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Abstract—Software-defined networks (SDNs) have caused a
paradigm shift in communication networks as they enable net-
work programmability using either centralized or distributed
controllers. With the development of the industry and society,
new verticals have emerged, such as Industry 4.0, cooperative
sensing and augmented reality. These verticals require network
robustness and availability, which forces the use of distributed
domains to improve network scalability and resilience. To this
aim, this paper proposes a new solution to distribute SDN
domains by using Data Distribution Services (DDS). The DDS
allows the exchange of network information, synchronization
among controllers and auto-discovery. Moreover, it increases
the control plane robustness, an important characteristic in 5G
networks (e.g., if a controller fails, its resources and devices can
be managed by other controllers in a short amount of time as
they already know this information). To verify the effectiveness
of the DDS, we design a testbed by integrating the DDS in SDN
controllers and deploying these controllers in different regions of
Spain. The communication among the controllers was evaluated
in terms of latency and overhead.

Index Terms—software-defined networks, data distribution
service, testbed, hierarchical architecture

I. INTRODUCTION

As part of the significant advances that have recently
been made in many telematic areas—such as Big Data, edge
computing and the Internet of Things (IoT)—along with the
large growth in mobile data traffic that is expected according to
the latest Cisco forecast [1], we consider that a revolutionary
approach in the networking field is necessary to overcome
this situation. The necessity of a simple network in which
many technologies can coexist has driven network operators
and academic institutions to search for a solution to fulfill
the strict requirements that suppose a convergent and open
network such as 5G.

In this sense, the new architecture must be flexible and
programmable to be able to adapt itself to a variety of traffic
conditions. Additionally, it needs to be dynamic, scalable,
available and capable of processing a large amount of data
in real time.

In recent years, Software-Defined Networks (SDNs) have
emerged as a new networking paradigm capable of delivering
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new methods and means to instantiate network functions
and services, reduce expenses and boost performance. These
advantages are possible by separating the control and data
planes. The control plane is formed by the controller, which
manages all the forwarding devices in a unified way. The
data plane includes switches and routers that perform their
forwarding functions by following a set of rules installed by
the controller.

The SDN controllers can be classified into two main groups
within an architectural point of view. The first one uses a
single controller, for the sake of simplicity, but it represents
a bottleneck in the network when the number and size of
OpenFlow messages increase. Meanwhile, the second group
is focused on distributing controllers to a large-scale network
in order to improve the network’s scalability and avoid a single
point of failure. Considering these groups, the best strategy is
a combination of them, namely, to deploy a hierarchical SDN
controller architecture.

This type of architecture guarantees scalability as specific
functions can be defined in the controllers in order to establish
their role within the overall network. In this way, only the traf-
fic that is destined for other networks is sent to the controllers
at the top level. In a hierarchical architecture, each controller
manages its domain and distributes the necessary data to other
controllers. In order to guarantee a good performance in the
hierarchy, it is necessary to establish proper communication
among controllers.

To the best of our knowledge, there is no standard for SDN
controller communication. However, there are several works
that focus on formal concepts and theoretical architecture.
In this paper, we aim to contribute to the design of the
hierarchical SDN control plane by developing a testbed formed
by SDN controllers that are federated by means of a Data
Distribution Service (DDS). Our implementation represents
the first step in guaranteeing a robust control plane for 5G
networks as their control elements can distribute network
information and respond quickly to network and controller
failures. Thus, the main contributions of this paper are as
follows:

• A communication mechanism to logically distribute SDN
controllers (i.e, flat or hierarchical architecture).
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• Auto-discovery of SDN controllers and detection of fail-
ure in SDN controllers in a short time frame.

• An authentication procedure to avoid unauthorized pub-
lishers introducing incorrect messages.

