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SUMMARY 

This research focuses towards the development of a clinical decision support 

system (CDSS) based on cellular and tissue image analysis and classification system that 

improves consistency and facilitates the clinical decision making process. In a typical 

cancer examination, pathologists make diagnosis by manually reading morphological 

features in patient biopsy images, in which cancer biomarkers are highlighted by using 

different staining techniques. This process is subjected to pathologist’s training and 

experience, especially when the same cancer has several subtypes (i.e. benign tumor 

subtype vs. malignant subtype) and the same cancer tissue biopsy contains heterogeneous 

morphologies in different locations. The variability in pathologist’s manual reading may 

result in varying cancer diagnosis and treatment. 

This Ph.D. research aims to reduce the subjectivity and variation existing in 

traditional histo-pathological reading of patient tissue biopsy slides through Computer-

Aided Diagnosis (CAD).  Using the CAD, quantitative molecular profiling of cancer 

biomarkers of stained biopsy images are obtained by extracting and analyzing texture and 

cellular structure features. In addition, cancer sub-type classification and a semi-

automatic grade scoring (i.e. clinical decision making) for improved consistency over a 

large number of cancer subtype images can be performed. The CAD tools do have their 

own limitations and in certain cases the clinicians, however, prefer systems which are 

flexible and take into account their individuality when necessary by providing some 

control rather than fully automated system. Therefore, to be able to introduce CDSS in 

health care, we need to understand users’ perspectives and preferences on the new 

information technology.  This forms as the basis for this research where we target to 

present the quantitative information acquired through the image analysis, annotate the 

images and provide suitable visualization which can facilitate the process of decision 

making in a clinical setting.  



 

1 

CHAPTER - I 

INTRODUCTION 

 

This research focuses towards the development of a clinical decision support 

system (CDSS) based on cellular and tissue image analysis and classification system that 

improves consistency and facilitates the clinical decision making process. The topic has 

many facets and some introduction to all of these is deemed necessary towards the 

understanding of the complete problem. Keeping this in view, a brief review of all these 

areas have been covered in the succeeding sections of this chapter. 

1.1 Origin and history of the problem 

Cancer is the second leading cause of death after heart disease in America. 

Although there has been a steady decrease in the incidence of death due to heart disease, 

no such trend can be observed in cancer. In addition to that, the risk of getting cancer is 

increasing due to major environmental, habitual and behavioral trends[1]. Some of the 

statistics published by American Cancer Society [2] in 2010, related to diagnosis and 

mortality (Figure 1.1) shows the immense scale of the problem.  

Even with impressive strides made in treating and curing cancer, further 

improvement of survival rate relies heavily on the early diagnosis of cancer. Also, 

important to clinical success is to know the behavior of a particular cancer and its 

treatment, which depends on correct identification of cancer stage and/or subtype. It is 

therefore imperative in the fight against cancer that we not only diagnose cancer early, 

but also differentiate between its various subtypes quickly and accurately. To achieve 

relatively high differential accuracy, extensive training is usually required by a 

pathologist. Unfortunately, the current diagnostic paradigm of manual assessment of 

histology slides is slow and often irreproducible [3-5]. By leveraging the power of 
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computational systems, we can not only speed up the process of diagnosis, but also 

reduce the subjectivity in pathology.  

Our research is targeted towards the design and development of a novel computer-

aided diagnosis system which seeks interaction with expert users throughout the 

diagnosis process. With the system, users can lend their expertise to the validation of 

feature extraction and quantification, and they can also select from a list of features they 

deem most important and appropriate for the classification at hand. With such user 

interactivity and flexibility, this same tool is designed to be used by different pathologists 

with different cancer classification goals as long as the system has had sufficient training.  

 
Figure 1.1:  Statistics related to new cancer cases in US (2010) with zoomed data for all 

sites and urinary cancers  

1.2 Computer aided diagnosis (CAD) 

In the past, much effort has been devoted to development of automated diagnosis 

systems for various maladies. Although the application of computational methods 

represents a significant step forward in the fight against cancer and its early detection, the 

task has been anything but trivial. Traditionally, most automated cancer diagnosis 
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research has been on the problem of differentiating between cancerous and normal tissue 

images [6, 7].  

Since pathologists use deviations in cellular structure as a means to make a 

diagnosis, many previous methods have used the statistical variation of various image 

properties to help make a diagnosis. The use of morphological features, for example, was 

reported by Jiang et al. in their study of breast cancer classification and by Roula et al. for 

the grading of prostate cancer [8, 9].  

The diagnosis system developed by Diamond et al. used a combination of 

structural and textural features to achieve an accuracy of 79.3% for the classification of 

prostatic neoplasia [10]. Esgiar et al. studied the classification of colonic mucosa using 

six different textural features and optical density and reported an overall accuracy of 90.2 

%[11].  

The choice of features in these studies was generally motivated by the hypothesis 

that the human eye uses these features for discrimination and so should automated 

systems. Recent attempts at segmentation have moved beyond this paradigm and have 

instead included less intuitive features such as fractal dimension which are not easily 

detectable or describable by humans. In a follow-up study, Esgiar et al. reported an 

increase in accuracy of their system when fractal analysis was employed along with 

previously identified textural features. Furthermore, they suggested that knowledge 

incorporation is needed for further increase in accuracy[12]. Hamilton et al. used such 

knowledge-guided segmentation to calculate features like the co-occurrence matrix and 

optical density to achieve 83% correct classification of colorectal dysplasia [13].  

We agree with Esgair’s assertion, and contend that classification accuracy can be 

increased by incorporating knowledge from an expert pathologist at every step of the 

system: image processing, feature extraction, and classification. Also, involving the user 

in the decision making process and allowing the user to bias the system will lead to 

making a more accurate prediction. The belief is that having user interaction through 
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every step of the process helps to encompass the vast heterogeneity found in tissue 

imaging data, thus making the system more robust to intra-class variation.  

1.3 Renal cell carcinoma 

We chose renal cell carcinoma (RCC) as a case study for the development of this 

tool primarily because little research has been done for the automated classification of 

RCC. Moreover, this problem is more complicated than simple normal versus cancerous 

tissue classification as RCC has four commonly observed clinical subtypes. Moreover, 

early stage kidney cancer usually has no symptoms[2]. Symptoms that may develop as 

the tumor progresses include blood in the urine, a pain or lump in the lower back or 

abdomen, fatigue, weight loss, fever, or swelling in the legs and ankles. 

RCC is the most common form of kidney cancer arising from the renal tubule in 

adults [2, 14]. An estimated 58,240 new cases of kidney (renal) cancer were diagnosed in 

2010 and an estimated 13,040 deaths from kidney cancer occurred in 2010.  RCC begins 

small and grows larger over time, like many other cancers. RCC usually grows as a single 

mass. Sometimes, a kidney may contain more than one tumor or tumors may be found in 

both kidneys at the same time. There are several sub-types of renal cell cancer and the 

prognosis and treatment can depend on what sub-type you have. More than 90% of 

clinically significant lesions can be diagnosed as one of the common subtypes of renal 

tumor: clear cell RCC (CC), papillary RCC (PAP), chromophobe RCC (CHR), and renal 

oncocytoma (ONC). We will explore some of the features of these subtypes as these will 

be used repeatedly in the succeeding chapters of this document. 
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1.3.1 Clear Cell 

This is by far the most common sub-type of the RCC [15] and more than 75% of 

the renal cell cancers belong to this subtype. CC predominantly consists of cells with 

clear cytoplasm.   

Figure 1.2:   Photomicrograph of a clear cell RCC shows characteristic clear cytoplasm. 

 

 

1.3.2 Papillary  

Papillary renal cell carcinoma is the second most common sub-type after clear 

cell. About 12 % of the renal tumors belong to this subtype[15] . These cancers form little 

finger-like projections (called papillae) in most of the tumor. Some doctors call these 

cancers chromophilic because the cells take in certain dyes used so the tissue can be seen 

under the microscope, and look pink. 
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Figure 1.3:   Photomicrograph of a Papillary RCC showing characteristic white streaks. 

1.3.3 Chromophobe 

Chromophobe RCC occurring approx. 4% amongst renal cancer[15], tends to 

metastasize to the liver more than clear cell RCC. Chromophobe RCC is 

histopathologically characterized by large polygonal cells with prominent cell 

membranes (Figure 1.4). In contradistinction to clear cell RCC, the tumor blood vessels 

are thick walled and eccentrically hyalinized 

Figure 1.4:   Photomicrograph of a chromophobe RCC shows characteristic peri-nuclear 

halos (arrows). 

1.3.4 Renal Oncocytoma 

Renal Oncocytoma is actually a benign tumor. Renal Oncocytoma occurs at about 

5 to 10% [15] of the rate of kidney cancer. Renal oncocytoma can occasionally be 

confused with chromophobe RCC or the granular variant of clear cell RCC, although 

http://radiographics.rsna.org/content/26/6/1795.full#F15
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most cases are easily diagnosed. Although benign, oncocytoma occasionally co-exists 

with cancer which may be present within or near the oncocytoma.  

Figure 1.5:   Photomicrograph of a renal oncocytoma. 

Renal tumor subtypes exhibit several common morphological characteristics, 

making diagnosis difficult and subjective in many cases. Histopathologic classification is 

critical for the treatment of RCC because each of its subtypes is associated with a distinct 

clinical behavior. Development of a diagnosis technique with a quantitative approach to 

renal tumor classification is therefore critical and very much needed.  

Expert knowledge of RCC features was incorporated into our system by letting a 

pathologist select the features most relevant to him for the diagnosis of RCC. This was 

coupled with the prior knowledge about the presence and/or absence of specific 

histological features and structures (Red blood cells, blood vessels, lipid structures, 

papillary bodies) in various subtypes of RCC.  

1.4 Cellular Staining 

Staining [16] is an auxiliary technique used in microscopy to enhance contrast in 

the microscopic image. Stains and dyes are frequently used in biology and medicine to 

highlight structures in biological tissues for viewing, often with the aid of different 

microscopes. Stains may be used to define and examine bulk tissues (highlighting, for 

example, muscle fibers or connective tissue), cell populations (classifying different blood 

cells, for instance), or organelles within individual cells. 

http://en.wikipedia.org/wiki/Microscopy
http://en.wikipedia.org/wiki/Microscope
http://en.wikipedia.org/wiki/Dye
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Medicine
http://en.wikipedia.org/wiki/Biological_tissue
http://en.wikipedia.org/wiki/Microscope
http://en.wikipedia.org/wiki/Muscle_fiber
http://en.wikipedia.org/wiki/Connective_tissue
http://en.wikipedia.org/wiki/Cell_%28biology%29
http://en.wikipedia.org/wiki/Blood_cell
http://en.wikipedia.org/wiki/Blood_cell
http://en.wikipedia.org/wiki/Organelle
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In biochemistry it involves adding a class-specific (DNA, proteins, lipids, 

carbohydrates) dye to a substrate to qualify or quantify the presence of a specific 

compound. Staining and fluorescent tagging can serve similar purposes. Biological 

staining is also used to mark cells in flow cytometry, and to flag proteins or nucleic acids 

in gel electrophoresis. 

