3 research outputs found

    Improving cancer subtype diagnosis and grading using clinical decision support system based on computer-aided tissue image analysis

    Get PDF
    This research focuses towards the development of a clinical decision support system (CDSS) based on cellular and tissue image analysis and classification system that improves consistency and facilitates the clinical decision making process. In a typical cancer examination, pathologists make diagnosis by manually reading morphological features in patient biopsy images, in which cancer biomarkers are highlighted by using different staining techniques. This process is subjected to pathologist's training and experience, especially when the same cancer has several subtypes (i.e. benign tumor subtype vs. malignant subtype) and the same cancer tissue biopsy contains heterogeneous morphologies in different locations. The variability in pathologist's manual reading may result in varying cancer diagnosis and treatment. This Ph.D. research aims to reduce the subjectivity and variation existing in traditional histo-pathological reading of patient tissue biopsy slides through Computer-Aided Diagnosis (CAD). Using the CAD, quantitative molecular profiling of cancer biomarkers of stained biopsy images are obtained by extracting and analyzing texture and cellular structure features. In addition, cancer sub-type classification and a semi-automatic grade scoring (i.e. clinical decision making) for improved consistency over a large number of cancer subtype images can be performed. The CAD tools do have their own limitations and in certain cases the clinicians, however, prefer systems which are flexible and take into account their individuality when necessary by providing some control rather than fully automated system. Therefore, to be able to introduce CDSS in health care, we need to understand users' perspectives and preferences on the new information technology. This forms as the basis for this research where we target to present the quantitative information acquired through the image analysis, annotate the images and provide suitable visualization which can facilitate the process of decision making in a clinical setting.PhDCommittee Chair: Dr. May D. Wang; Committee Member: Dr. Andrew N. Young; Committee Member: Dr. Anthony J. Yezzi; Committee Member: Dr. Edward J. Coyle; Committee Member: Dr. Paul Benkese

    Topological Histogram Reduction Towards Colour Segmentation

    No full text

    Correspondencia estereosc贸pica en im谩genes obtenidas con proyecci贸n omnidireccional para entornos forestales