The remainder of this paper is organized in the following
way. Section II describes some related works. Section III
presents a brief explication of DDS. The implementation of
a DDS application in SDN controllers and the main modules
of this application are described in Section IV. The testbed
proposal is presented in Section V. Section VI introduces
a thorough analysis of the simulation results. Finally, Sec-
tion VII reveals the main conclusions of this paper and states
some areas for further investigation.

II. RELATED WORK

According to the revised literature, SDN controllers archi-
tecture can be classified into centralized or distributed. Cen-
tralized controllers, such as NOX-MT [2], Maestro [3], Beacon
[4], Ryu [5] and Floodlight [6], have been designed to achieve
a determined throughput necessary for enterprise networks
and data centers. However, they represent a bottleneck in the
network and may present scaling limitations when the amount
of traffic and the number of OpenFlow requests increase.

Several works propose a distributed architecture of SDN
controllers to improve network resilience and scalability.

In the paper by Koponen et al. [7], the authors propose
a distributed system running on a cluster of one or more
physical servers, which may run multiple Onix instances and
use Apache ZooKeeper [8] to store and synchronize a data
structure called network information base (NIB). As a result,
Onix provides scalability and resilience by replicating and
distributing NIBs between multiple running instances.

Similarly, Tootoonchian et al. [9] propose HyperFlow as
a distributed, event-based control plane for OpenFlow that
allows the deployment of any number of controllers in network
operators. Hyperflow uses the publish/subscribe paradigm to
communicate with the controllers using WheelFS [10] as the
distributed file system. Thus, controllers can build a global
network view and, simultaneously, take charge of the network.

In [11], the authors propose a communication interface for
distribute control plane (CIDC) that allows synchronization
and the exchange of notifications as well as services between
multiple distributed SDN controllers. This interface is com-
posed of four modules: a Consumer, Producer, DataUpdater
and DataCollector. In its design, each controller plays the role
of a Consumer for external events and a Producer for local
events.

These approaches impose a consistent, network-wide view
on the controllers and generate large control traffic, which
can affect the network latency and throughput despite their
ability to distribute SDN control planes. Other authors pro-
pose a hierarchical controller architecture to improve those
inconveniences.

In [12], the authors present a two-level architecture of SDN
controllers. The bottom layer is formed by the area controllers,
which are connected to physical switches and routers. In

the upper layer, there are domain controllers, which control
the area controllers as devices and synchronize the global
abstracted network view through a distributed database.

Phemius et al. [13], [14] implement an extensible DIs-
tributed SDN COntrol plane (DISCO) on top of the Flood-
light controller to establish communication with other con-
trollers. By means of its two key elements—Messenger and
Agents—DISCO performs its functions. The former discov-
ers neighboring controllers and maintains a distributed pub-
lish/subscribe communication channel; the latter utilizes this
channel to exchange network information among controllers.

In addition to the previous contributions, there are some
native solutions in the controllers to communicate SDN con-
trol planes. The Open Network Operating System (ONOS)
[15] controller follows in the footsteps of previous closed
distributed SDN controllers such as Onix. It runs on multiple
servers in which each one acts as the master controller for a
subset of switches. When the number of switches increases,
additional instances can be added to the ONOS cluster to
distribute the control plane workload. The network view data
model of ONOS is implemented using the Titan [16] graph
database and the Cassandra [17] key-value store for the
distribution and persistence of the network information. In
this way, ONOS can be implemented for network operators
as it supports hybrid networks and high speeds in large-scale
networks. Similarly, OpenDaylight controllers [18] have in-
tegrated the OpenDaylight SDN Interface Application (ODL-
SDNi App) [19], [20] into their architectures to distribute SDN
controllers. The most important element in this application
is the SDNi Wrapper, which is responsible for sharing to
and collecting information from the federated controllers. The
main limitation of this solution is present in this component
because its communication is based on the Border Gateway
Protocol (BGP); thus, the communication does not occur in
real time, which mainly affects the latency and time recovery.
Therefore, the SDNi App is still being improved, and there are
some aspects to be tested such as peer-to-peer communication
and Quality of service (QoS) information exchange.