Staining is not limited to biological materials, it can also be used to study the 

morphology of other materials for example the lamellar structures of semi-crystalline 

polymers or the domain structures of block copolymers. 

Cell staining techniques [17] and preparation depend on the type of stain and 

analysis used. One or more of the following procedures may be required to prepare a 

sample: 

Permeabilization - treatment of cells, generally with a mild surfactant, which 

dissolves cell membranes in order to allow larger dye molecules to enter inside 

the cell. 

Fixation - serves to "fix" or preserve cell or tissue morphology through the 

preparation process. This process may involve several steps, but most fixation 

procedures involve adding a chemical fixative that creates chemical bonds 

between proteins to increase their rigidity. Common fixatives include 

formaldehyde, ethanol, methanol, and/or picric acid. 

Mounting - involves attaching samples to a glass microscope slide for 

observation and analysis. Cells may either be grown directly to the slide or loose 

cells can be applied to a slide using a sterile technique. Thin sections (slices) of 

material such as tissue may also be applied to a microscope slide for observation. 

Staining - application of stain to a sample to color cells, tissues, components, or 

metabolic processes. This process may involve immersing the sample (before or 

after fixation or mounting) in a dye solution and then rinsing and observing the 

sample under a microscope. Some dyes require the use of a mordant, which is a 

http://en.wikipedia.org/wiki/Biochemistry
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Lipid
http://en.wikipedia.org/wiki/Carbohydrate
http://en.wikipedia.org/wiki/Fluorescent_tag
http://en.wikipedia.org/wiki/Flow_cytometry
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Nucleic_acid
http://en.wikipedia.org/wiki/Gel_electrophoresis
http://en.wikipedia.org/wiki/Morphology_%28biology%29
http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Block_copolymer
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chemical compound that reacts with the stain to form an insoluble, colored 

precipitate. The mordanted stain will remain on/in the sample when excess dye 

solution is washed away. 

There are several types of staining media; each can be used for a different 

purpose. Commonly used stains and how they work are listed below. All these stains may 

be used on fixed, or non-living, cells and those that can be used on living cells are noted. 

Bismarck Brown - colors acid mucins, a type of protein, yellow and may be used 

to stain live cells 

Carmine - colors glycogen, or animal starch, red 

Coomassie blue - stains proteins a brilliant blue, and is often used in gel 

electrophoresis  

Crystal violet - stains cell walls purple when combined with a mordant. This 

stain is used in Gram staining 

DAPI - a fluorescent nuclear stain that is excited by ultraviolet light, showing 

blue fluorescence when bound to DNA. DAPI can be used in living of fixed cells  

Eosin - a counterstain to haematoxylin, this stain colors red blood cells, 

cytoplasmic material, cell membranes, and extracellular structures pink or red. 

Ethidium bromide - this stain colors unhealthy cells in the final stages of 

apoptosis, or deliberate cell death, fluorescent red-orange. 

Fuchsin - this stain is used to stain collagen, smooth muscle, or mitochondria. 

Hematoxylin - a nuclear stain that, with a mordant, stains nuclei blue-violet or 

brown. 

Hoechst stains - two types of fluorescent stains, 33258 and 33342, these are used 

to stain DNA in living cells. 

Iodine - used as a starch indicator. When in solution, starch and iodine turn a dark 

blue color. 
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Malachite green - a blue-green counterstain to safranin in Gimenez staining for 

bacteria. This stain can also be used to stain spores. 

Methylene blue - stains animal cells to make nuclei more visible. 

Neutral/Toluylene red - stains nuclei red and may be used on living cells. 

Nile blue - stains nuclei blue and may be used on living cells. 

Nile red/Nile blue oxazone - this stain is made by boiling Nile blue with sulfuric 

acid, which creates a mix of Nile red and Nile blue. The red accumulates in 

intracellular lipid globules, staining them red. This stain may be used on living 

cells. 

Osmium tetroxide - used in optical microscopy to stain lipids black. 

Rhodamine - a protein-specific fluorescent stain used in fluorescence 

microscopy. 

Safranin - a nuclear stain used as a counterstain or to color collagen yellow. 

After staining cells and preparing slides, they may be stored in the dark and 

possibly refrigerated to preserve the stained slide, and then observed with a 

microscope. 

1.5 Quantum Dots (QD) 

QDs are tiny light-emitting particles on the nanometer scale, and are emerging as 

a new class of fluorescent labels for biology and medicine [18, 19]. In comparison with 

organic dyes and fluorescent proteins, QDs have unique optical and electronic properties 

such as size-tunable light emission, superior signal brightness, resistance to photo-

bleaching and simultaneous excitation of multiple fluorescence colors. These properties 

are most promising for improving the sensitivity and multiplexing capabilities of 

molecular histopathology and disease diagnosis. Recent advances have led to highly 

bright and stable QD probes that are well suited for profiling genetic and protein 

biomarkers in intact cells and clinical tissue specimens[20]. In contrast to in vivo imaging 
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applications where the potential toxicity of cadmium-containing QDs is a major concern, 

immunohistological staining is performed on in vitro clinical patient samples. As a result, 

the use of multicolor QD probes in immunohistochemistry (IHC) is likely one of the most 

important and clinically relevant applications in the near term. 

In recent years, several groups have used QD probes for fluorescence 

immunostaining of fixed cells and tissue specimens[21]. However, medical applications 

of QD-based immunohistochemistry have not achieved widespread adaptation or 

significant clinical success. A major problem is the lack of robust protocols and 

experimental procedures to define the key factors and steps involved in QD 

immunohistochemical staining and data analysis. In particular, there are no consensuses 

on methods for QD– antibody (QD–Ab) bioconjugation, tissue specimen preparation, 

multicolor QD staining, image processing and data quantification. We collaborated in one 

such effort [22] for development of antibody- conjugated QDs for multiplexed and 

quantitative (or semi-quantitative) IHC, and five-color molecular profiling on formalin-

fixed and paraffin-embedded (FFPE) clinical tissue specimens was have achieved. An 

example of QD stained prostate tissue is shown in Figure 1.6 

 

Figure 1.6: 4-QD stained prostate tissue shown cellular structure of prostate glands. 
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1.6 Clinical Decision Support Systems 

CDSS are computer systems designed to facilitate clinician decision making process. 

The systems try to make individual specific decisions utilizing additional data and 

information available through their personal records and other sources. CDSS generally 

have three major components i.e. the knowledge base, the reasoning engine and the user 

interface  [23]. The knowledge base contains the rules and associations of compiled data. 

The inference engine combines the rules from the knowledge base with the patient’s data.  

CDSSs in healthcare [24] have met with varying amounts of success in different 

domains including image analysis of radiology[25] [26] and histology images[27] [28]. 

Most successful areas include pharmacy and billing sectors while core areas are still the 

main focus of the community. According to Ken Congdon [29], CDSS is one of the top 

10 IT trends in the year 2012(Table1.1) . At present focus of CDSS [30] is on following 

areas:  

• Alerts and Reminders  

• Diagnostic Assistance  

• Prescription Decision Support  

• Information Retrieval  

• Image Recognition and Interpretation  

• Therapy Critiquing and Planning  

 

Table 1.1   Top 10 IT Trends for 2012

 
 

The investigation, analysis and interpretation of the pathological imaging data mainly 

depends on the pathologist’s knowledge, experience and his subjective view about the 
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data. Although  Computer Aided Diagnostic (CAD) tools [31]can help reduce this 

subjectivity and the inter-user and intra-user variability and gained some acceptance 

among clinicians [3, 4], sometimes the clinicians, prefer systems which are flexible and 

take into account their individuality when necessary by providing some control rather 

than fully automated system [32] [33]. Studies[34, 35] have shown improvement in 

practitioner’s performance and patient’s outcome for CDSS which account for 

practitioner’s perspective and integrate it in the workflow. Therefore, to be able to 

introduce CDSS in health care [36] [37] [38], we need to understand users’ perspectives 

and preferences on the new information technology.  This forms as the basis for this 

research where we target to present the quantitative information acquired through the 

image analysis, annotate the images and provide suitable visualization which can 

facilitate the process of decision making in a clinical setting.   

 

1.7 Summary 

 

In this chapter, we covered the origin and background of the problem. A brief 

review of CAD systems used to solve similar problems was carried out followed by some 

introduction to RCC basic staining techniques and CDSS trends which will provide us 

with enough background information to understand the work presented in the subsequent 

chapters. 
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CHAPTER - II 

MOLECULAR PROFILING 

 

Traditionally, tumors have been categorized on the basis of histology. The clinical 

behavior of human cancer has been predicted using its microscopic appearance. This has 

been a useful approach because cancer has hundreds of shapes and structures under the 

microscope. The staining pattern of cancer cells viewed under the microscope is 

insufficient to reflect the complicated underlying molecular events [39].  For example, 

prostate carcinoma arising in two patients may look virtually identical under the 

microscope, but each patient may have a different clinical outcome. This traditional 

classification scheme is also limited by a number of factors[40]. First, it relies on a 

subjective review of the tissue that is dependent on the knowledge and experience of a 

pathologist, and therefore may not be reproducible. The classification is discrete, rather 

than continuous, meaning that patients are classified into broad treatment groups (e.g., 

low, medium, or high probability of recurrence) with limited ability to determine the 

individual recurrence risk. In addition, current pathology reports either lack or offer very 

little information regarding the potential drug treatment regime to which a cancer will 

respond. While current pathology does help determine treatment that leads to better 

outcomes, tumors with identical pathology may have different origins and respond 

differently to treatment. Consequently there has been a persistent need to find some way 

to accurately subcategorize, and understand, the biological diversity of cancer. 

 Classification of cancerous tissue based on its molecular profile overcomes these 

limitations. A molecular profile determines the level of gene expression within the cancer 

by hybridizing the cellular RNA with known genes. Currently this is done using 

microarray technology to provide information on thousands of genes simultaneously. 

Once the gene expression pattern is determined, this information is compared to the 
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expression profiles of cancers with known outcomes using a predetermined algorithm. 

The algorithm then places the cancer into an outcome class based on similar gene 

expression patterns, or it will return a survival probability. However, the use of these tests 

for clinical decision making presents many challenges to overcome[41]. Assay 

development and data analysis in this field have been largely exploratory, and leave 

numerous possibilities for the introduction of bias. Optimal incorporation into clinical 

practice is not straightforward. Finally, cost-effectiveness is difficult to appreciate until 

these other challenges are addressed. Overall, molecular profiling is a fascinating and 

promising technology, but its incorporation into clinical decision making requires careful 

planning and robust evidence. 

