2,135 research outputs found

    Cycles in adversarial regularized learning

    Get PDF
    Regularized learning is a fundamental technique in online optimization, machine learning and many other fields of computer science. A natural question that arises in these settings is how regularized learning algorithms behave when faced against each other. We study a natural formulation of this problem by coupling regularized learning dynamics in zero-sum games. We show that the system's behavior is Poincar\'e recurrent, implying that almost every trajectory revisits any (arbitrarily small) neighborhood of its starting point infinitely often. This cycling behavior is robust to the agents' choice of regularization mechanism (each agent could be using a different regularizer), to positive-affine transformations of the agents' utilities, and it also persists in the case of networked competition, i.e., for zero-sum polymatrix games.Comment: 22 pages, 4 figure

    Resilient and Decentralized Control of Multi-level Cooperative Mobile Networks to Maintain Connectivity under Adversarial Environment

    Full text link
    Network connectivity plays an important role in the information exchange between different agents in the multi-level networks. In this paper, we establish a game-theoretic framework to capture the uncoordinated nature of the decision-making at different layers of the multi-level networks. Specifically, we design a decentralized algorithm that aims to maximize the algebraic connectivity of the global network iteratively. In addition, we show that the designed algorithm converges to a Nash equilibrium asymptotically and yields an equilibrium network. To study the network resiliency, we introduce three adversarial attack models and characterize their worst-case impacts on the network performance. Case studies based on a two-layer mobile robotic network are used to corroborate the effectiveness and resiliency of the proposed algorithm and show the interdependency between different layers of the network during the recovery processes.Comment: 9 pages, 6 figure

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    DOOM Level Generation using Generative Adversarial Networks

    Full text link
    We applied Generative Adversarial Networks (GANs) to learn a model of DOOM levels from human-designed content. Initially, we analysed the levels and extracted several topological features. Then, for each level, we extracted a set of images identifying the occupied area, the height map, the walls, and the position of game objects. We trained two GANs: one using plain level images, one using both the images and some of the features extracted during the preliminary analysis. We used the two networks to generate new levels and compared the results to assess whether the network trained using also the topological features could generate levels more similar to human-designed ones. Our results show that GANs can capture intrinsic structure of DOOM levels and appears to be a promising approach to level generation in first person shooter games

    Random Feature-based Online Multi-kernel Learning in Environments with Unknown Dynamics

    Get PDF
    Kernel-based methods exhibit well-documented performance in various nonlinear learning tasks. Most of them rely on a preselected kernel, whose prudent choice presumes task-specific prior information. Especially when the latter is not available, multi-kernel learning has gained popularity thanks to its flexibility in choosing kernels from a prescribed kernel dictionary. Leveraging the random feature approximation and its recent orthogonality-promoting variant, the present contribution develops a scalable multi-kernel learning scheme (termed Raker) to obtain the sought nonlinear learning function `on the fly,' first for static environments. To further boost performance in dynamic environments, an adaptive multi-kernel learning scheme (termed AdaRaker) is developed. AdaRaker accounts not only for data-driven learning of kernel combination, but also for the unknown dynamics. Performance is analyzed in terms of both static and dynamic regrets. AdaRaker is uniquely capable of tracking nonlinear learning functions in environments with unknown dynamics, and with with analytic performance guarantees. Tests with synthetic and real datasets are carried out to showcase the effectiveness of the novel algorithms.Comment: 36 page
    corecore