429,811 research outputs found

    Spin-torque efficiency enhanced by Rashba spin splitting in three dimensions

    Full text link
    We examine a spin torque induced by the Rashba spin-orbit coupling in three dimensions within the Boltzmann transport theory. We analytically calculate the spin torque and show how its behavior is related with the spin topology in the Fermi surfaces by studying the Fermi-energy dependence of the spin torque. Moreover we discuss the spin-torque efficiency which is the spin torque divided by the applied electric current in association with the current-induced magnetization reversal. It is found that high spin-torque efficiency is achieved when the Fermi energy lies on only the lower band and there exists an optimal value for the Rashba parameter, where the spin-torque efficiency becomes maximum.Comment: 7 pages, 5 figure

    Comparison of three analytical methods for the precise calculation of cogging torque and torque ripple in axial flux PM machines

    Get PDF
    A comparison between different analytical and finite-element (FE) tools for the computation of cogging torque and torque ripple in axial flux permanent-magnet synchronous machines is made. 2D and 3D FE models are the most accurate for the computation of cogging torque and torque ripple. However, they are too time consuming to be used for optimization studies. Therefore, analytical tools are also used to obtain the cogging torque and torque ripple. In this paper, three types of analytical models are considered. They are all based on dividing the machine into many slices in the radial direction. One model computes the lateral force based on the magnetic field distribution in the air gap area. Another model is based on conformal mapping and uses complex Schwarz Christoffel (SC) transformations. The last model is based on the subdomain technique, which divides the studied geometry into a number of separate domains. The different types of models are compared for different slot openings and permanent-magnet widths. One of the main conclusions is that the subdomain model is best suited to compute the cogging torque and torque ripple with a much higher accuracy than the SC model

    Recent developments in planet migration theory

    Full text link
    Planetary migration is the process by which a forming planet undergoes a drift of its semi-major axis caused by the tidal interaction with its parent protoplanetary disc. One of the key quantities to assess the migration of embedded planets is the tidal torque between the disc and planet, which has two components: the Lindblad torque and the corotation torque. We review the latest results on both torque components for planets on circular orbits, with a special emphasis on the various processes that give rise to additional, large components of the corotation torque, and those contributing to the saturation of this torque. These additional components of the corotation torque could help address the shortcomings that have recently been exposed by models of planet population syntheses. We also review recent results concerning the migration of giant planets that carve gaps in the disc (type II migration) and the migration of sub-giant planets that open partial gaps in massive discs (type III migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal effects in Astronomy and Astrophysics", Lecture Notes in Physic

    Design and Development of Low Torque Ripple Variable-Speed Drive System With Six-Phase Switched Reluctance Motors

    Get PDF
    Switched reluctance motor (SRM) drives conventionally use current control techniques at low speed and voltage control techniques at high speed. However, these conventional methods usually fail to restrain the torque ripple, which is normally associated with this type of machine. Compared with conventional three-phase SRMs, higher phase SRMs have the advantage of lower torque ripple: To further reduce their torque ripple, this paper presents a control method for torque ripple reduction in six-phase SRM drives. A constant instantaneous torque is obtained by regulating the rotational speed of the stator flux linkage. This torque control method is subsequently developed for a conventional converter and a proposed novel converter with fewer switching devices. Moreover, modeling and simulation of this six-phase SRM drive system has been conducted in detail and validated experimentally using a 4.0-kW six-phase SRM drive system. Test results demonstrate that the proposed torque control method has outstanding performance of restraining the torque ripple with both converters for the six-phase SRM, showing superior performance to the conventional control techniques

    Cogging torque reduction of segmented HEFSM using combined technique of notching and chamfering for performance improvement

    Get PDF
    Cogging torque is one of the factors which affect the motor in terms of vibration and non-audible noise that become serious issue in flux switching machines. It is mandatory for every motor to have low cogging torque because having low cogging torque enhancing the control based on positioning of the motor in electric vehicle drive application. This project focus on reducing the cogging torque of segmented rotor HEFSM having 24S-8P using various rotor techniques configuration such as notching (NOT) and chamfering (C.H), were examined. Then a new technique has been proposed and compared using combination of NOT and C.H for reduction of cogging torque. The new proposed design configuration has been executed using 2D commercial JMAG version 15.1 at no load and load conditions for analysing the best results. Initially techniques based on NOT and C.H has reduced the cogging torque by 46% and 57% respectively of the original value of 9.5Nm. Then a new proposed technique of combination of NOT and C.H reduced almost by 60% of the initial result simultaneously. This result is considered as the best reduced technique for reduction of cogging torque of segmented HEFSM. The performance of HEFSM segmented rotor 24S-8P has been increased by using “local optimization method” based on parameter sensitivity. The total performance torque is achieved almost 55% more than the initial torque 11.07Nm. The combined technique of NOT and C.H has successfully reduced the cogging torque which improves the motor performance in terms of acoustic noise and vibration
    corecore