225,641 research outputs found

    Zoo of quantum-topological phases of matter

    Get PDF
    What are topological phases of matter? First, they are phases of matter at zero temperature. Second, they have a non-zero energy gap for the excitations above the ground state. Third, they are disordered liquids that seem have no feature. But those disordered liquids actually can have rich patterns of many-body entanglement representing new kinds of order. This paper will give a simple introduction and a brief survey of topological phases of matter. We will first discuss topological phases that have topological order (ie with long range entanglement). Then we will cover topological phases that have no topological order (ie with only short-range entanglement).Comment: 18 pages, 8 figures, 4 tables. A short review, expanded versio

    Topological gauge theories with antisymmetric tensor matter fields

    Get PDF
    A new type of topological matter interactions involving second-rank antisymmetric tensor matter fields with an underlying NT1N_T \geq 1 topological supersymmetry are proposed. The construction of the 4-dimensional, NT=1N_T = 1 Donaldson-Witten theory, the NT=1N_T = 1 super-BF model and the NT=2N_T = 2 topological B-model with tensor matter are explicitly worked out.Comment: Latex, 17 pages; refinement of an argument, addition of a footnot

    TOPOLOGICAL MATTER, MIRROR SYMMETRY AND NON-CRITICAL (SUPER)STRINGS

    Get PDF
    We study the realization of the (super) conformal topological symmetry in two-dimensional field theories. The mirror automorphism of the topological algebra is represented as a reflection in the space of fields. As a consequence, a double BRST structure for topological matter theories is found. It is shown that the implementation of the topological symmetry in non-critical (super)string theories depends on the matter content of the two realizations connected by the mirror transformation.Comment: 45 pages, phyzzx, no figure

    Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions

    Full text link
    The rise of topological phases of matter is strongly connected to their potential to host Majorana bound states, a powerful ingredient in the search for a robust, topologically protected, quantum information processing. In order to produce such states, a method of choice is to induce superconductivity in topological insulators. The engineering of the interplay between superconductivity and the electronic properties of a topological insulator is a challenging task and it is consequently very important to understand the physics of simple superconducting devices such as Josephson junctions, in which new topological properties are expected to emerge. In this article, we review recent experiments investigating topological superconductivity in topological insulators, using microwave excitation and detection techniques. More precisely, we have fabricated and studied topological Josephson junctions made of HgTe weak links in contact with two Al or Nb contacts. In such devices, we have observed two signatures of the fractional Josephson effect, which is expected to emerge from topologically-protected gapless Andreev bound states. We first recall the theoretical background on topological Josephson junctions, then move to the experimental observations. Then, we assess the topological origin of the observed features and conclude with an outlook towards more advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017, published in "Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer

    Quantum anomalous Hall effect in magnetic topological insulators

    Full text link
    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimension (2D) and three-dimension (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We present the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. We discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.Comment: 13 pages, 11 figures. Invited Review to Physica Scripta, Nobel Physica Symposium on New Forms of Matter: Topological Insulators and Superconductor
    corecore