    Get PDF
    Los sistemas de visi贸n estereosc贸pica se han venido utilizando de forma manual desde hace varias d茅cadas para captar informaci贸n tridimensional del entorno en diferentes aplicaciones. Con el desarrollo experimentado en los 煤ltimos a帽os por las t茅cnicas de procesamiento computacional de im谩genes, la visi贸n estereosc贸pica se viene incorporando cada vez m谩s a sistemas autom谩ticos de diferente naturaleza. El problema central en la automatizaci贸n de un sistema de visi贸n estereosc贸pica es la determinaci贸n de la correspondencia entre p铆xeles del par de im谩genes estereosc贸picas que proceden del mismo punto de la escena tridimensional. El trabajo de investigaci贸n desarrollado en esta tesis consiste en el dise帽o de una estrategia global para dar soluci贸n al problema de la correspondencia estereosc贸pica para un tipo caracter铆stico de im谩genes omnidireccionales procedentes de entornos forestales. Las im谩genes son obtenidas mediante un sistema 贸ptico basado en las denominadas lentes de ojo de pez. Este trabajo tiene su origen en el inter茅s suscitado por el Centro de Investigaci贸n Forestal (CIFOR) del Instituto Nacional de Investigaci贸n y Tecnolog铆a Agraria y Alimentaria (INIA) para automatizar el proceso de extracci贸n de informaci贸n mediante el dispositivo de medici贸n con n煤mero de patente MU-200501738. El inter茅s se centra en obtener dicha informaci贸n de los troncos de los 谩rboles a partir de im谩genes estereosc贸picas. Con las medidas obtenidas, los t茅cnicos realizan inventarios forestales que incluyen estudios sobre el volumen de madera, la densidad de 谩rboles, la evoluci贸n o crecimiento de 茅stos, entre otros. La contribuci贸n principal de este trabajo consiste en la propuesta de una estrategia que combina los dos procesos esenciales en visi贸n estereosc贸pica artificial como son la segmentaci贸n y correspondencia de ciertas estructuras existentes en las dos im谩genes del par estereosc贸pico. La estrategia se dise帽a para dos tipos de im谩genes procedentes de sendos entornos forestales. El primero de dichos entornos se refiere a pinares de pino silvestre (Pinus sylvestris L.) donde las im谩genes se han obtenido en d铆as soleados y por tanto con una alta variabilidad de los niveles de intensidad debido a las zonas iluminadas. En el segundo entorno las im谩genes proceden de bosques de roble rebollo (Quercus pyrenaica Willd.) cuya caracter铆stica m谩s relevante es que se obtienen bajo unas condiciones de iluminaci贸n relativamente escasas, d铆as nublados o al amanecer o atardecer, pero suficiente como para producir alto contraste entre los troncos y el cielo. .Debido a las caracter铆sticas tan diferentes de ambos entornos, tanto en lo relativo a la iluminaci贸n como a la naturaleza de los propios 谩rboles y las texturas que les rodean, los procesos de segmentaci贸n y correspondencia se dise帽an atendiendo al tipo concreto de entorno forestal. Hecho 茅ste, que marca la tendencia de la futura investigaci贸n cuando se analicen otros entornos forestales. En el caso de los bosques de pino, el proceso de segmentaci贸n se plantea desde el punto de vista del aislamiento de los troncos mediante la exclusi贸n de las texturas que les rodean (hojas de los pinos, suelo, cielo). Por ello, se proponen t茅cnicas espec铆ficas de identificaci贸n de texturas para las hojas y de clasificaci贸n para el resto. En este 煤ltimo caso se combinan dos t茅cnicas de clasificaci贸n cl谩sicas como son el m茅todo de Agrupamiento Borroso y el estimador param茅trico Bayesiano. El proceso de correspondencia se plantea en dos fases. En primer lugar se identifican los p铆xeles hom贸logos en sendas im谩genes del par estereosc贸pico mediante la adaptaci贸n a este problema de las siguientes t茅cnicas procedentes de la teor铆a general de la decisi贸n: Integral Fuzzy de Choquet, Integral Fuzzy de Sugeno, Teor铆a Dempster-Shafer y Toma de Decisiones Multicriterio Fuzzy. En segundo lugar, los resultados relativos a la correspondencia obtenidos mediante esas t茅cnicas se procesan para conseguir mejorarlos mediante la adaptaci贸n de sendos paradigmas: los Mapas Cognitivos Fuzzy y la Red Neuronal de Hopfield. Para el segundo entorno de bosques de roble, la segmentaci贸n se plantea como un proceso de identificaci贸n de los troncos de los 谩rboles utilizando t茅cnicas espec铆ficas de procesamiento de im谩genes, en concreto t茅cnicas de extracci贸n y etiquetado de regiones. Para cada regi贸n se obtiene un conjunto de atributos o propiedades que la caracterizan, y el proceso de correspondencia establece las regiones hom贸logas de las dos im谩genes del par estereosc贸pico mediante medidas de similitud entre los atributos de las regiones. La estrategia propuesta, basada en los procesos de segmentaci贸n y correspondencia, se compara favorablemente desde la perspectiva de la automatizaci贸n del proceso y se plantea para su aplicaci贸n a cualquier tipo de entorno forestal, si bien con las pertinentes adaptaciones y modificaciones inherentes a los procesos de segmentaci贸n y correspondencia en funci贸n de la naturaleza del entorno forestal analizado. [ABSTRACT] Stereoscopic vision systems have been used manually for decades to capture three-dimensional information of the environment in different applications. With the growth experienced in recent years by the techniques of computer image processing, stereoscopic vision has been increasingly incorporating automated systems of different nature. The central problem in the automation of a stereoscopic vision system is the determination of the correspondence between pixels of the pair of stereoscopic images that come from the same point in three-dimensional scene. The research undertaken in this thesis comprises the design of a global strategy to solve the stereoscopic correspondence problem for a specific kind of omnidirectional image from forest environments. The images are obtained through an optical system based on the lens known as fisheye. This work stems from the interest generated by the Forest Research Centre (CIFOR) part of the National Institute for Agriculture and Food Research and Technology (INIA) to automate the process of extracting information through the measurement mechanism with patent number MU-200501738. The focus is on obtaining this information from tree trunks using stereoscopic images. The technicians carry out forest inventories which include studies on wood volume and tree density as well as the evolution and growth of the trees with the measurements obtained. This paper鈥檚 main contribution is the proposal for a strategy that combines the two essential processes involved in artificial stereo vision: segmentation and correspondence of certain structures in the dual images of the stereoscopic pair. The strategy is designed for two types of images from two forest environments. The first of these refers to Scots pine forests (Pinus sylvestris L.) where images were obtained on sunny days and therefore exhibit highly variable intensity levels due to the illuminated areas. In the second of these, the images come from Rebollo oak forests (Quercus pyrenaica Willd.), the main characteristic of which is that they are obtained under relatively low light conditions, on cloudy days or at dawn or dusk, but with sufficient light to produce high contrast between the trees and sky. Due to the very different characteristics of each environment - both in terms of light and the nature of trees themselves and textures that surround them - the segmentation and correspondence processes are designed specifically according to the specific type of forest environment. This sets the trend for future research when analyzing other forest environments. In the case of pine forests, the segmentation process is approached from the point of view of isolating the trunks by excluding the textures that surround them (pine needles, the ground, the sky). For this reason, we propose the use of the specific techniques of texture identification for the pine needles and of classification for the rest. The latter case combines two classic classification techniques: Fuzzy Clustering and the Bayesian Parametric estimator. The matching process is set out in two phases. The first identifies the homogeneous pixels in separate stereo pair images, by means of the adaptation of the following techniques from general decision theory to this problem: Choquet鈥檚 Fuzzy Integral, Sugeno鈥檚 Fuzzy Integral, Dempster-Shafer Theory and Fuzzy Multicriteria Decision Making. Second, the results relating to correspondence obtained by these techniques are enhanced through the adaptation of two separate paradigms, namely: Fuzzy Cognitive Maps and the Hopfield Neural Network. Regarding the second type of forest analyzed, i.e. oak, the segmentation process s designed in order to identify the tree trunks by applying specific techniques in image processing, relating to the extraction and labelling of regions, so that each region is given a set of attributes or properties that characterizes it. The matching process establishes the equivalent regions from the two stereo pair images using measures of similarity among the attributes of the regions. The proposed strategy based on segmentation and correspondence processes can be favourably compared from the perspective of the automation of the process and we suggest it can be applied to any type of forest environment, with the appropriate adaptations inherent to the segmentation and correspondence processes in accordance with the nature of the forest environment analyzed
    corecore