in the d-axis by combining the dc-field current and the alternating currents. This has the advantage compared to other EVT topologies that unwanted stator torque can be avoided without stator d-axis current flux weakening. Results of the analysis are presented by means of the torque to current characteristics of a double rotor PM-assisted EVT, as well as the torque to current ratios. The machine characteristics are finally experimentally verified on a prototype machine

    Performance comparison between SiC and Si inverter modules in an electrical variable transmission application

    Get PDF
    This paper evaluates the performance of Silicon Carbide MOSFET and Silicon IGBT modules in a threephase inverter for Electrical Variable Transmission systems. For this purpose, two practical inverter setups were developed and compared. An increase of several percentage points is visible over the entire operating range for the Silicon Carbide prototype. The total energy efficiency increased by 3.7% for the rotor and by 11.2% for the stator, for the same test conditions

    Energy management strategy for oscillating drivetrains equipped with an electric variable transmission

    Get PDF
    In this study the dynamic capability of the Electric Variable Transmission (EVT) is presented based on the tracking of a highly dynamic oscillating load. The targeted applications are 3-phase grid connected machines with periodic motions at high frequencies (> 5) Hz, which result in a high alternating to average power ratio (> 5). The overall consumed grid energy is minimized by a high-level non-parametric cascaded control to recuperate the oscillating load energy in a mechanical energy storage component. Here in this paper, this oscillating energy is stored in the inner rotor of the EVT, thereby making EVT an energy storing device in itself. The drivetrain containing an EVT is also shown to have a good load speed tracking performance with the maximum error of +/-1%

    Design methodology for a PM electrical variable transmission used in HEV

    Get PDF
    Designing a permanent magnet electrical variable transmission is a cumbersome task, regardless of the considered application. The main reason for this is the iterative design process using a computationally intensive finite element model calculations that is necessary to model its behaviour. This makes it difficult to study or visualize the impact of design changes on, for example, the fuel consumption or cost of a hybrid electrical vehicle. To solve this, electromagnetic scaling laws are used to set up a performance map of the entire system. This map is able to present the performance (i.e. fuel consumption, cost, maximum acceleration, etc.) as a function of an axial and radial scaling factor. The map thus displays the performance of a series of designs which enable the reader to select the optimal one in a graphical way. Furthermore, feasibility constraints such as maximum weight, are added. These constraints allow to reject designs but make it also possible to study the performance as a function of weight or material cost. This is particularly useful for manufacturers as it gives an idea of how their investment is translated into a reduction in fuel consumption

    Electrical variable transmission for hybrid off-highway vehicles

    Get PDF
    The push for less emissions has driven transportation towards electrification. The electrical variable transmission is a promising emerging component that has proven to be successful in passenger vehicles and is being considered in this paper for off-highway vehicles. By electromagnetically coupling the internal combustion engine with the wheels, allowing independent rotation, the engine is kept in its optimal operating range. This paper benchmarks the electrical variable transmission to one of the most successful hybrid topologies: the Toyota hybrid system. Flanders Make’s Hybrid Electric Drivetrain CoDesign framework is being used to ensure optimal control decisions for both. Results show that the electrical variable transmission may reduce fuel consumption by 30% and total cost of ownership by 10%

    Emerging Multiport Electrical Machines and Systems: Past Developments, Current Challenges, and Future Prospects

    Get PDF
    Distinct from the conventional machines with only one electrical and one mechanical port, electrical machines featuring multiple electrical/mechanical ports (the so-called multiport electrical machines) provide a compact, flexible, and highly efficient manner to convert and/or transfer energies among different ports. This paper attempts to make a comprehensive overview of the existing multiport topologies, from fundamental characteristics to advanced modeling, analysis, and control, with particular emphasis on the extensively investigated brushless doubly fed machines for highly reliable wind turbines and power split devices for hybrid electric vehicles. A qualitative review approach is mainly adopted, but strong efforts are also made to quantitatively highlight the electromagnetic and control performance. Research challenges are identified, and future trends are discussed

    Experimental implementation of power-split control strategies in a versatile hardware-in-the-loop laboratory test bench for hybrid electric vehicles equipped with electrical variable transmission

    Get PDF
    The energy management strategy (EMS) or power management strategy (PMS) unit is the core of power sharing control in the hybridization of automotive drivetrains in hybrid electric vehicles (HEVs). Once a new topology and its corresponding EMS are virtually designed, they require undertaking different stages of experimental verifications toward guaranteeing their real-world applicability. The present paper focuses on a new and less-extensively studied topology of such vehicles, HEVs equipped with an electrical variable transmission (EVT) and assessed the controllability validation through hardware-in-the-loop (HiL) implementations versus model-in-the-loop (MiL) simulations. To this end, first, the corresponding modeling of the vehicle components in the presence of optimized control strategies were performed to obtain the MiL simulation results. Subsequently, an innovative versatile HiL test bench including real prototyped components of the topology was introduced and the corresponding experimental implementations were performed. The results obtained from the MiL and HiL examinations were analyzed and statistically compared for a full input driving cycle. The verification results indicate robust and accurate actuation of the components using the applied EMSs under real-time test conditions

    Overview of Sensitivity Analysis Methods Capabilities for Traction AC Machines in Electrified Vehicles

    Get PDF
    © 2021 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.A robust design in electrified powertrains substantially helps to enhance the vehicle's overall efficiency. Robustness analyses come with complexity and computational costs at the vehicle level. The use of sensitivity analysis (SA) methods in the design phase has gained popularity in recent years to improve the performance of road vehicles while optimizing the resources, reducing the costs, and shortening the development time. Designers have started to utilize the SA methods to explore: i) how the component and vehicle level design options affect the main outputs i.e. energy efficiency and energy consumption; ii) observing sub-dependent parameters, which might be influenced by the variation of the targeted controllable (i.e. magnet thickness) and uncontrollable (i.e. magnet temperature) variables, in nonlinear dynamic systems; and iii) evaluating the interactions, of both dependent, and sub-dependent controllable/uncontrollable variables, under transient conditions. Hence the aim of this study is to succinctly review recent utilization of SA methods in the design of AC electric machines (EM)s used in vehicle powertrains, to evaluate and discuss the findings presented in recent research papers while summarizing the current state of knowledge. By systematically reviewing the literature on applied SAs in electrified powertrains, we offer a bibliometric analysis of the trends of application-oriented SA studies in the last and next decades. Finally, a numerical-based case study on a third-generation TOYOTA Prius EM will be given, to verify the SA-related findings of this article, alongside future works recommendations.Peer reviewe
    corecore