181 research outputs found

    A Data Distribution Service in a hierarchical SDN architecture: implementation and evaluation

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Software-defined networks (SDNs) have caused a paradigm shift in communication networks as they enable network programmability using either centralized or distributed controllers. With the development of the industry and society, new verticals have emerged, such as Industry 4.0, cooperative sensing and augmented reality. These verticals require network robustness and availability, which forces the use of distributed domains to improve network scalability and resilience. To this aim, this paper proposes a new solution to distribute SDN domains by using Data Distribution Services (DDS). The DDS allows the exchange of network information, synchronization among controllers and auto-discovery. Moreover, it increases the control plane robustness, an important characteristic in 5G networks (e.g., if a controller fails, its resources and devices can be managed by other controllers in a short amount of time as they already know this information). To verify the effectiveness of the DDS, we design a testbed by integrating the DDS in SDN controllers and deploying these controllers in different regions of Spain. The communication among the controllers was evaluated in terms of latency and overhead.Postprint (author's final draft

    ICONA: Inter Cluster ONOS Network Application

    Full text link
    Several Network Operating Systems (NOS) have been proposed in the last few years for Software Defined Networks; however, a few of them are currently offering the resiliency, scalability and high availability required for production environments. Open Networking Operating System (ONOS) is an open source NOS, designed to be reliable and to scale up to thousands of managed devices. It supports multiple concurrent instances (a cluster of controllers) with distributed data stores. A tight requirement of ONOS is that all instances must be close enough to have negligible communication delays, which means they are typically installed within a single datacenter or a LAN network. However in certain wide area network scenarios, this constraint may limit the speed of responsiveness of the controller toward network events like failures or congested links, an important requirement from the point of view of a Service Provider. This paper presents ICONA, a tool developed on top of ONOS and designed in order to extend ONOS capability in network scenarios where there are stringent requirements in term of control plane responsiveness. In particular the paper describes the architecture behind ICONA and provides some initial evaluation obtained on a preliminary version of the tool.Comment: Paper submitted to a conferenc
    corecore