The information available under the microscope also has so much detail that mere 

pathological observation may not reveal the true information contact. Moving away from 

the classic definition of molecular profiling, using advanced image analysis of the 

biomarker distributions and appropriate experimental models, the ultimate goal to move 

beyond correlation and classification to achieve new insights into disease mechanisms 

and treatment targets may be achieved. Keeping this in view, we carried out a case 

study[42] for the colorectal cancer where no known biomarkers of risk are available 

which can be used for predicting and preventing the disease.   

2.1 Image quantification system for colorectal cancer risk assessment using 

quantum dots and molecular profiling 

Based on new knowledge of the molecular basis of colorectal cancer, we 

developed and validated a panel of biomarkers of risk that can be measured in rectal 

biopsies.  The goal of this work is to develop an integrated detection and image analysis 

quantification system for measuring and applying these biomarkers in clinical research 

and care. More importantly, the new system can process biopsy images from both 

traditional and bio-nanotechnology quantum dot-based IHC, and through a combination 
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of novel and automated image analysis and quantification algorithms, it will significantly 

reduce processing time by detecting multiple biomarkers simultaneously on the same 

histologic sections. Clinical application of this novel process of detecting and quantifying 

biomarkers, coupled with decision support from the analysis of a biomarker 

quantification database, is expected to open new frontiers in the field of colorectal cancer 

prognosis and treatment.  

Figure 2.1   Biomarkers of risk for colorectal cancer. (Left) Biomarker detection using 

traditional IHC. (Right) Biomarker detection using quantum dot IHC 

From rectal biopsies, we are interested in measuring the intensity and distributions 

of labeled antigens in the colon crypts. Colon crypts are test tube-like inversions of the 

inner colon lining. They are sites where colon polyps develop. Our existing system [43] 

uses immunohistochemical methods to detect the biomarkers in histologic slides (Figure 

1) of normal colon tissue. In outline, immunohistochemistry (IHC) is a procedure in 

which an antigen (e.g., a protein biomarker) in a tissue is identified in a series of steps 

(Figure 2), including the application of a primary antibody to the antigen, linking the 

primary antibody to a secondary antibody that has an attachment site for a chemical 

linking agent, adding the linking agent that has an attachment site for a chromogen (e.g., 

DAB), and then adding the chromogen (one can also apply a counterstain at this point).  

Only one antigen can be detected on a given slide using this method.  To detect six 
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different biomarkers, a set of five slides must be processed for each biomarker separately, 

for a total of 30 slides (6 biomarkers x 5 slides per set); each set of slides must also be 

analyzed separately.  We also carried out experiments (Figure 2) using specially coated 

nanocrystals, called quantum dots (Q-Dots), instead of the chromogen. Q-Dots have the 

property of being easily excited to emit light in a very narrow spectrum.  Q-Dots of 

slightly different sizes emit different, non-overlapping spectra. Q-Dots can be conjugated 

to the usual linking agents used in traditional IHC (Figure 2).  This means that we can 

link Q-Dot-linking agent complexes with different size Q-Dots to different antibodies and 

thus to different antigens, thereby allowing detection of multiple biomarkers on the same 

slides. Also, in contrast to immunofluorescent dyes, the light emissions from quantum 

dots last months rather than just a few minutes, thus making analysis feasible in 

population- or clinical-based studies. With our new nanotechnology-based methods all 

six biomarkers can be detected at the same time (“multiplexed”) on one set of five slides 

(Figure 2). 

Figure 2.2   Schematic representation of traditional and quantum dot IHC to detect 

biomarkers of risk for colorectal cancer 
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In our current system [43], candidate crypts are selected and traced by a trained 

technician. Biopsies are selected for scoring if they contain complete cross-sections of 

colon crypts and adequate staining is present in the slide. Then the technician draws a 

tracing encompassing one side of the crypt wall, termed a ‘hemi-crypt’. Colon cells 

within the tracing are segmented and measurements of the colon cells are recorded. This 

system is good enough for a research setting but certain limitations like capability to 

analyze only gray scale images, manual crypt tracing, and non-integrated systems 

components make it impractical for clinical use.  

2.1.1 Image analysis and quantification system 

We have developed a complete integrated solution for image processing, 

quantification, and analysis of biomarkers for subsequent use in a clinical trial.  The 

system (Figure 3) is capable of handling imaging data from both IHC and Q-Dot-based 

imaging. Imaging data are acquired by scanning multiple slides using an ultra-fast slide 

scanning System (T3 - Aperio Technologies), and selected colon crypts are processed 

using the image processing module. The module carries out semiautomatic hemi-crypt 

segmentation, color-based tissue classification, and hemi-crypt sectioning (discussed in 

detail in the following sections). Various biomarker features obtained through the image 

processing module are quantified and stored in a database. The obtained feature set is 

then analyzed and correlated to the existing data for predicting the results. The results 

will be validated by a clinician and feedback will be used to train the system for 

subsequent prediction. It is expected that the iterative process will eventually stabilize 

and the system’s prediction accuracy will increase to a limit where it can be used without 

a clinician’s validation. 
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Figure 2.3 Components of integrated image analysis and quantification system 

2.1.2 Image processing module  

This module, developed in Matlab, is a collection of various image processing 

tools and is capable of processing image files of selected hemi-crypts from the Slide 

Scanner. The user interacts with the system through a graphical user interface (GUI) for 

performing various tasks (explained below) easily and efficiently.   

Semi-Automatic Hemi-crypt Segmentation and Color Segmentation 

The first step in processing the images is to mark the region of interest, i.e., a 

hemi-crypt (one half of the symmetric colon crypt). This is accomplished by using our 

semi-automatic segmentation tool which has been discussed in detail in section (3.2) 

followed by the color segmentation classification of each pixel to belong to one of the 

biomarkers or to the background. This is achieved by using K-means clustering as 

described in section (3.1.1).  

Hemi-crypt Sectioning 

All of our colon cancer risk biomarkers are expressed in terms of density 

gradients along the lengths of colon crypts. As the shape and spatial orientation of the 

crypts can vary significantly from sample to sample, it poses a significant challenge to 

automatically determine the biomarker distribution and correlate this information with 

information obtained from other samples. We found the solution to this problem by 

dividing the hemi-crypt into subsections of uniform width.  Two ends of the crypt are 

Data Acquisition 
Image 

Processing 
Quantification 

Molecular Profiling Clinician 

Database 
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marked by the user while tracing the hemi-crypt boundary during the segmentation 

process.  Two user selectable modes are available to perform sectioning. These modes 

provide the option to section the hemi-crypt into a fixed number of slices or to partition it 

based on a user provided thickness parameter. Hemi-crypt sectioning is performed by 

computing the center line for the crypt, catering for all types of perimeter and shape 

variations, and ensuring no overlapping regions.  The sectioning information is not only 

useful for determining the biomarker’s density distribution, but also assists in maintaining 

standardization between samples for correlation purposes.   

 

 

Figure 2.4   An application snapshot showing (a) hemi-crypt segmentation, (b) color 

separation, (c) sectioning, (d) GUI, (e) biomarker density distribution 

2.1.3 Quantification and molecular profiling  

Because the amount of staining of a biomarker is proportional to the amount of 

biomarker in the tissue, and because the optical density of the staining is proportional to 

the amount of staining, we can quantify the amount of biomarker in the tissue using 

optical density measurements.  The biomarkers thus detected during the image processing 

steps are converted into numeric format during the quantification process. Key 

parameters like biomarker intensities, background intensities, relationship of biomarker 

area to that of background area within the section, length of crypts etc. are of vital 

a 

b 

c 
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e 
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importance. These parameters pertaining to the complete hemi-crypt as well as each 

subsection are stored in the database for subsequent analysis and classification.   

Table 2.1   A database table extract, showing some of the section parameters 
 

 

 

 

 

 

 

 

 

 

The analysis of these parameters will help us understand the molecular anatomy 

of normal cells and cells in various stages of progression to cancer. This will be achieved 

by correlating the biomarker density profiles (Figure 5e) of the patients with different 

datasets (already validated and stored in the database) to generate a prediction score for 

each sample and provide this score as a final output of our system.  

2.2 Summary 

We have demonstrated that a valid panel of biomarkers of risk for colorectal 

cancer can be detected in histologic slides of normal colon tissue using traditional IHC as 

well as multiplexed, quantum dot IHC. Clinical application of these biomarkers requires a 

time efficient, consistent and accurate detection and processing system. These 

requirements are amply supported by our integrated image processing, quantification and 

analysis system. Using this novel implementation detection scheme will not only reduce 

the processing time and user effort significantly but will also add accuracy and 

consistency to the results. It is estimated that a single user will be able to process a set of 

slides in less than 5 minutes (excluding slide preparation time). These tools, using the 

semi-automated segmentation, will also reduce inter-user variability significantly thereby 

producing consistent results. In addition our color based biomarker detection is more 

accurate and easy to validate than our previous gray scale based detection system [43].  
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We extended this work to analyze prostate cancer specimens using both IHC and 

QD staining. We were able to successfully quantify different biomarkers and analyze 

their distributions and molecular profiles. Figure 2.5 and Figure 2.6 shows couple of 

examples for the GUI used for the analysis of prostate cancer. With all these 

improvements, our proposed system shows a great promise for clinically valid and 

practical methods of assessing and managing risk for  cancer. 

Figure 2.5   A GUI with overlays showing QD stained prostate tissue with segmented 

gland, a single biomarker signature, pseudo-color biomarker signature 

representation, sample points for radial profiling and intensity profile of the 

biomarkers. 
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Figure 2.6   A GUI showing IHC stained prostate tissue, livewire segmentation of ROI 

and biomarker signatures  
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CHAPTER - III 

SEGMENTATION 

 

Analysis of an image begins with a segmentation process, which differentiates 

meaningful regions of interest from the background. In our case, we are attempting to 

identify regions which most likely correspond to cells or nuclei. This step is critical[44] 

in that its outcome serves as the basis for all subsequent analyses, such as the extraction 

of shape features, and ultimately the interpretation of cell behavior and diagnosis.  

Depending on segmentation requirements different techniques are adopted which 

are most suited to achieve the desired results. During our study, we employ segmentation 

for three different requirements i.e. color segmentation, ROI segmentation and nuclear 

cluster segmentation. Color segmentation is used to identify different regions based on 

their staining color. ROI segmentation, as the name implies, segments regions where 

analysis is required to be performed. The third requirement, nuclear cluster segmentation, 

works on already color segmented nuclear masks and uses shape based features to split 

nuclear clusters. We will discuss the segmentation techniques for all these focus areas in 

detail in following paragraphs. 

