2,759 research outputs found

    Qualitative spatial representation and reasoning: A hierarchical approach

    Full text link
    The ability to reason in space is crucial for agents in order to make informed decisions. Current high-level qualitative approaches to spatial reasoning have serious deficiencies in not reflecting the hierarchical nature of spatial data and human spatial cognition. This article proposes a framework for hierarchical representation and reasoning about topological information, where a continuous model of space is approximated by a collection of discrete sub-models, and spatial information is hierarchically represented in discrete sub-models in a rough set manner. The work is based on the Generalized Region Connection Calculus theory, where continuous and discrete models of space are coped in a unified way. Reasoning issues such as determining the mereological (part-whole) relations between two rough regions are also discussed. Moreover, we consider an important problem that is closely related to map generalization in cartography and Geographical Information Science. Given a spatial configuration at a finer level, we show how to construct a configuration at a coarser level while preserving the mereological relations. © The Author 2007. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved

    Topological Foundations of Cognitive Science

    Get PDF
    A collection of papers presented at the First International Summer Institute in Cognitive Science, University at Buffalo, July 1994, including the following papers: ** Topological Foundations of Cognitive Science, Barry Smith ** The Bounds of Axiomatisation, Graham White ** Rethinking Boundaries, Wojciech Zelaniec ** Sheaf Mereology and Space Cognition, Jean Petitot ** A Mereotopological Definition of 'Point', Carola Eschenbach ** Discreteness, Finiteness, and the Structure of Topological Spaces, Christopher Habel ** Mass Reference and the Geometry of Solids, Almerindo E. Ojeda ** Defining a 'Doughnut' Made Difficult, N .M. Gotts ** A Theory of Spatial Regions with Indeterminate Boundaries, A.G. Cohn and N.M. Gotts ** Mereotopological Construction of Time from Events, Fabio Pianesi and Achille C. Varzi ** Computational Mereology: A Study of Part-of Relations for Multi-media Indexing, Wlodek Zadrozny and Michelle Ki

    A survey of qualitative spatial representations

    Get PDF
    Representation and reasoning with qualitative spatial relations is an important problem in artificial intelligence and has wide applications in the fields of geographic information system, computer vision, autonomous robot navigation, natural language understanding, spatial databases and so on. The reasons for this interest in using qualitative spatial relations include cognitive comprehensibility, efficiency and computational facility. This paper summarizes progress in qualitative spatial representation by describing key calculi representing different types of spatial relationships. The paper concludes with a discussion of current research and glimpse of future work

    Approximations from Anywhere and General Rough Sets

    Full text link
    Not all approximations arise from information systems. The problem of fitting approximations, subjected to some rules (and related data), to information systems in a rough scheme of things is known as the \emph{inverse problem}. The inverse problem is more general than the duality (or abstract representation) problems and was introduced by the present author in her earlier papers. From the practical perspective, a few (as opposed to one) theoretical frameworks may be suitable for formulating the problem itself. \emph{Granular operator spaces} have been recently introduced and investigated by the present author in her recent work in the context of antichain based and dialectical semantics for general rough sets. The nature of the inverse problem is examined from number-theoretic and combinatorial perspectives in a higher order variant of granular operator spaces and some necessary conditions are proved. The results and the novel approach would be useful in a number of unsupervised and semi supervised learning contexts and algorithms.Comment: 20 Pages. Scheduled to appear in IJCRS'2017 LNCS Proceedings, Springe

    Visual Ontology Cleaning: Cognitive Principles and Applicability

    Get PDF
    In this paper we connect two research areas, the Qualitative Spatial Reasoning and visual reasoning on ontologies. We discuss the logical limitations of the mereotopological approach to the visual ontology cleaning, from the point of view of its formal support. The analysis is based on three different spatial interpretations wich are based in turn on three different spatial interpretations of the concepts of an ontology.Ministerio de Educación y Ciencia TIN2004-0388

    Class Association Rules Mining based Rough Set Method

    Full text link
    This paper investigates the mining of class association rules with rough set approach. In data mining, an association occurs between two set of elements when one element set happen together with another. A class association rule set (CARs) is a subset of association rules with classes specified as their consequences. We present an efficient algorithm for mining the finest class rule set inspired form Apriori algorithm, where the support and confidence are computed based on the elementary set of lower approximation included in the property of rough set theory. Our proposed approach has been shown very effective, where the rough set approach for class association discovery is much simpler than the classic association method.Comment: 10 pages, 2 figure

    Fuzzy-rough set and fuzzy ID3 decision approaches to knowledge discovery in datasets

    Get PDF
    Fuzzy rough sets are the generalization of traditional rough sets to deal with both fuzziness and vagueness in data. The existing researches on fuzzy rough sets mainly concentrate on the construction of approximation operators. Less effort has been put on the knowledge discovery in datasets with fuzzy rough sets. This paper mainly focuses on knowledge discovery in datasets with fuzzy rough sets. After analyzing the previous works on knowledge discovery with fuzzy rough sets, we introduce formal concepts of attribute reduction with fuzzy rough sets and completely study the structure of attribute reduction
    corecore