It is well-known that distributed controllers for multiple do-
main architectures entail many challenges such as scalability,
performance and fine-grained sharing. Our motivation in this
paper is to propose a solution to overcome these problems.
Our DDS-based communication mechanism combines the fast
and predictable distribution of time-critical data in real time
with a configurable mode to announce the type of information
to be exchanged in order to achieve fine-grained sharing.
Furthermore, the hierarchy of SDN controllers aims to improve
the network performance as it defines specific functions for
each type of controller.

III. DATA DISTRIBUTION SERVICE: OVERVIEW

A DDS is a middleware protocol and application program-
ming interface (API) standard for data-centric connectivity
from the Object Management Group (OMG). This standard
addresses the publish/subscribe communication for real-time
and embedded systems [21].



Fig. 1: An overview of the DDS [22].

The DDS provides a global data store in which publishers
and subscribers respectively write and read data. In addition,
it offers a fast and predictable distribution of time-critical
data over a variety of transport networks. Furthermore, the
DDS provides a flexible data distribution infrastructure by
integrating several types of data sources. Therefore, it delivers
a large amount of data with microsecond performance and
granular QoS control using a distributed cache, referred to as
a data-space. This middleware offers a flexible and modular
structure by decoupling location, redundancy, time, message
flow and platform.

In Fig. 1, the relation between the following DDS entities
is depicted: domain, domain participants, topics, publishers,
data writers, subscribers and data readers. The DDS domain
represents the global data store containing the information
provided by the applications registered to that domain.

A DDS topic describes the type and structure of the data.
It represents data streams of the same data type that allow
strongly typed data dissemination. The data readers and writers
can respectively subscribe and publish specific topics. One or
more data readers and writers are respectively managed by
subscribers and publishers. Publishers and subscribers discover
each other automatically and match if they have compatible
topics and QoS.

The topics are exchanged between peers within the DDS
domain according to a contract established in the discovery
phase. During this phase, each domain participant maintains
a local database with all the active data writers and data
readers in the same domain. The discovery mechanism is
dynamic, so that, the DDS applications do not have to know
or configure the endpoints for communications because they
are automatically discovered by the DDS.

The OMG DDS standard offers several advantages to users,
such as easy integration, performance efficiency, scalability,
advanced security, an open standard, an enabled QoS, scalable
discovery and applicability.

IV. IMPLEMENTATION OF THE DDS APPLICATION

In this section, we explain the main modules of the DDS
Application (DDS App) as well as its behavior in order to
offer a more thorough understanding of its performance.

The exchange of network information, the detection of
new and failure controllers, and the synchronization among
controllers are the main functions of the DDS App. This
application is composed of three modules: the publisher,
subscriber and synchronization. The modularity of this appli-
cation offers controllers the ability to simultaneously send and
receive network information without any interference or loss
of information because this application uses different ports
to send and receive information. In the next subsections, we
explain how these modules work to guarantee the previous
functions.

A. Publisher Module

This module controls the process of sending network in-
formation to other controllers. To perform this simple func-
tion, the proper configuration of the QoS parameters (i.e.
the persistence service, publisher’s queue and reliability) is
necessary. In this way, we avoid outperforming data consumers
and blocking the send queue in the case of slower subscribers.
After completing the initial configuration, the publisher needs
to check if the connection with the other controllers has been
established before it begins to send data.

When the controllers are synchronized, the publisher sends
data when there is new data to be sent. The publisher creates
the topology topic based on the network information read
from the controller data store (e.g. the MD-SAL data store
in OpenDaylight controllers). This topic is a data stream
composed of eight fields: the Identifier, NodeId, Termination-
PointId, LinkId, SourceNode, SourceNodeTp, DestinationNode
and DestinationNodeTp. Each one represents a string of data.
Using the identifier field, the publisher announces if it will
send a node, a flow or a link.