3.1 Color segmentation. 

Color segmentation is an important topic in biomedical image analysis because 

many biological discoveries and medical decisions are based on color staining of 

samples. Among many different aspects, the most relevant to our study are: 

a. Existing color segmentation applications in biomedicine (e.g. skin lesions etc.) 

b. Color representation and perception 

c. Interactivity and usability 
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Due to the complexity and heterogeneity of biomedical images, generic solutions 

are quite uncommon. A survey of biomedical image processing reveals a number of 

application-specific color segmentation techniques. One automatic color segmentation 

algorithm [45] is specifically designed for skin tumor feature identification. In that work, 

the segmentation depends on a database of feature information created by a dermatologist 

using specific software. Their methodology works well in feature based detection but 

can’t be applied generically to a wide variety of images.  Another work related to skin 

color segmentation [46] is based on a mixture of Gaussians. Satisfactory results were 

obtained for human skin color under different illumination. However, the method has not 

been tested for segmentation of images with appreciable color variation.  Another 

segmentation algorithm, particularly related to skin color detection [47], but without any 

user interaction, depends on variable parameters and gives results which may not meet 

the user’s expectation. A linear color segmentation technique [47]used to segment an 

image at material boundaries may suffer from spatial color heterogeneities which arise in 

supposedly uniform pigmented objects. Another work pertaining to color segmentation of 

pigmented skin lesions [48] is based on two-dimensional histogram analysis and a fuzzy 

K-means clustering technique. There, median filtering and morphological operations 

were used to smooth the border before segmentation. This approach might be useful for 

the particular problem addressed, (detection of pigmented skin lesions), but it does not 

address the major problem of color segmentation in biological images which may vary in 

color, intensity, imaging modality etc. 

Images with sharp color distinctions can be easily segmented by using one of 

several segmentation algorithms available [49]. Current digital cameras make it possible 

to capture high resolution color images in clinical applications. However, natural and 

biological stained color images lack high contrast discontinuities.  In addition, there are 

variations among staining colors or light conditions. Thus, using computers to conduct 

color quantification becomes increasingly important in clinical diagnosis, and emerges as 
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a new field called Computer Assisted Diagnosis (CAD). One of the challenges in CAD is 

how to perform precise color segmentation.  

Gray-scale image segmentation use discontinuity-based techniques [50-52] to 

partition an image by detecting isolated points, lines and edges caused by sudden changes 

in gray levels. Homogeneity-based methods perform thresholding, clustering, region 

growing, and region splitting and merging [52]. Color is a feature of an object’s surface. 

Distinctive colors form peaks in color histograms. Because color images are usually 

measured and represented by three color components: red green and blue, (R,G,B), most 

color segmentation approaches just extend 1-color gray intensity processing to 3-colors 

[50], and are generally based on either histograms or clustering techniques. In histogram-

based approaches, clusters are obtained by finding frequency peaks in the histogram. 

Unlike gray level histograms, color histograms have more than one dimension. Thus, the 

peak can be found either independently in each color channel or in the whole 3D 

histogram. In clustering-based techniques, pixels are grouped based on a distance metric 

and the color values of the points. The spread within a cluster is mainly determined by 

color variations due to shading and device noise. An example is the K-means algorithm, 

which iteratively computes each cluster’s membership and mean color values until 

convergence. Weeks et al. showed that K-means provide efficient pixel classification 

based on color information [53].  

3.1.1 K-means for color segmentation 

In the K-means algorithm, an objective function, given below as J, is minimized. 

2

1 j

K

i j

j i S

J x 
 

   .................................................... (3.1) 

In this case, J is the squared Euclidean distance of the n data points from their 

respective cluster centers, where xi is a data point in cluster j, and μj is the j
th

 cluster 

center. For color segmentation, xi is a three dimensional vector of {red, blue, green}, but 

this can be generalized to any number of dimensions.  



 27 

In general, the K-means algorithm suffers from the local minima problem and a 

lack of user control. In [22, 49, 54] the authors have shown that K-means clustering with 

user-provided seed points can result in better segmentation when compared to fully 

automated “unsupervised” K-means.  Generally, clinical applications prefer accuracy 

over automation, if the segmentation results with user interaction can be produced in real 

time; they will be the top design choice. Under this guideline, i.e. to maximize the user 

feedback while performing the computation in real time, we have designed a color 

visualization and segmentation system.  

This system maps the color information in 3D RGB space to 2D for faster 

interactive segmentation. Our 2D color space consists of the hue and chroma of the input 

colors. The user can mark zones on the color map rather than clicking on an individual 

seed point. This helps in better capturing the user’s perception, and results in better color 

segmentation.  

3.1.2 Color segmentation using color maps 

The user’s perception is another very important aspect for any color segmentation 

technique. The color models used and the differentiation metric used to separate different 

classes should incorporate human perception models. A perceptual color segmentation 

algorithm [55] segments RGB color space into ten color categories using Munsell and 

CIELUV color models. This method has some user interaction since the users are asked 

to name representative colors in each color category, however, it is subjective due to 

different names given to the same color by different users.  In [56]the authors find the 

dominant colors in an image by finding ridges in the color distribution and assigning a 

unique color at every ridge as a representative color of an interesting region.  This 

approach has the limitation of labeling a region with a single color resulting in loss of 

color variation. Another method [57] is again related to skin color segmentation by using 

a 2D plane in RGB color space. Principal component analysis is applied based on the fact 
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that skin colors in the RGB space are approximately distributed in a linear fashion. The 

authors claim that the problem of color constancy [58] is relieved, but their results are for 

a specific particular dataset i.e. skin color images. Their algorithm may be applicable for 

some biological images in which the color distribution is linear in RGB space, but it may 

not work for other images in which the color distribution is not easily described by a 

plane in RGB space.  

The user’s perception of color can also be incorporated by introducing 

interactivity and user feedback. Interactive segmentation [59], in which the “user is in the 

segmentation loop,” allows the addition and removal of regions of interest by the user. It 

does not, however, allow the user to select color components for segmentation. 

Interactive feature extraction has been applied to color breast cancer images [60].  In the 

training phase, that algorithm requires the user to select between 25 and 100 points for 

each color of interest to segment. This approach is highly subjective, especially when the 

colors for different image features vary only slightly from each other. In addition, this 

process is time consuming. The problem gets more complicated with color variation in 

biological images. A tool for interactive object segmentation in color images [61] has 

previously been developed. In that tool, seed point information is acquired from the user 

to perform watershed based segmentation. Another work [62] depends on user selected 

seed points for segmentation. The test image used in that work has clearly defined color 

edges and different objects in the image have homogenous colors, but most of the images 

used for biological purposes have diffused color boundaries and lack homogenously 

colored objects. Another work [63] describes adaptive region growing color segmentation 

for text images. Authors have reported satisfactory results with text images except for 

images with very high color variance. This makes their approach unsuitable for 

biomedical image segmentation.   
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We designed our color segmentation tool to be interactive and to incorporate color 

constancy perceived by humans. Some other salient features of our segmentation scheme 

include: 

 Visualization of 3D RGB colors in a 2D space that covers the pixel frequency, color 

composition and color class clustering (co-localization) of the images 

 Selecting several color class samples in a time frame equivalent to single seed point 

selection 

 Enhanced user control  

 Compatibility with different types of cancer images stained with different colored 

dyes 

Segmentation in color space is challenging because it is not easy to find a 

similarity metric that translates the user’s perception of 3D color space to a single 

dimension decision parameter. Even with high-speed computer graphics, it is difficult for 

users to select or encapsulate clusters directly in a 3D space, such as the RGB space. In 

this work, we reduce this complexity to provide an interactive environment in 2D. For 

data visualization we used Hue (H) and Saturation (S) plane (Figure 3.1) as mapping 

space where all the pixels in the test image are mapped close to other pixels which have 

similar HS values (co-localization). It may be noted that the color space is not being used 

to do the dimensionality reduction. It is only used to co-localize the pixels e.g. using HS 

plane, all pixels with same Hue and Saturation values will be mapped close to each other 

irrespective of intensity. The pixels displayed will still appear with their original intensity 

value i.e. the pixels in color map show all components (RGB).  
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Figure 3.1.  (L) HS plane with unit value (R) HSV color space[64] 

 

We tested different visualization schemes using different images and selected HS 

plane for color maps as it showed better spread and easier interaction.  One such example 

is shown in figure 3.2 comparing color maps based on HS, HV and SV planes (map 

generation explained later).  It can also be seen that HS plane provides a better 

representation of test image pixels 3D scatter plot than HV and SV representation.  

  

Figure 3.2  Mapping of image pixels to different planes is shown using random spread 

visualization. Mapping to HS Plane presents better spread, easier interaction 

and better representation of 3D scatter plot of image pixels. 

Hue 

Saturation 

Mapping to HV Plane  Mapping to SV Plane  

Mapping to HS Plane  
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 Direct mapping of the pixels to visualization space has certain limitations. 

Because most image formats support 24-bit color values, the probability of multiple 

pixels mapping to a single location is significant. In addition, if the visualization space 

image size is large in comparison to only 255 (8 bit) possible values along one axis, blank 

rows and columns remain, as shown in figure 3.3  We can also see that figure 3.3 does 

not give a true representation of how frequently a specific shade of color is represented in 

the input image.  

Figure. 3.3   (L) Test image   (R) 2D Visualization space representing image. Both the 

problems of co-located pixels and the unmapped space can be seen. 

 

We tried different methods to generate color map by arranging pixels in order to 

present the user with a true representative of the image in real time for interactive 

visualization.  In the following section, we will discuss different techniques, along with 

their advantages and disadvantages, to overcome these issues in order to present the user 

with a representative interactive visualization.   

Methodology Design 

A. Flattened Histogram Visualization 

2D visualization shown in Figure 3.3 loses the information of all the pixels which 

map to same location. If we retain this information we can generate a 3D histogram 

where the bin height represents number of pixels mapped to a particular location. To 

reduce dimensionality we can collapse these histogram bin towers by spreading them in 
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2D. This will result in a map where similar pixels are placed near each other and every 

pixel in the input image appears once in the map. We refer to this as a “Flattened 

Histogram.”  This process involves creating sufficient space around each bin according to 

its height and then filling in the pixels data in these locations. There are lots of blank 

spaces created in this process which are subsequently removed by a radial sort scheme. 

Figure 3.4 demonstrates the flattened histogram process. Pixels of similar color in an 

image are mapped to a single location and pixel count is used to create a histogram as 

shown in Figure 3.4a. Figure 3.4b represents the same histogram in 2D visualization 

space and the number in each cell represents the number of pixels (histogram height) of 

that specific color in the input image. We compute a square space which can 

accommodate this number of pixels. For 5 elements we need a space √5 = 2.23, rounding 

to next whole number we need a 3x3 space as shown in Figure 3.4c. By computing the 

row and column maximum values and computing the square space we generate the 

complete map as shown in Figure 3.4d. A radial sort is performed to move the pixel 

values towards the center and move the blank spaces outwards, towards the edges Figure 

3.4e.  

