8 research outputs found

    Isogeometric topology optimization for auxetic metamaterials and structures

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.It is known that topology optimization is located at the conceptual design phase, which can effectively determine the numbers, connectivity and existence of holes in the structural design domain and evolve design elements to improve the concerned performance. General speaking, topology optimization works as an important tool to seek for the optimal material distribution, which has been identified as one of the most promising sub-field of structural optimization due to its superior features occurring in the conceptual design stage without prior knowledge of the design domain. In the current work, the main intention is to propose a novel numerical method for the topology optimization with more effectiveness and efficiency for the single-material structures and structures with multiple materials. Meanwhile, the proposed topology optimization method is also applied to implement the rational design of auxetic metamaterials and auxetic composites. In Chapter 1, we provide a brief description for the main intention of the current work. In Chapter 2, the comprehensive review about the developments of topology optimization, isogeometric topology optimization and the rational design of auxetic materials is provided. In Chapter 3, a more effective and efficient topology optimization method using isogeometric analysis is proposed for continuum structures using an enhanced density distribution function (DDF). The construction of the DDF mainly involves two steps: (1) the smoothness of nodal densities is improved by the Shepard function; (2) the higher-order NURBS basis functions are combined with the smoothed nodal densities to construct the DDF with the continuity. A topology optimization formulation to minimize the structural mean compliance is developed using the DDF and isogeometric analysis (IGA) is applied to solve structural responses. An integration of the geometry parametrization and numerical analysis offer several benefits for the optimization. The Chapter 4 intends to develop a Multi-material Isogeometric Topology Optimization (M-ITO) method. Firstly, a new Multi-material Interpolation model is established with the use of NURBS (Non-uniform Rational B-splines), termed by the “N-MMI” model, which mainly involves three components: (1) Multiple Fields of Design Variables (DVFs); (2) Multiple Fields of Topology Variables (TVFs); (3) Multi-material interpolation. Two different M-ITO formulations are developed using the N-MMI model to address the problems with multiple volume constraints and the total mass constraint, respectively. The decoupled expression and serial evolving of the DVFs and TVFs can effectively eliminate numerical difficulties in the multi-material problems. In Chapter 5, the proposed ITO method is applied for the systematic design of both 2D and 3D auxetic metamaterials. An energy-based homogenization method (EBHM) to evaluate the macroscopic effective properties is numerically implemented by IGA, with the imposing of periodic boundary formulation on material microstructure. An ITO formulation for 2D and 3D auxetic metamaterials is developed using the DDF, where the objective function is defined as a combination of the homogenized elastic tensor. A relaxed optimality criteria (OC) method is used to update the design variables, due to the non-monotonic property of the problem. In Chapter 6, the proposed M-ITO method is applied for the systematic design of both 2D and 3D auxetic composites. The homogenization, that evaluates macroscopic effective properties of auxetic composites, is numerically implemented by IGA, with the imposing of the periodic boundary formulation on composite microstructures. The developed N-MMI model is applied to describe the multi-material topology and evaluate the multi-material properties. A topology optimization formulation for the design of both two-dimensional (2D) and three-dimensional (3D) auxetic composites is developed. Finite element simulations of auxetic composites are discussed using the ANSYS to show different deformation mechanisms. Finally, conclusions and prospects are given in Chapter 7

    Structural Topology Optimization of Brake Disc Using the Equivalent Moving Load Method

    Get PDF
    During the braking process, the brake disc is subjected to the moving load. The process-point of the moving load moves along a certain trajectory, which makes it difficult to design the brake disc structure by using a traditional topology optimization method. The novel Equivalent Moving Load (EML) method proposed in this paper aims to solve this problem. According to the principle of continuous photographing technology, a mathematical model was established by using the round inward polygonal approximation algorithm. The EML method equalizes the continuous dynamic load action to many finite working conditions by geometric approximation. These working conditions are placed along the trajectory. The structure of the brake disc is then optimized by the EML method. Additionally, the influence of the layout style of the brake pads and the total number of working conditions on the optimization result are discussed in this paper. The optimization results showed that the new structure is a three-annulus structure. The weight of the new structure is reduced by 57.95% compared to the initial structure by structural topology optimization using the EML method. It was proved that structural topology optimization using the EML method is efficient in optimizing a structure subjected to dynamic load

    Dynamic multiscale topology optimization for multi-regional micro-structured cellular composites

    Full text link
    © 2018 Elsevier Ltd In this paper, a new dynamic multiscale topology optimization method for cellular composites with multi-regional material microstructures is proposed to improve the structural performance. Firstly, a free-material distribution optimization method (FMDO) is developed to generate the overall configuration for the discrete element densities distributed within a multi-regional pattern. The macrostructure is divided into several sub regions, and each of them consists of a number of elements but with the same densities. Secondly, a dynamic topology optimization formulation is developed to perform the concurrent design of the macrostructure and material microstructures, subject to the multi-regional distributed element densities. A parametric level set method is employed to optimize the topologies of the macrostructure and material microstructures, with the effective macroscopic properties evaluated by the homogenization. In the numerical implementation, the quasi-static Ritz vector (QSRV) method is incorporated into the finite element analysis so as to reduce the computational cost in numerical analysis, and some kinematical connectors are introduced to make sure the connectivity between adjacent material microstructures. Finally, 2D and 3D numerical examples are tested to demonstrate the effectiveness of the proposed dynamic multiscale topology optimization method for the material-structural composites

    Topology optimization for multiscale design of porous composites with multi-domain microstructures

    Full text link
    © 2018 Elsevier B.V. This paper proposes a new multiscale topology optimization method for the design of porous composites composed of the multi-domain material microstructures considering three design elements: the topology of the macrostructure, the topologies of multiple material microstructures and their overall distribution in the macrostructure. The multiscale design involves two optimization stages: the free material distribution optimization and the concurrent topology optimization. Firstly, the variable thickness sheet (VTS) method with the regularization mechanism is used to generate multiple element density distributions in the macro design domain. Hence, different groups of elements with the identical densities can be uniformly arranged in their corresponding domains, and each domain in the space will be periodically configured by a unique representative microstructure. Secondly, with the discrete material distributions achieved in the macro domain, the topology of the macrostructure and topologies of multiple representative microstructures are concurrently optimized by a parametric level set method combined with the numerical homogenization method. Finally. Several 2D and 3D numerical examples are provided to demonstrate the effectiveness of the proposed multiscale topology optimization method

    Topological shape optimization of 3D micro-structured materials using energy-based homogenization method

    Full text link
    © 2017 Elsevier Ltd This paper proposes an effective method for the design of 3D micro-structured materials to attain extreme mechanical properties, which integrates the firstly developed 3D energy-based homogenization method (EBHM) with the parametric level set method (PLSM). In the 3D EBHM, a reasonable classification of nodes in periodic material microstructures is introduced to develop the 3D periodic boundary formulation consisting of 3D periodic boundary conditions, 3D boundary constraint equations and the reduced linearly elastic equilibrium equation. Then, the effective elasticity properties of material microstructures are evaluated by the average stress and strain theorems rather than the asymptotic theory. Meanwhile, the PLSM is applied to optimize microstructural shape and topology because of its positive characteristics, like the perfect demonstration of geometrical features and high optimization efficiency. Numerical examples are provided to demonstrate the advantages of the proposed design method. Results indicate that the optimized 3D material microstructures with expected effective properties are featured with smooth structural boundaries and clear interfaces
    corecore