Finally, the publisher sends the topic to each controller
connected to it. This connection is managed by the synchro-
nization module which is explained in Subsection IV-C. The
publisher module algorithm is displayed in Fig. 2 to clarify its
performance in the controller.

B. Subscriber Module

At its most basic, this module receives the network in-
formation sent by other controllers. Similar to the publisher
module, it is necessary to configure some QoS parameters
to guarantee a well-synchronized connection with the other
publisher controllers. However, their initial configurations are
different because the subscriber module utilizes listeners to
perform its functions.

Some statuses have been configured in this module to recog-
nize when new data is available to be read. Thus, the listener
is invoked when these statuses change, avoiding polling the
publisher and saving time and resources, which is extremely
important to fulfill the latency requirement of 5G networks.



Fig. 2: Publisher Module Algorithm

Once the listener is invoked, the subscriber reads the
network information from the topology topic and saves this
information in the controller data store, taking into account
the identifier field that it has received. The behavior of this
module is summarized in its algorithm (see Fig. 3).

C. Synchronization Module

This module is responsible for guaranteeing the synchro-
nization among controllers at all times by considering the
controller role in the network. In our previous work, we
proposed an SDN controller hierarchy formed by a group of
global controllers (GCs) in the upper layer while the bottom
layer was composed of area controllers (ACs) [23]. This
hierarchy is explained in Section V.

From this starting point, the QoS parameter configuration
and the listener initialization must consider the controller

Fig. 3: Subscriber Module Algorithm

Fig. 4: Synchronization Module Algorithm

role. For this reason, we need to guarantee that the GCs
communicate with each other using the DDS to keep a global
network view and recognize when their ACs change their
statuses to alive or failure. Meanwhile, the ACs can only send
or receive network information to or from their GCs. In this
sense, our authentication procedure plays an important role
during the discovery phase as it ignores any participant that is
not compatible with the configured security profiles. Thus, the
controllers cannot receive information from entities that have
not been registered during the discovery phase.

Once the listener is initialized in the GC, it can detect either
a new AC or a failure in one of its existing ACs. In the first
case, the GC receives the AC information and saves it to an
internal database. In the second case, when it detects that an
AC fails, it searches the AC’s IP address to correlate it with its
assigned nodes. Finally, the module calls a failover function to
reassign the nodes to other ACs. The algorithm of this module
is depicted in Fig. 4.

V. TESTBED AND EXPERIMENT DESCRIPTION

In this section, we explain the network architecture used
during the testbed implementation and describe the experiment
to be carried out.

A. SDN Controller Hierarchy

The SDN controller hierarchy is illustrated in Fig. 5. In
the upper layer of the hierarchy, there is a group of GCs that
are federated using the DDS. They manage and control the
ACs, perform load balancing and keep a global network view.
Meanwhile, the bottom layer is composed of ACs, which are
responsible for the User Plane Functions (UPFs) of the 5G
architecture control and flows management.

Both types of controllers use the DDS to exchange network
information. The GCs communicate with each other to keep
a consistent network state and establish inter-domain flow
routes. In the same way, the ACs update their GCs when a



Fig. 5: Hierarchical architecture of SDN Controllers.

change in their topology occurs. Similarly, the GCs inform
their ACs when there is a change in the global topology
that can affect the communication among the nodes under the
control of different ACs.

Furthermore, the use of the DDS allows a stronger perfor-
mance during the recovery stages because the GCs share their
network information with each other. Thus, if any problem
arises with a GC operation, its functions are assumed by
another GC.

B. Testbed Implementation

Considering the previous SDN controller hierarchy, we built
a national SDN testbed formed by OpenDaylight controllers
in which the DDS App runs. The OpenDaylight distribution
was selected by comparing several features such as the cross-
platform compatibility, southbound and northbound interfaces,
OpenFlow support, network programmability, efficiency and
partnership. In addition, this controller supports a modular
framework, providing support for other SDN standards and
forthcoming protocols. Furthermore, OpenDaylight applica-
tions can collect network information, perform analyses by
running algorithms and create new rules throughout the net-
work.