 

The resultant image shown in Figure 3.5b represents every pixel in the image 

(Figure 3.5a).  Pixels are generally placed in the neighborhood of similar pixels.  

 
Figure. 3.4  (a) Histogram showing pixel count in input image binned according to 

the pixel color (b) 2D visualization of Histogram values (c) Space 

allocation for individual cell (d) Space allocation for complete map (e) 

Visualization map after radial sort 
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However, two major problems were observed in this scheme. One is that during radial 

sort pixels may move significantly away from other pixels of their class.  As shown in 

Figure 3.5b, some of yellow pixels in the flattened histogram have moved to the 

neighboring purple space. Secondly, the space allocation and radial sort are relatively 

expensive in terms of computational cost. 

 
 

 

 

 

 

 

 

 

 

B. Spiral Spread Visualization 

Another approach “Spiral Spread” maps every pixel to an already occupied 

location, searches for an empty space in their vicinity and places it at the first available 

empty space. The empty space is found by searching in a spiral loop (Figure 3.6) 

increasing the search radius after completing each rotation. The process works fine in 

areas where the map is sparse but in places where spaces start getting filled, the search 

Figure. 3.5  (a) Original Image   (b) Flattened Histogram   

Yellow pixels moved in 

purple space during the 

radial sort process  

 
Figure. 3.6 Spiral search 
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radius starts increasing. The increased search radius is an undesirable condition which not 

only increases computation time but also maps pixels far away from their matching 

counterparts. 

The spiral spread method represents pixel value frequency well, but suffers from a 

high computational cost as well as from similar pixels appearing far apart, especially in 

dense regions. Figure 3.7 shows different stages of the visualization map and its 

comparison with Figure 3.5 shows a better co-localization and better frequency 

representation of the input image pixels. 

 

Figure 3.7 Different stages of spiral spread scheme showing the evolution of map. 

C. Random Spread Visualization 

In this scheme, rather than finding an empty location for every pixel, each pixel is 

mapped to a location with a random offset. The offset is small enough so that the pixels 

belonging to a similar class are mapped close to each other. Few pixels may overwrite 

others but the zones of frequently occurring pixels filling earlier than others can be seen 

as a measure of co-localization. Figure 3.8 below displays the original image and the 

spread of pixels in the corresponding visualization scheme.  
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Figure 3.8 (a) Original Image (b) Random spread visualization of the original image 

This visualization scheme is limited in displaying the true frequency of pixels, but 

it is computationally much faster than the two approaches already discussed. Another 

advantage is that it does not allow colors of one class to move far from their own class as 

they are constrained by the random distance limit. Area, along with the pixel density 

(compactness of color map), represents how frequently pixels of the similar color occur 

in the input image. For example, the scarcity of red and purple color in the input image, 

as compared to pink and white color, is demonstrated by the thick localization of pink 

and yellowish color in Figure 3.9(b). 

The performance statistics of these techniques are shown in table 3.1. Based on 

the performance and advantages offered by the ‘Random Spread Visualization’ over 

‘Spiral Spread Visualization’ and ‘Flattened Histogram Visualization’, we selected 

‘Random Spread Visualization’ as our default map for further processing.  

Table 3.1  Performance comparison of different visualization techniques 

Visualization 

Technique 

Image size Processing time 

(secs) 

Direct mapping  800x600 0.279 

Flatten histogram 800x600 169.654 

Spiral spread 800x600 416.062 

Random spread 800x600 0.493  
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The users are presented with this 2D color space visualization of (Figure 3.9b) to 

approximately mark the areas (Figure 3.9c), using the mouse, where pixels should be 

grouped together as a single color class. This zone marking is then used to segment the 

color image. The segmented image (Figure 3.9d) is completely dependent on the color 

ranges specified. Closed curves of any shape and size are acceptable and any number of 

color ranges can be specified, thus providing user flexibility.  

 

 

Figure 3.9 (a) Test image (b) Random spread visualization showing dense regions 

corresponding to frequently occurring image pixels(c) User marked zones based on 

different color classes in test image. (d) Pseudo color segmentation results. 

 

To compare the segmentation results based on our color map we used level sets 

algorithm and few semi-supervised variants of K-means algorithm.  We provide a brief 

description of these methods before presenting the segmentation results.   

Seeded K-means (SK-means). 

SK-means is our semi supervised variant for standard K-means[65]. Standard K-

means is an unsupervised algorithm. Even initializing the algorithm with seeds points 

may help early convergence but resulting final classification may not be anywhere close 

(a) 

(b) 
(c) 

(d) 
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to starting seed points or the user’s perception. SK-means utilizes user provided seed 

points for mean initialization as well as anchor point to restrict excessive mean 

movement to incorporate user’s perception.  During the iterative processes of mean 

computation, association of each point is determined based on its distance from new 

mean as well as starting seed point.   

In SK-means, we split N data points x
(n)

,
 
in an I dimensional space, into K clusters 

with means m
(k) 

and initial seed points s
(k)

. Each vector x has I components xi and its 

distance from k
th

 mean and k
th

 seed point is given by  

  
   

 √∑   
   

   
   

 

   √∑   
   

   
   

 

   

At start of SK-means, all means m
(k) 

are assigned seed point values s
(k) 

i.e. m
(k)

=s
(k

 
).  

In 

the assignment step, each data point n is assigned to the nearest cluster based on 

minimization dk
(n) 

which includes both the distance from the current cluster mean and the 

cluster seed point. The new assignment of clusters for all points is given by 

 ̂    {  
   

}
 

      
 

All the data points x(n) assigned to a cluster C form part of its responsibility and is 

given by the responsibility indicator r  

  
   

 {
      ̂     

      ̂     
} 

 

In update step the updated means are computed as  

     
∑   

   
    

 

∑   
   

 

 

Repeat the assignment step and update step until the change in mean assignment is 

below a threshold. 

 

Multi-seeded K-means (MSK-means). 

MSK-means is similar to SK-means except that each class is subdivided into multiple 

subclasses. This helps in better user feedback by providing more number of seed points 

(one per subclass). Intra-class variations can be captured by corresponding variation in 
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the selected seed points. After the classification process the subclasses are merged back 

to generate main class labels. 

 

Level Sets Segmentation 

 

Level set method,[66] is an edge based technique to perform image segmentation. The 

boundary of the segmented object is defined as the zero level set of function Φ(x, y), i.e. 

it is implicitly defined as the solution of the equation Φ(x, y) = 0. The boundary (and 

consequently Φ(x, y)) is initialized using multiple seeds placed at regular interval in a 

grid and then evolves until it conforms to the image. In order for the boundary to evolve, 

Φ(x, y) has to evolve. To achieve this, Φ(x, y) is added a time dimension, i.e. it becomes 

a function of three variables Φ(x, y, t). The equation (the level set equation) governing 

the change of     Φ(x, y, t) is 

  

  
  |  |    

where F is the speed of the boundary in the direction normal to the boundary and 

|  |  √(
  

  
)
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)
 

 

Our implementation of level-sets uses intensity I(x,y) threshold and curvature k(x,y) to 

compute the speed function. 

                        

        {
  
  
                          

                 
} 

        {
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Where I(x,y) is the intensity and  k(x,y) is curvature at a point while maximal curvature 

parameter is denoted as kmax 

An example of levelset segmentation is shown in figure 3.10. 
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Figure 3.10  Level sets based segmentation is shown. Contours initialized at nodes of a 

grid, evolved and merged to generate segmentation mask.  
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Weighted SK-means (WSK-means) 

This variant of SK-means allows user to change the classification results with the help 

of sliders bars in a GUI. The original equation of SK-means is modified as  

  
   

   (√∑   
   

   
   

 

   √∑   
   

   
   

 

  ) 

where Wk is the weight parameter adjusted by the slider control.  

The user keeps manipulating the sliders controls visualizing the segmentation results in 

real time until desired results are achieved. 

An example of WSK-means segmentation is shown in Figure 3.11. 

 

Figure 3.11.  GUI for WSK-means showing pseudo color representation of test image 

(figure 3.9). Sliders are used to change weights. 

 

A better comparison of the aforementioned algorithms can be done using the 

visualization in figure 3.12. It may be noted that in actual practice all algorithms except 

color map utilize 3D space for classification.  
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Figure 3.12  (a) Class partitions shown for SK-means segmentation. (b) MSK-means 

multiple sub-classes can be combined to cater for intra-class variations. (c) 

WSK-means can change classification result by increasing and decreasing 

class zones based on slider weights. (d) Interactive Color map – user can 

select zones of any shape and size. 

 

Testing and Comparisons 

To best of our knowledge, no histological image data is available where each pixel is 

labeled that can be used as a ground truth for testing different algorithms.  In the absence 

of such a dataset, we tested our algorithm for H&E, IHC stained biopsy tissue images of 

renal cell carcinoma and head & neck cancer. We devised a strategy to compare the 

accuracies of afore mentioned algorithms. We consider WSK-means algorithm results as 

ground truth since it provides interface to the user to update classification results until the 

best perceived segmentation is achieved. To support our decision, we used the level sets 

algorithm as the second reference. Our level sets implementation, based on the gray level 

intensity cost function, is suited best to segment the dark stained nuclei in the image. 

Comparing only this class we were able to show that accuracies above 95% can be 

obtained which are close to optimum as the two algorithms inherently differ from each 

other.   

(a) (b) 

(c) (d) 

Starting seed 

Final mean 
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Having verified our ground truth results, we used them to conduct a human interaction 

study to compare the performance and accuracy of other algorithms under consideration. 

Our study involved eight users with varying background from new to frequent users of 

histology images. We used six H&E stained images of Renal Cell Carcinoma (RCC) 

images which were divided in two groups of 512x512 and 1024x1024 pixels to compare 

the variation in computational cost with image size. The users were presented with the 

previously described 2D color space visualization of (Figure 3.9b)   and were prompted 

to approximately mark the areas where pixels can be grouped together as a single color 

class. For SK-means, the users mark seed points on the test image which best represents 

each class while in MSK-means user select multiple seeds per class to capture intra-class 

variation. The user interaction time including computational time of all the algorithms 

was recorded and all the algorithms were compared for performance and accuracy.  

Results  

The performance results (Table-1 and Figure 3.13) show that random spread color map 

is faster than MSK-means and the average time taken by the user is less than 30 seconds 

per image, which is reasonable for most applications. Color map performance advantage, 

being a non-iterative algorithm, becomes apparent when the image size becomes large. 

The computational time for both SK-means and MSK-means time nearly doubled for 

larger images and only increased fractionally in case of color maps segmentation.  

