927 research outputs found

    An ontology-based approach towards coupling task and path planning for the simulation of manipulation tasks

    Get PDF
    This work deals with the simulation and the validation of complex manipulation tasks under strong geometric constraints in virtual environments. The targeted applications relate to the industry 4.0 framework; as up-to-date products are more and more integrated and the economic competition increases, industrial companies express the need to validate, from design stage on, not only the static CAD models of their products but also the tasks (e.g., assembly or maintenance) related to their Product Lifecycle Management (PLM). The scientific community looked at this issue from two points of view: - Task planning decomposes a manipulation task to be realized into a sequence of primitive actions (i.e., a task plan) - Path planning computes collision-free trajectories, notably for the manipulated objects. It traditionally uses purely geometric data, which leads to classical limitations (possible high computational processing times, low relevance of the proposed trajectory concerning the task to be performed, or failure); recent works have shown the interest of using higher abstraction level data. Joint task and path planning approaches found in the literature usually perform a classical task planning step, and then check out the feasibility of path planning requests associated with the primitive actions of this task plan. The link between task and path planning has to be improved, notably because of the lack of loopback between the path planning level and the task planning level: - The path planning information used to question the task plan is usually limited to the motion feasibility where richer information such as the relevance or the complexity of the proposed path would be needed; - path planning queries traditionally use purely geometric data and/or “blind” path planning methods (e.g., RRT), and no task-related information is used at the path planning level Our work focuses on using task level information at the path planning level. The path planning algorithm considered is RRT; we chose such a probabilistic algorithm because we consider path planning for the simulation and the validation of complex tasks under strong geometric constraints. We propose an ontology-based approach to use task level information to specify path planning queries for the primitive actions of a task plan. First, we propose an ontology to conceptualize the knowledge about the 3D environment in which the simulated task takes place. The environment where the simulated task takes place is considered as a closed part of 3D Cartesian space cluttered with mobile/fixed obstacles (considered as rigid bodies). It is represented by a digital model relying on a multilayer architecture involving semantic, topologic and geometric data. The originality of the proposed ontology lies in the fact that it conceptualizes heterogeneous knowledge about both the obstacles and the free space models. Second, we exploit this ontology to automatically generate a path planning query associated to each given primitive action of a task plan. Through a reasoning process involving the primitive actions instantiated in the ontology, we are able to infer the start and the goal configurations, as well as task-related geometric constraints. Finally, a multi-level path planner is called to generate the corresponding trajectory. The contributions of this work have been validated by full simulation of several manipulation tasks under strong geometric constraints. The results obtained demonstrate that using task-related information allows better control on the RRT path planning algorithm involved to check the motion feasibility for the primitive actions of a task plan, leading to lower computational time and more relevant trajectories for primitive actions

    Digital twinning of existing reinforced concrete bridges from labelled point clusters

    Get PDF
    The automation of digital twinning for existing reinforced concrete bridges from point clouds remains an unresolved problem. Whilst current methods can automatically detect bridge objects in point clouds in the form of labelled point clusters, the fitting of accurate 3D shapes to point clusters remains largely human dependent largely. 95% of the total manual modelling time is spent on customizing shapes and fitting them correctly. The challenges exhibited in the fitting step are due to the irregular geometries of existing bridges. Existing methods can fit geometric primitives such as cuboids and cylinders to point clusters, assuming bridges are comprised of generic shapes. However, the produced geometric digital twins are too ideal to depict the real geometry of bridges. In addition, none of the existing methods have explicitly demonstrated how to evaluate the resulting Industry Foundation Classes bridge data models in terms of spatial accuracy using quantitative measurements. In this article, we tackle these challenges by delivering a slicing-based object fitting method that can generate the geometric digital twin of an existing reinforced concrete bridge from four types of labelled point cluster. The quality of the generated models is gauged using cloud-to-cloud distance-based metrics. Experiments on ten bridge point cloud datasets indicate that the method achieves an average modelling distance of 7.05 cm (while the manual method achieves 7.69 cm), and an average modelling time of 37.8 seconds. This is a huge leap over the current practice of digital twinning performed manually

    BIM-BASED INDOOR PATH PLANNING CONSIDERING OBSTACLES

    Get PDF

    Tracking and visualization of space-time activities for a micro-scale flu transmission study

    Get PDF
    Abstract Background Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Methods Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. Results When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting patterns. Conclusions This study proved that tracking technology an effective technique for obtaining data for micro-scale influenza transmission research. The findings revealed micro-scale transmission hotspots on a university campus and provided insights for local control and prevention strategies.</p

    Space Subdivision For Indoor Navigation: A Systematic Literature Review

    Get PDF
    Along with the increasing demand for indoor navigation, many attempts were made to improve indoor navigation performance. Information about the room becomes important, because one of the characteristics of indoor navigation is the dynamic indoor conditions. Space subdivision is an effort made to make indoor navigation even more accurate. The purpose of this study is to create a systematic literature review (SLR) regarding the topic of space subdivision for indoor navigation which is based on a SLR method, previously defined research question. This study examines several previous works specifically in the field of space subdivision for indoor navigation with the SLR. This research is expected to be the basis for further research to improve the quality of indoor navigation based on space subdivision

    Proceedings. 9th 3DGeoInfo Conference 2014, [11-13 November 2014, Dubai]

    Get PDF
    It is known that, scientific disciplines such as geology, geophysics, and reservoir exploration intrinsically use 3D geo-information in their models and simulations. However, 3D geo-information is also urgently needed in many traditional 2D planning areas such as civil engineering, city and infrastructure modeling, architecture, environmental planning etc. Altogether, 3DGeoInfo is an emerging technology that will greatly influence the market within the next few decades. The 9th International 3DGeoInfo Conference aims at bringing together international state-of-the-art researchers and practitioners facilitating the dialogue on emerging topics in the field of 3D geo-information. The conference in Dubai offers an interdisciplinary forum of sub- and above-surface 3D geo-information researchers and practitioners dealing with data acquisition, modeling, management, maintenance, visualization, and analysis of 3D geo-information
    • …
    corecore