The testbed architecture is composed of two GCs, each of
which manages two ACs. The GCs are physically distributed
in Granada (University of Granada, UGR) and Barcelona (Uni-
versitat Politècnica de Catalunya, UPC). Similarly, their ACs
are placed in these locations, and they can only communicate
with their GCs. Thus, we have two SDN domains, as is
depicted in Fig. 6. The blue dashed line represents the DDS
connections over RedIRIS [24].

The GCs were configured to support communication over
Wide Area Network (WAN). Some extra steps were necessary
to guarantee this capability. First, we set a public IP address for
each GC that is announced to other GCs during the discovery
stage to establish the connection. Second, we configured the

Fig. 6: SDN federated testbed proposal using DDS to com-
municate with controllers

IP Network Address Translation (NAT) router to allow User
Datagram Protocol (UDP) traffic and to map the public IP
address to the private Local Area Network (LAN) IP address
where the controllers were running (SDN domain). By using
port forwarding, we mapped the private ports used to receive
discovery and user data traffic to the corresponding public
ports. In this way, the GCs can exchange network information
and discover other GCs.

The ACs were also configured to support communication
over WAN in case their GCs are geographically distant—in
another SDN domain. However, the first principle was to use
private LAN to communicate with controllers in the same SDN
domain.

C. Hardware and Software Configuration

The SDN controllers have been instantiated in virtual ma-
chines (VMs) with 1 CPU, 2GB of RAM and 20GB of hard
disk. The UPC SDN domain runs over a Mitaka OpenStack-
based cloud that is formed by six servers providing the
following pool of resources: 48 VCPUs, 256GB of RAM and
8TB of disk storage; all servers have two Gigabit Ethernet
(GbE) interfaces and are connected through GbE switches.
Meanwhile, the UGR SDN domain is hosted by an OpenStack
Mitaka environment, which is executed by a server with the
following resources: Intel core i7-6700KCPU@4GHz with
4 VCPUs, 32GB of RAM and a 10Gbps network Ethernet
interface.

We used the OpenDaylight controller in this implementation
and the Open vSwitch 2.3.0 with support for OpenFlow 1.2,
1.3 and 1.4 as the software switch. The Mininet network
emulator was used to create the SDN topologies, and the RTI
Connext DDS 5.2.3 was installed in the same VMs where
the controllers were running. The classes and methods of the
nddsjava.jar library were utilized to implement an application
capable of integrating the DDS software in an OpenDaylight



controller. To build this application, JDK 1.8, Eclipse Luna,
and Maven 3.3.3 were used.

D. Experiment Description

We emulated three different networks to evaluate our imple-
mentation. Two of them were taken from the Internet Topology
Zoo [25] (i.e. the Abilene network and the BtNorthAmerica
network). The other one was designed to represent a minimal
network configuration formed by two nodes. For each scenario,
we used two GCs and two ACs, specifically, GCUPC, GCUGR,
AC1UPC and AC2UPC.

To gather statistically meaningful results, we ran 10 inde-
pendent experiments per scenario. For each run, we started
all controller instances and let them discover each other by
means of the DDS. Later, we initialized the network topology
where the nodes were assigned randomly to both AC1UPC
and AC2UPC. After all the nodes connected to their ACs,
we injected new traffic flows into the network. Initially, the
incoming packets to the switches did not match with any
flow in their flow tables as these were empty. Therefore, they
sent a packet in message to their ACs so that the controller
could install a new flow entry by means of a flow mod
message. Hence, the ACs reactively installed forwarding rules
in the network. All of these events must be exchanged among
controllers in order to guarantee a robust control plane. Once,
the AC1UPC and AC2UPC have discovered their assigned nodes,
they proceed to install new flows in their nodes and update
their topology view. After that, they share this information with
the GCUPC. Similarly, the GCUPC processes that information
and shares it with its counterpart in the other SDN domain,
the GCUGR.