To compare accuracy of segmented images either region-based or pixel-based metrics 

are used [67]. In our image data we are interested in texture information inside the objects 

(nuclei) so we compared pixel labels from each segmented image. We used class 

accuracy, commission error and omission error as our evaluation metrics. The 

segmentation accuracy results are shown in table-2.  As mentioned earlier WSK-means 

was used as ground truth validated by best level sets segmentation results selected after 

processing at various intensity thresholds. It can be seen that MSK-means performs better 

than SK-means as expected and color maps showed even better accuracies than MSK-

means. Further analysis showed that accuracies are also dependent on type of the image 

as well as user’s training and practice.  
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Table-1. User interaction time comparison 

 Time (secs) μ±σ 

 Level sets 
(single class) 

Color maps SK-means MSK-means 

Images 512x512 150.78±46.01 
 

25.04±6.26 
 

18.23±3.60 
 

44.87±9.08 

Images 1024x1024 1593.82±39.77 
 

26.48±5.09 34.19±6.79 91.28±16.60 
 

 
 

Table-2. Segmentation accuracy comparison 

 
 Class Accuracy 

( μ±σ ) 
Commissions 

( μ±σ ) 
Omissions 

( μ±σ ) 

WSK-means 1.0±0.0 0.0±0.0 0.0±0.0 

Color Maps 0.874±0.06 0.126±0.06 0.126±0.057 

SK-means 0.839±0.09 0.161±0.09 0.161±0.09 

MSK-means 0.859±0.09 0.141±0.09 0.141±0.09 

Level sets 0.977±0.02 0.083±0.04 0.023±0.02 

 

 

 

 
 

Figure 3.13.  User interaction time (including computation time) comparison for two 

subgroups. Color map segmentation performs better for larger images. 

 

 

Figure-3.14 shows results based on individual user. Users 6-8 were provided with a 

training session before performing actual segmentation. Users 1-5 were only given 

demonstration on single image before they actually performed segmentation. It can be 

seen that trained user can use the tool to get better accuracies especially in case of color 

maps based segmentation. 
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Figure 3.14.   Accuracy comparison for individual users 

 

  
 

Figure 3.15.  Accuracy comparison based on individual images in data set 

 

Variation in accuracies can also be seen based on the type of image as shown in Figure 

3.15. One of the images (Image-1 figure 3.15 and figure 3.16) has very small 

representation of one class (red). The control available in color maps helps in achieving 

better segmentation than other algorithms as highlighted in figure 3.16 

 

We have tested our algorithm for H&E, IHC stained biopsy tissue images but our 

segmentation approach is applicable to other types of staining. . We were able to perform 

segmentation with 2% better accuracy in comparison to multi seeded k-means  and in 

faster average time of  26 seconds on 1024x1024 pixel images in compared to 95 seconds 

in case of multi seeded k-means. In addition, our methodology presents important image 

statistics in a user friendly way. For example, the color spread provides three useful 

features of an image: its component colors, amount of each color and most importantly 
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co-localization or neighborhood information about color. Since we are presenting the 3D 

HSV color model with only two dimensions (Figure 3.1), we necessarily discard intensity 

in the model resulting in the co-localization of black, gray and white at the center of the 

visualization. Even with this limitation, we have shown that proper visualization of the 

component colors along with user interactivity results in better segmentation results.  Our 

segmentation scheme is particularly useful for biological images since conventional 

schemes do not cater to the gradual color variations in these images. Moreover, the 

algorithm is iteration-free and executes faster than conventional K-means and its variants. 

Our segmentation tool is semi-automatic to capture miniscule color details.  With our 

previous experience in the field, we see prospects of this work towards use of quantitative 

analysis and study of different types of histological images. 

 

 

Figure 3.15.  (a) Test image (b) WSK-means segmentation used as ground truth (c) 

Color map based segmentation (d) SK-means segmentation (e) MSK-

means segmentation (f) Level sets based segmentation for single class 

overlaid on top of test image 
  

(a) (b) (c) 

(f) (e) (d) 
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3.2 Region of Interest (ROI) segmentation  

A ROI [68] is a portion of an image that you want to perform some specific 

operation on. You define an ROI by creating a binary mask, which is a binary image that 

is the same size as the image you want to process with pixels that define the ROI set to 1 

and all other pixels set to 0. You can define more than one ROI in an image. The regions 

can be geographic in nature, such as polygons that encompass contiguous pixels but most 

of the times these are based on free hand user markings. In context of quantitative 

pathology, at times it becomes very critical and important to mark the regions very 

precisely and consistently for repeated experiments. This necessitates some intelligent 

algorithms to be used for marking ROI. In addition, if it facilitates the user in terms of 

speed and ease of use. We demonstrated one such technique for segmenting Colon crypts 

[42] or more precisely hemi-crypt (one half of the symmetric colon crypt). This is 

accomplished by using our semi-automatic segmentation tool based on the intelligent 

scissor (IS) algorithm [69, 70]. IS is a novel approach in object segmentation. Rather than 

optimizing a user-initialized approximate contour, IS allows the user to interactively 

select a boundary from a collection of optimal solutions. IS interactively computes the 

optimal path from a user selected “seed” point to all other points in the image. The 

optimal path from each pixel is determined at interactive speed by computing an optimal 

spanning tree of the image using an efficient implementation of Dijkstra’s graph 

searching algorithm. This search algorithm treats the image as a weighted graph (Figure 

3.16). Each pixel represents a node with directed and weighted edges that connect with its 

eight adjacent neighbors. As the cursor moves, the optimal path from the pointer position 

to the seed point is displayed. This path allows the user to select an optimal contour 

segment that visually corresponds to a portion of the desired object boundary. As the 

mouse pointer comes in proximity to an object edge, a live wire boundary snaps to and 
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wraps around the object of interest. An example of this algorithm is shown in Figure 

3.17. 

 

  
Figure 3.16   An example of cumulative cost and path matrix used for optimal path 

computation 

 

 
 

Figure 3.17   An application snapshot showing Hemi-crypt segmentation using live-wire 

segmentation 

 

3.3 Nuclear cluster segmentation 

In pathological conditions, complex cell clusters are a prominent feature in tissue 

samples. Segmentation of these clusters is a major challenge for development of an 

accurate cell counting methodology.  We address the issue of cluster segmentation by 

following a three step process. The first step involves pre-processing required to obtain 

the appropriate nuclei cluster boundary image from the RGB tissue samples. The second 

step involves concavity detection at the edge of a cluster to find the points of overlap 
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between two nuclei. The third step involves segmentation at these concavities by using an 

ellipse-fitting technique. Once the clusters are segmented, individual nuclei are counted 

to give the cell count. The method was tested on four different types of cancerous tissue 

samples and shows promising results with a low percentage error, high true positive rate 

and low false discovery rate. 

Pathologists often depend on parameters such as the number, shape and size of 

cells in a tissue sample to make important diagnostic decisions. In healthy conditions, 

nuclei in cells are mostly distinct and parameters can be determined by direct image 

segmentation methods such as region-based methods, histogram-based methods and edge 

detection based methods. However, in pathological conditions, individual cells come 

close together and nuclei form dense clusters. Figure 3.19(a) shows dark elliptical nuclei 

touching and overlapping in a 2-D tissue sample.  Therefore, accuracy of cell-counting, 

cell shape and size determination depends on the segmentation of these dense clusters.  

Previous work addresses segmentation of simple-clusters and touching cells by 

extending and improving image-segmentation methods [71, 72].  Few authors have 

developed algorithms that address cluster segmentation specifically [73-76].  All these 

methods addressing cluster segmentation either could segment only simple clusters [71, 

72] or give good results only for circular cells [71, 72, 76]or resulting cell shape is not a 

good model for the original cell shape [73-75] or have very complex algorithm [74-76]. 

However, this paper presents an edge-based image segmentation method, shown in the 

flow-diagram (Figure 3.18(a)), that is simple to implement and can segment complex 

clusters with reasonable accuracy. The method involves detection of concavities on cell 

cluster edges and segmentation at these concavities by ellipse fitting. The elliptical model 

used is a good approximation to the original cell shape. Recently, Wang and Song [77] 

and Bai et al. [78] introduced the concept of cluster segmentation using concavity 

detection. In this paper, we present a novel method for notch detection using cross-

product (section 3.3.2), and a new technique for cluster segmentation using ellipse fitting 
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(section 3.3.3). Also, we perform quantitative analysis of segmentation result using 

standard statistic parameters. Using proposed methodology, pathologists will be in better 

position to take diagnostics decisions.  

3.3.1 Preprocessing 

We have implemented our method for different types of tissue samples including 

standard photo micrographs of H&E stained biopsy tissue sections of renal cell 

carcinoma   (RCC) and IHC stained biopsy tissue sections of head and neck (H&N) 

cancer.  

Figure. 3.19 Pre-processing steps implemented for papillary tissue sample. (a) Input 

RGB image shown in gray scale, (b) binary mask of nuclei, (c), filled binary 

mask, (d) mask after noise removal (e) result after edge detection, (f) result 

after smoothing 

a       b 

 

 

c       d 

 

 

e       f 
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RESULTS 
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Figure. 3.18  a) Overall flow-diagram for the method, b) Pre-processing steps 
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Due to the nature of tissue images and the variability in the sample preparation, 

staining, and image acquisition process, it is imperative to pre-process these images in 

order to remove variations. The pre-processing steps have been depicted in the flow-

diagram in Figure 3.19(b) and the corresponding images are shown in Figure 3.19. In 

stained RGB tissue images various entities in a tissue slice such as nuclei, glands, 

cytoplasm and red blood cells appear as different colors. The first pre-processing step 

involves the generation of a binary mask for cell nuclei from the RGB image using K-

means clustering [53, 79], where seed points are selected by user interaction. The binary 

mask of a tissue sample often has clusters with holes as shown in Figure 3.19 (b). If these 

holes are not filled, they can be detected as false boundaries during the edge-detection 

process. Therefore, the next step involves filling in the holes using an algorithm based on 

morphological reconstruction [80] to obtain properly connected clusters as shown in 

Figure 3.19 (c). Very small objects in the binary mask are generally due to noise and due 

to misclassification during the k-means clustering. As such, the next step involves noise 

removal using the size threshold. Images in Figure 3.19(c) and Figure 3.19(d) show the 

mask before and after noise removal. Based on connected component analysis each 

object in the image is processed as an individual cluster. The boundary of each cluster is 

then detected based on a neighborhood of 8 pixels. Figure 3.19(e) shows result after edge 

detection. The resulting sequence of pixels that form the boundary of the cluster is then 

processed using smoothing techniques for better notch detection. Noise or jaggedness 

present on the edges of the clusters may lead to false concavity detection on the edge and 

consequently may be treated as a notch for segmentation. Therefore, it is necessary to 

make the boundary smooth and preserve true concavities. Our algorithm performs simple 

smoothing using a moving average low-pass filter. The Resulting image after smoothing 

is shown in Figure 3.19(f). 
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3.3.2 Concavity or notch detection 

After preprocessing, the next step involves detection of concavities or notches. A 

concavity is the point on the cluster edge where two individual cells overlap. Therefore, 

the concavities can be found using angle (θ) between adjacent normals on the edge of the 

cluster as suggested by previous work [78] . In this method, we divide the edge of the 

cluster into fixed length segments, and plot a normal at the middle point of every segment 

as shown in Figure 3.20 If Φi gives the slope of normal at middle point of segment i with 

respect to positive x-axis, then θ for any segment i is given by:  
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Edges have a depression around a concavity and a sudden change in surface 

orientation.  Hence, θ has maxima at concavities as shown in Figure 3.21(a). As 

illustrated in the graph using a high threshold (dotted line) only major concavities are 

discovered. These concavities are sharp concavities and in order to discover relatively 

smooth concavities the threshold needs to be decreased (solid line) and with this decrease 

some false detections start appearing at points with sufficient angle change, such as the 

ones at the edge of the individual elliptical cell with high eccentricity.  

