91 research outputs found

    Topological Interference Management through Index Coding

    Full text link
    This work studies linear interference networks, both wired and wireless, with no channel state information at the transmitters (CSIT) except a coarse knowledge of the end-to-end one-hop topology of the network that only allows a distinction between weak (zero) and significant (non-zero) channels and no further knowledge of the channel coefficients' realizations. The network capacity (wired) and DoF (wireless) are found to be bounded above by the capacity of an index coding problem for which the antidote graph is the complement of the given interference graph. The problems are shown to be equivalent under linear solutions. An interference alignment perspective is then used to translate the existing index coding solutions into the wired network capacity and wireless network DoF solutions, as well as to find new and unified solutions to different classes of all three problems.Comment: Revised for the IEEE Transactions on Information Theor

    Topological Interference Management with Alternating Connectivity: The Wyner-Type Three User Interference Channel

    Full text link
    Interference management in a three-user interference channel with alternating connectivity with only topological knowledge at the transmitters is considered. The network has a Wyner-type channel flavor, i.e., for each connectivity state the receivers observe at most one interference signal in addition to their desired signal. Degrees of freedom (DoF) upper bounds and lower bounds are derived. The lower bounds are obtained from a scheme based on joint encoding across the alternating states. Given a uniform distribution among the connectivity states, it is shown that the channel has 2+ 1/9 DoF. This provides an increase in the DoF as compared to encoding over each state separately, which achieves 2 DoF only.Comment: 4 pages, 3 figure

    On Critical Index Coding Problems

    Full text link
    The question of under what condition some side information for index coding can be removed without affecting the capacity region is studied, which was originally posed by Tahmasbi, Shahrasbi, and Gohari. To answer this question, the notion of unicycle for the side information graph is introduced and it is shown that any edge that belongs to a unicycle is critical, namely, it cannot be removed without reducing the capacity region. Although this sufficient condition for criticality is not necessary in general, a partial converse is established, which elucidates the connection between the notion of unicycle and the maximal acylic induced subgraph outer bound on the capacity region by Bar-Yossef, Birk, Jayram, and Kol.Comment: 5 pages, accepted to 2015 IEEE Information Theory Workshop (ITW), Jeju Island, Kore

    Multilevel Topological Interference Management

    Full text link
    The robust principles of treating interference as noise (TIN) when it is sufficiently weak, and avoiding it when it is not, form the background for this work. Combining TIN with the topological interference management (TIM) framework that identifies optimal interference avoidance schemes, a baseline TIM-TIN approach is proposed which decomposes a network into TIN and TIM components, allocates the signal power levels to each user in the TIN component, allocates signal vector space dimensions to each user in the TIM component, and guarantees that the product of the two is an achievable number of signal dimensions available to each user in the original network.Comment: To be presented at 2013 IEEE Information Theory Worksho

    Topological Interference Management with Alternating Connectivity

    Full text link
    The topological interference management problem refers to the study of the capacity of partially connected linear (wired and wireless) communication networks with no channel state information at the transmitters (no CSIT) beyond the network topology, i.e., a knowledge of which channel coefficients are zero (weaker than the noise floor in the wireless case). While the problem is originally studied with fixed topology, in this work we explore the implications of varying connectivity, through a series of simple and conceptually representative examples. Specifically, we highlight the synergistic benefits of coding across alternating topologies

    A New Index Coding Scheme Exploiting Interlinked Cycles

    Full text link
    We study the index coding problem in the unicast message setting, i.e., where each message is requested by one unique receiver. This problem can be modeled by a directed graph. We propose a new scheme called interlinked cycle cover, which exploits interlinked cycles in the directed graph, for designing index codes. This new scheme generalizes the existing clique cover and cycle cover schemes. We prove that for a class of infinitely many digraphs with messages of any length, interlinked cycle cover provides an optimal index code. Furthermore, the index code is linear with linear time encoding complexity.Comment: To be presented at the 2015 IEEE International Symposium on Information Theory (ISIT 2015), Hong Kon

    Optimality of Orthogonal Access for One-dimensional Convex Cellular Networks

    Full text link
    It is shown that a greedy orthogonal access scheme achieves the sum degrees of freedom of all one-dimensional (all nodes placed along a straight line) convex cellular networks (where cells are convex regions) when no channel knowledge is available at the transmitters except the knowledge of the network topology. In general, optimality of orthogonal access holds neither for two-dimensional convex cellular networks nor for one-dimensional non-convex cellular networks, thus revealing a fundamental limitation that exists only when both one-dimensional and convex properties are simultaneously enforced, as is common in canonical information theoretic models for studying cellular networks. The result also establishes the capacity of the corresponding class of index coding problems
    • …
    corecore