To asses our implementation, we analyzed two metrics that
can affect the performance of the controllers in distributed
architectures: delay and overhead. The former represents the
time from when a controller generates an event until other
controllers are aware of the same event. The latter describes the
aggregated data rate employed during the exchange of network
information among controllers. The delay among controllers
is a key parameter in distributed systems. It is affected by
the amount of information to be exchanged, the available
bandwidth, the propagation delay and the processing time of
the controllers.

The propagation delay is assumed to be fixed because it
depends on the distance between the devices and the controller
locations does not change. Moreover, the processing time
depends on the nodes load and processing capacity, so it can
be reduced by either performing load balance or upgrading
the hardware platform. The available bandwidth has not been
limited, so it gives an approximated upper bound on the over-
head. In this regard, the controller overhead can be reduced
by limiting the available bandwidth.

VI. EVALUATION

In this section, the evaluation results for the three previous
scenarios are presented. We evaluate the behavior of the DDS

App in the controllers by taking into account aspects such as
recovery time, delay and controller overhead.

In our tests, different events can take place such as the
discovery of new nodes and links, and the installation of
new flows. Thus, network state changes must be synchronized
among controllers. The higher the number of consecutive
events, the higher the controller overhead.

The first scenario is called Minimal network and is com-
posed of two nodes which have been assigned to different ACs.
The aim of this scenario is to evaluate the synchronization
among controllers in small SDN domains. Thus, we evaluate
the communication between GCs and emulate a failure in
GCUGR by turning it off. Fig. 7 shows the obtained results.

From Fig. 7 can be observed that the delays are maximum
(i.e., 80-140 ms) at the beginning of the communication due
to the discovery process among the controllers. Namely, the
GCUPC has to process the discovery information received
from its assigned ACs and synchronize with the GCUGR.
These delays decrease after the discovery phase and remain
below 50 ms during the rest of the communication. Moreover,
the highest values of overhead are found between the GCs
(i.e., approximately 600 KB/s), as shown Fig. 7a, due to the
overall network information is exchanged. By contrast, the
communication between ACs and the GCUPC shows much
lower values, around 200-300 KB/s, see Fig. 7b and Fig. 7c.

In Fig. 7a, the moment the GCUGR fails can be noted
since there is an interruption in the communication. This
connection is recovered after 100 s because it is the time
the GCUGR needs to initialize. This time can be reduced by
enhancing the hardware capabilities of the server that host the
controller. After the communication between both GCs have
been reestablished, the GCUPC shares its network information
with GCUGR in order to maintain a consistent control plane.
In this case, the synchronization delay does not experiment
the initial peak as the GCUPC already knows the information
related to its ACs and only needs to update the other GC.

To further evaluate the inter-controller communication, a
failure in one of the ACs is analyzed. The AC2UPC was turned
off at the end of the test. Notice, the values of overhead
and delay between the AC2UPC and the GCUPC are zero after
350 s in Fig. 7c. Moreover, this event is reflected in the
communication between GCs which has a spike near 950
KB/s in the overhead. This effect is also evidenced in the
communication GCUPC-AC1UPC where there is a small fall
in the transmission rate. The latter occurs due to the node
reassignment process. It is important to mention that our
failover mechanism is still under development which is why
an evaluation has not been included in this paper.