Ѳ 

Normal at the middle 

point of the segment 

Concavity 

Figure 3.20  A synthetic cluster illustrating the method of calculating Ѳ, angle 

between adjacent normals. 
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To avoid these false detections with a decrease in threshold, we exploit the fact 

that the desired concavities are located at the edge where the surface is concave (when 

viewed from inside the cell). As such, any detection at locations where the surface is 

convex can be rejected. The process involves splitting the cluster edge into segments of 

equal length. Vectors are generated for tangents at every segment. The cross product of 

each pair of adjacent tangential vectors is calculated while moving in clockwise direction 

along the cluster edge. The magnitude of the cross product depends on the angle between 

the vectors and its sign depends on the direction in which the first vector moves towards 

the second vector.   

 
nbaba ˆ sin

  (2) 

Where, a & b are first (dotted line) and second (solid line) tangential vectors; θ is 

the angle between the vectors, and n is the unit vector perpendicular to a and b in the 

direction given by right hand rule. 

If cluster is in X-Y plane, Z component of the cross product represents magnitude 

and direction of cross product. As shown in Figure 3.22 at convex surface, the direction 

of movement is clockwise and n is negative z-direction. While at concave surface, the 

direction of movement is anti-clockwise and consequently n is positive z-direction. High 

positive z component represents notch while negative value represent convex surface. 

Comparing Figure 4.6 (a) and Figure 4.6 (b), it can be observed that false detections in 
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Figure 3.21 a) Graph illustrating angles between adjacent normals for different 

segment number along the edge of cluster in figure 3. Dotted line and 

complete line represents high and low threshold respectively. b) Relation 

between z-component and segment number for the same cluster. Thin 

circles mark true concavities and thick circles mark the possible false 

concavities 
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Figure 3.21 (b) are no longer affecting the concavity detection which can now be done at 

relatively lower threshold. 

 
 

3.3.3 Cluster Segmentation 

After detecting the concavities, we segment the cluster into cells. The 

segmentation algorithm assumes that cells have approximately elliptical shape with 

different eccentricities, suggested by a various authors. Figure 3.23 shows the flow chart 

for the segmentation of clusters. 
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Figure3.22 Figure depicts cross product resultant direction in case of convex and 

concave contour locations; concavities are marked 
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3.3.4 Cell-size computation 

First, the average cell size is computed based on user interaction. The user selects 

a few samples of single cells. We then compute the average cell size from samples and 

use it to set a threshold for identifying cell clusters. 

3.3.5 Cluster identification 

This step differentiates between cluster, single cell and noise. Depending on the 

standard cell size, two thresholds are set. The first threshold decides if any region is large 

enough to be treated as a cluster, and the second threshold decides if it is small enough to 

be treated as noise. The detected clusters undergo further segmentation while single cells 

are passed to ellipse fitting algorithm. Due to these thresholds the methodology is robust 

in segmenting cells in a tissue image with cell size within a range from the average cell-

size.  

3.3.6 Notch pairing based on distance threshold 

In this step, we compare the distance between all the notches. Any two notches 

that are closer than a particular threshold, which depends on average cell size, form a pair 

and the cluster is split at these two notches; preference is given to the notches that are 

closer. Cluster splitting based on distance splitting is continued iteratively until the point 

is reached where no further segmentation is possible. During this process each cluster 

segments into either sub-clusters or sub-clusters and individual cells. The sub-clusters 

generated during this step generally have circular shape and cannot be further split using 

the threshold criteria. Therefore, these sub-clusters are passed to next step for 

segmentation based on centroid.  

3.3.7 Notch pairing using centroid 

After distance-based segmentation, if there are any clusters left, they are 

segmented by using centroid connection. In this step, starting with the notch with highest 
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z-component (section 3.3.2), notches are connected through the centroid to split the 

cluster into cells. Any segmentation step is possible only if it results in regions with size 

larger than a minimum cell size threshold. 

3.3.8 Ellipse fitting 

We picked up the ellipse fitting method proposed by Fitzgibbon et al. [81] which 

is reported to have better accuracy than other standard methods. The edge pixels of cells 

obtained in the segmented mask after step 3.3.1 are compared with the edges of the 

cluster as shown in Figure 3.19(f). Common edges pixels are then used as data for ellipse 

fitting algorithm. The final result of the segmentation of the input image in Figure 3.24(a) 

is shown in Figure 3.24(b); black lines mark the cell boundaries. 

 

 

3.3.9 Results  

In order to test the robustness of our algorithm, we selected H&E stained tissue 

images from three subtypes of renal cell carcinoma (RCC) – papillary (PA), 

chromophobe  (CH) and clear cell (CC) and IHC stained head and neck (H&N) cancer 

tissue images, thereby introducing morphological structure variations (RCC subtypes) 

and stain color variations (H&E and IHC).  Quantitative analysis of these four different 

types (PA, CH, CC, H&N) of tissue images, numbered 1-4 respectively, is shown in table 

3.3. Estimated number (EN) was calculated by the algorithm and false positive (FP) and 

False negative (FN) were estimated by comparison with manual segmentation results. 

The results have been analyzed based on three standard statistics parameters – True 

(a) (b) 

Figure 3.24   a) Input papillary tissue, b) result image after segmentation of image, green 

line mark the cell boundaries  
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positive rate, false discovery rate and percentage error. High true positive rate, low false 

discovery rate and low error rate illustrate the usefulness of the method for cell-counting 

of various tissue samples. The method is simple to implement and can generate results in 

real-time, this is highly suitable for clinical applications. The method is semi-automatic 

and requires user interaction only in seed selection (section 3.3.1) and cell size 

calculation (section 3.3.4). 

As compared to previous methods of segmentation using concavities [74, 77, 78], 

our method will generate better results due to higher accuracy in concavity detection. The 

method may generate errors at places when two cells overlap in such a fashion that 

concavities are very smooth or absent. Also the results are dependent on how good color 

segmentation is performed during the k-means clustering process for generation of the 

binary mask. The future work includes efforts to improve the color-segmentation and the 

cluster segmentation to further enhance the efficiency of the method. Also method is 

being tested for larger dataset of about 100 images to evaluate the robustness of the 

method. 

 

 
 

3.4 Summary 

Table 3.3 Quantitative analysis of nuclear segmentation for four different 

types of RCC 
Image number EN FP FN TP AP TPR FDR E 

1. 301 20 43 281 324 86.72 6.64 -7.09 

2. 423 32 33 391 424 92.22 7.5 -0.23 

3. 338 40 27 298 325 91.69 11.8 4.00 

4. 480 60 22 420 442 95.02 12.5 8.59 

Acronyms used in these tables are as follows: Estimated- Number of cells segmented by the method, EN; 

False positive- false detection, FP; False negative- missed detection, FN: True positive- correct detection, 

TP= EN – FP; Actual positive-number of cells calculated manually, AP= TP+FN; True positive rate- hit 

rate/sensitivity, TPR=TP/AP *100; False discovery rate, FDR=FP/EN *100; Percentage Error, E = (EN-

AP)/AP *100 

 

ESTIMATE (EN)

93%

7%
TP

FP
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 In this chapter we reviewed some of the important segmentation 

techniques related to various segmentation domains. We also showed some new 

techniques and improvements over existing methods which can really be helpful for 

pathological image analysis tools. Color map based user interface, intelligent scissors 

based precise ROI segmentation and complex nuclei cluster segmentation are the 

techniques which proved to be really useful in achieving consistency and speed in the 

pathological image analysis. 
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CHAPTER - IV 

FEATURE EXTRACTION, SELECTION AND CLASSIFICATION 

 

The terms of feature extraction, selection and classification are widely used in the 

domain of patter recognition. We will review their basic definitions and then see their 

application to our specific domain of pathological image analysis. 

Feature extraction [82] is a special form of dimensionality reduction frequently 

used in pattern recognition. When the input data to an algorithm is too large to be 

processed then the input data will be transformed into a reduced representation set of 

features (also named features vector). Transforming the input data into the set of features 

is called feature extraction. If the features extracted are carefully chosen it is expected 

that the features set will extract the relevant information from the input data in order to 

perform the desired task using this reduced representation instead of the full size input. 

Best results are achieved when an expert constructs a set of application-dependent 

features. Nevertheless, if no such expert knowledge is available general dimensionality 

reduction techniques like Principal components analysis may help.  

Feature selection [83] is the technique of selecting a subset of relevant features for 

building robust learning models. By removing most irrelevant and redundant features 

from the data, feature selection helps improve the performance of learning models by 

alleviating the effect of the curse of dimensionality, enhancing generalization capability, 

speeding up learning process and improving model interpretability. Feature selection also 

helps people to acquire better understanding about their data by telling them which are 

the important features and how they are related with each other. Feature selection 

algorithms typically fall into two categories: feature ranking and subset selection. Feature 

ranking ranks the features by a metric and eliminates all features that do not achieve an 

http://en.wikipedia.org/wiki/Dimensionality_reduction
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Principal_components_analysis
http://en.wikipedia.org/wiki/Curse_of_dimensionality
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adequate score. Subset selection searches the set of possible features for the optimal 

subset. 

Classification [84] is the problem in statistics of identifying the sub-population to 

which new observations belong, where the identity of the sub-population is unknown, on 

the basis of a training set of data containing observations whose sub-population is known. 

Thus the requirement is that new individual items are placed into groups based on 

quantitative information on one or more measurements, traits or characteristics, etc. and 

based on the training set in which previously decided groupings are already established. 

The problem here may be contrasted with that for cluster analysis, where the problem is 

to analyze a single data-set and decide how and whether the observations in the data-set 

can be divided into groups. In certain terminology, particularly that of machine learning, 

the classification problem is known as supervised learning, while clustering is known as 

unsupervised learning. 

In specific relation to pathological image analysis we will review the 

classification problem using different features sets for RCC applications [49, 54, 85] 

including knowledge based features, morphological, textural and wavelets based features 

and cellular features of elliptical models of segmented nuclei clusters.  

