1,382 research outputs found

    Topological Quantum Computing

    Full text link
    This set of lecture notes forms the basis of a series of lectures delivered at the 48th IFF Spring School 2017 on Topological Matter: Topological Insulators, Skyrmions and Majoranas at Forschungszentrum Juelich, Germany. The first part of the lecture notes covers the basics of abelian and non-abelian anyons and their realization in the Kitaev's honeycomb model. The second part discusses how to perform universal quantum computation using Majorana fermions.Comment: In Topological Matter: Topological Insulators, Skyrmions and Majoranas, Lecture notes of the 48th IFF Spring School 2017, eds. S. Bluegel, Y. Mokrusov, T. Schaepers, and Y. Ando (Forschungszentrum Juelich, Key Technologies, Vol. 139, 2017), Sec. D

    Topological Quantum Computing and the Jones Polynomial

    Get PDF
    In this paper, we give a description of a recent quantum algorithm created by Aharonov, Jones, and Landau for approximating the values of the Jones polynomial at roots of unity of the form exp(2Ï€\pii/k). This description is given with two objectives in mind. The first is to describe the algorithm in such a way as to make explicit the underlying and inherent control structure. The second is to make this algorithm accessible to a larger audience.Comment: 19 pages, 27 figure

    Topological Quantum Computing with p-Wave Superfluid Vortices

    Full text link
    It is shown that Majorana fermions trapped in three vortices in a p-wave superfluid form a qubit in a topological quantum computing (TQC). Several similar ideas have already been proposed: Ivanov [Phys. Rev. Lett. {\bf 86}, 268 (2001)] and Zhang {\it et al.} [Phys. Rev. Lett. {\bf 99}, 220502 (2007)] have proposed schemes in which a qubit is implemented with two and four Majorana fermions, respectively, where a qubit operation is performed by exchanging the positions of Majorana fermions. The set of gates thus obtained is a discrete subset of the relevant unitary group. We propose, in this paper, a new scheme, where three Majorana fermions form a qubit. We show that continuous 1-qubit gate operations are possible by exchanging the positions of Majorana fermions complemented with dynamical phase change. 2-qubit gates are realized through the use of the coupling between Majorana fermions of different qubits.Comment: 5 pages, 2 figures. Two-qubit gate implementation is added

    Topological Quantum Computing with Only One Mobile Quasiparticle

    Full text link
    In a topological quantum computer, universal quantum computation is performed by dragging quasiparticle excitations of certain two dimensional systems around each other to form braids of their world lines in 2+1 dimensional space-time. In this paper we show that any such quantum computation that can be done by braiding nn identical quasiparticles can also be done by moving a single quasiparticle around n-1 other identical quasiparticles whose positions remain fixed.Comment: 4 pages, 5 figure

    Constructing Functional Braids for Low-Leakage Topological Quantum Computing

    Full text link
    We discuss how to significantly reduce leakage errors in topological quantum computation by introducing an irrelevant error in phase, using the construction of a CNOT gate in the Fibonacci anyon model as a concrete example. To be specific, we construct a functional braid in a six-anyon Hilbert space that exchanges two neighboring anyons while conserving the encoded quantum information. The leakage error is ∼\sim10−1010^{-10} for a braid of ∼\sim100 interchanges of anyons. Applying the braid greatly reduces the leakage error in the construction of generic controlled-rotation gates.Comment: 5 pages, 4 figures, updated, accepeted by Phys. Rev.
    • …
    corecore