The second and third scenarios use Abilene and Bt-
NorthAmerica as network topologies with 11 and 36 nodes,
respectively. Hence, there will be more events due to the ACs
manage a greater number of switches. Additionally, they need
to discover and install more links and flows than the first
scenario. In these cases, we seek to evaluate the effects of
distances and network size in the synchronization delay and
overhead between the GCs. Fig. 8 shows the obtained results
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Fig. 7: Synchronization delay and overhead in Minimal network.
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Fig. 8: Synchronization delay and overhead in GCUPC-GCUGR
communication.

during these experiments.
Similar to the first scenario, the higher values of delay are

obtained during the discovery stage. Once the controllers have
synchronized, the delay remains with values around 20 ms. We
emulate a fail in the GCUGR in both scenarios as shown by
the fall in the transmission rate in Fig. 8. After the recovery,
the GCUPC updates the GCUGR on the most recent network

information. In addition, a failure in one of the ACs in the
BtNorthAmerica scenario is considered, which is evidenced by
a rise in the overhead with values up to 950 KB/s, see Fig. 8b.
The obtained results show that the network size does not have
a significant impact on the synchronization overhead and delay
between the GCs. However, the effects of the AC failure have
a longer duration due to the GCUPC needs to reassign a higher
number of nodes.

In order to gather the aggregated results for the three
evaluated scenarios in terms of the analyzed metrics, a boxplot
representation, see Fig. 9, was used which includes a 95%
confidence interval based on Student-t distribution. In Fig. 9a,
the outliers represent the values of latency related to the
discovery phases among controllers. We can see how 75
percentile of the data samples related to the values of latency
among the GCs requires less than 15 ms for Minimal and
Abilene networks and 25 ms for the BtNorthAmerica scenario.
In this sense, we obtain higher values of latency for the third
scenario as it generates a large number of events due to the
greater number of nodes. Furthermore, we can appreciate how
the processing time of the ACs affects their synchronization
delay with the GCUPC because they also must configure and
manage their assigned nodes. In general, 75 percentile of the
data samples require less than 30 ms to synchronize all the
events.

From Fig. 9b can be observed that the GCUPC has the highest
synchronization overhead among all the controllers. This is ex-
pected because it receives all the network information directly
from the ACs. Additionally, we can see that 75 percentile of
the data samples of both ACs require less than 500 KB/s to
share the events with the GCUPC.

Although the obtained results in terms of delay are quite
promising, we need to tune some parameters in the DDS App
to be in line with the 5G specifications. In this vein, the use
of batching techniques in our implementation could decrease
the amount of communication overhead associated with the
transmission. Thus, our application could collect multiple user
data samples to be sent in a single network packet. Hence, we
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Fig. 9: Aggregated results of the 10 runs per evaluated
scenario.

will take advantage of the efficiency of sending larger packets
and, at the same time, increase the effective throughput.

VII. CONCLUSION

In this paper, we propose the use of the DDS as a new
way to exchange network information among SDN controllers.
This approach allows the distribution of time-critical data with
a configurable mode to announce the type of information in
function of the generated events in the network in order to
achieve fine-grained sharing. In addition, our implementation
offers the capability of auto-discover SDN controllers and a
reliable mechanism to update the network information in case
of failure in the controllers. To evaluate the performance of
the DDS as a feasible technology for 5G networks where
low latency requirements are critical, we have developed a
national SDN testbed based on a hierarchical architecture
connecting two SDN domains. This architecture is analyzed in
three different scenarios by taking into account two metrics:
synchronization overhead and delay. The results indicate that
the values of latency are very low in most of the cases. We
can remark that network information such as nodes, flows and
links can be synchronized quickly and lightly by means of the
DDS. To reduce the controllers overhead, it is necessary to
tune some parameters of the DDS App as a trade-off with the
delay is not an option in 5G networks.

In the future, we plan to extend our SDN testbed by
connecting more SDN domains and evaluate the DDS App in
scenarios where the amount of information to be exchanged
is much higher. Moreover, we intend to incorporate Machine
Learning techniques to the SDN controllers to optimize the
routing of intra-domain and inter-domain traffic flows as well
as the node reassignment when controllers fail.
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