4.1 Knowledge based features  

Traditionally, most automated cancer diagnosis research has been on the problem 

of identification of cancerous and normal tissue images. Since pathologists use deviations 

in cellular structure as a means to make a diagnosis, many of the previous research efforts 

have used the statistical variation of various image properties to help make a diagnosis. 

The use of morphological features, for example, was reported by Jiang et al. in their study 

of breast cancer classification and by Roula et al. for the grading of prostate cancer [8, 9]. 

The diagnosis system developed by Diamond et al. used a combination of structural and 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Statistical_population
http://en.wikipedia.org/wiki/Training_set
http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Unsupervised_learning
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textural features to achieve an accuracy of 79.3% for the classification of Prostatic 

Neoplasia [10].  

Esgiar et al. studied the classification of colonic mucosa using six different 

textural features and optical density and reported an overall accuracy of 90.2 % [11]. 

Their choice of features was motivated by the hypothesis that the human eye uses these 

features for texture discrimination. They reported an increase in accuracy of their system 

when fractal analysis was employed along with textural features and suggested the need 

for knowledge incorporation for further increase in accuracy [12]. Hamilton et al. used 

knowledge guided segmentation to calculate features like the co-occurrence matrix and 

optical density to study colorectal dysplasia achieving 83% correct classification [13].  

Many of these studies have relied on blind self-training by selecting textural, 

morphological, topological or intensity based features or a certain combination of these 

based on the properties of the images under study.  Although these various combinations 

of these features have been proven useful for cancer diagnosis of different types, their use 

will lead to better classification if employed in conjunction with prior structural 

properties of tissues under study.  

We contend that by incorporating knowledge from an expert pathologist at every 

step of the system (Image processing, feature extraction, classification) the classification 

accuracy can be increased.  Also by involving the user into the decision making process 

and allowing him to bias the system will lead towards making accurate prediction.  

Tissue images show both intra and inter class variation in terms of irregularity of cellular 

structure. Hence while CAD systems try to extract and quantify the inter class variations 

they should be adaptable enough to neglect the intra class variation. Having user 

interaction through every step of the process helps to encompass the vast non 

homogeneity that tissue image display and make the system more robust.  

In this chapter we will present the system design, development and results of 

novel CAD based diagnosis system which allows an expert user to interact with the 



 61 

system throughout the diagnosis process. Not only can the user bias and validate the 

results of feature extraction and quantification, he can select from a list of features he 

deems most important and appropriate for the classification.  With such user interactivity 

and flexibility the same CAD tool can be used by pathologist from different cancer 

specialization to classify their images as long as the system has had sufficient training 

against images of that cancer subtype.  

We chose RCC (section 1.3) as a case study for the development of this tool 

primarily because not much research has been done for the automated classification of 

renal tumor. Moreover this problem is much more complicated than normal/cancerous 

tissue classification as RCC has 4 common subtypes.  Renal tumor subtypes exhibit 

several common morphological characteristics, making diagnosis difficult and subjective 

in many cases. Histopathologic classification is critical for the treatment of RCC as its 

histopathological subtypes are associated with distinct clinical behavior. So a diagnosis 

technique based on quantitative approach to renal tumor classification is critical and very 

much needed.  

Expert knowledge of RCC features for feature extraction was incorporated into 

the system thereby increasing the classification accuracy. This was done by letting the 

pathologist select the features most relevant for the diagnosis of RCC. This was coupled 

with the prior knowledge about the presence and/or absence of specific histological 

features and structures (Red blood cells, blood vessels, lipid structures, papillary bodies) 

in various subtypes of RCC. The outline of the design of this novel diagnostic tool 

targeted for clinical practice and translational research is given in the next section. 

4.1.1 System Design 

The aim of the study is to take the past research advances in the field of 

quantitative molecular pathology one step further and develop this tool as a real clinical 

application. The whole design of the system has been built around that very goal. The 
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detailed outline of system proposed for system is given in Figure 4.1. It should be noted 

in particular that the user can interact and correct (if necessary) if necessary the results 

various image processing modules in addition to selecting various options. As mentioned 

earlier the whole point in providing this user interactivity is to keep the tool as general as 

possible and let the user incorporate his knowledge by correcting or biasing the results or 

by selecting between various options.  

 

 
Figure 4.1  Workflow of the proposed system showing data flowing between image 

acquisition, processing, feature extraction, classification, feedback and 

storage modules. 

The images, once acquired, are processed to improve image quality and enhance 

the objects of interest. The regions of interests are then segmented out and passed onto 

the next stage for feature extraction and quantification. Features are extracted based on 

the expert knowledge built into the system about various expected RCC features. 

Essentially, the system tries to quantify features that describe the known difference 

among various classes. The images are then classified based on the extracted features and 

the results are provided to the pathologist for evaluation and feedback. The eventual goal 

of the study is to have a final system where the RCC images, the extracted features, the 

classification results along with the clinician’s diagnosis are stored in a database. The 

database is used to train the classification system and image and feature annotation. This 

all ties in to the concept of having a practical and useful clinical tool for cancer diagnosis. 
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The following sections describes in detail the methods used for image processing, feature 

extraction and classification. 

4.1.2 Tissue Samples and Image Collection 

All tissues in this study were derived from renal tumors resected by total 

nephrectomy. Tumors were fixed, processed, sectioned and stained according to standard 

pathological procedures. Nephrectomy specimens were fixed for at least one hour in 

several volumes of 10% neutral buffered formalin, after which representative histologic 

samples (3-millimeter thickness) were obtained and fixed overnight in > 10 volumes of 

10% neutral buffered formalin.  Histologic samples were embedded in paraffin and 

microscopic sections (5-micrometer thickness) were prepared with a microtome and 

stained with hematoxylin & eosin. Representative photomicrographs of renal tumor 

sections were obtained at 200x total magnification and images of 600 x 800 pixels were 

extracted from the original 1200 x 1600 images for analysis. 

4.1.3 Image Processing 

Before extracting cellular/nuclear level information, image quality is improved by 

the image processing module. One of the main problems faced during segmentation of 

cellular features is the variation in staining. Both intra and inter image staining variation 

is observed in these biopsy images. In order to reduce this variation the images were first 

passed through a Gaussian smoothing filter. The size of the Gaussian filter used, is based 

on the average size of cellular features but the user has the ability to change the size of 

the filter if necessary. Although the Gaussian filter tended to blur the edges, it also 

smoothen the variation in staining. Segmentation results for filtered images were better 

than their unfiltered counterparts thereby validating the use of the filter. It is important to 

know that the image is smoothed only for the segmentation process. Once the objects 

within the image are recognized and tagged the pixels corresponding to those objects in 
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the original image can be used where necessary. This is particularly important for the 

case of textural feature extraction where a Gaussian smoothing would have altered the 

texture within the image.   

 Cellular/nuclear information present in the images is extracted in the next 

step. Both region-based and edge-based segmentation techniques were employed. Edge-

based segmentation methods tended to suffer more at the hand of staining variation. The 

reason for this was a lack of significant intensity variation between the nucleus and its 

surrounding. Since the images were colored, color information in the images was used as 

a criterion for segmentation through K-means clustering algorithm and using user 

interactive tool discussed earlier in section 3.1.1  

4.1.4 Feature Extraction 

Segmented regions of interest, are now used to quantify cellular properties. Once 

quantified, it is these variations in cellular structure and distribution that are used for 

classification. Instead of calculating random features from the images or to find random 

hidden patterns, the system tries to model expert pathologist knowledge by extracting 

features corresponding to the morphological properties that were known to be different 

among various subclasses. These features were selected by the pathologist beforehand.  

In essence prior knowledge about expected image properties guides the selection of 

features to be extracted and the regions over which those features are calculated. An 

example of this is the papillary or finger-like feature present extensively in the papillary 

RCC. Fractal dimension is used to model this finger like structure. Fractal dimension has 

been used extensively in research to quantify the self-similarity of the images and is 

usually calculated over the whole image with or without various thresholding steps.  By 

incorporating user knowledge the fractal dimension in this case was calculated over these 

fingers like structures only. Since this feature is inherent to papillary RCC, its values 

serves as a good descriptor for PAP. 
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The knowledge that different subtypes of RCC display variation in nuclei density 

and nuclei shape is captured by calculating various morphological features.  PAP RCC 

tends to show higher nuclei to cytoplasm density while nuclei in CHR RCC images are 

known to be more eccentric than others and have a halo around them.  Features like area, 

eccentricity, compactness ratio as well as ratio of the area of the nuclei to cytoplasm area 

are calculated to quantify these differences.  

In addition to accounting for modeling the finger like structures in PAP, fractal 

dimension was calculated to quantify the self-similarity among features. This was based 

on the fact that cellular features, no matter how irregular in shape, display a level of self-

similarity. Schepers et al. showed that among the various algorithms proposed in the past 

for the calculation of fractal dimensions, spectral analysis provides results with highest 

fidelity. Fractal dimension was calculated using both the spectral analysis and a box-

counting method. Although the latter is a less complex algorithm to implement, the 

values from spectral analysis method were used because of their accuracy. 

 

Table 4.1  Feature extracted for Papillary (PAP), Clear Cell (CC), Chromophobe 

(CHR) and Renal Oncocytoma (ONC) with mean and standard deviations 

 

 PAP CC CHR ONC 

Correlation 8.23 ±0.906 10.85 ±0.971 2.505 ±0.320 5.885 ±1.01 

Contrast 0.648 ±0.077 0.43 ±0.038 0.532 ±0.031 0.454 ±0.050 

Energy 0.017 ±0.005 0.018 ±0.002 0.076 ±0.016 0.029 ±0.006 

Homogeneity 0.504 ±0.028 0.474 ±0.011 0.663 ±0.018 0.531 ±0.025 

Entropy 7.766 ±0.047 7.446 ±0.033 6.716 ±0.071 7.288 ±0.080 

Fractal Dimension 1.787 ±0.08 1.934 ±0.007 1.842 ±0.031 1.93 ±0.022 

Ratio of Area  0.796 ±0.147 0.260 ±0.035 0.105 ±0.036 0.212 ±0.073 

Eccentricity 0.812±0.025 0.827 ±0.021 0.792 ±0.052 0.766 ±0.033 

 

The knowledge about presence of RBC’s and blood vessels in some subtypes 

(CHR), the presence of fibrous and vascular core (PAP), growth of nuclei in nest like 

structures (ONC) was quantified by calculating textural features like contrast, 

homogeneity, correlation and energy. RBCs are not stained by H&E staining and are 
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usually found inside blood vessels which tend to appear white under the microscope. This 

information leads to the identification and separation of RBCs from other objects with in 

the image. Again the knowledge of the system guides the selection of the regions over 

which these properties were calculated which is important in this case. These features are 

calculated using a co-occurrence matrix [86]. The textural features are calculated for the 

entire image, sub-image and the individual cellular structures. Table 1.1 lists the values of 

some of the features extracted.  The same tool will be able to quantify features from other 

form of cancer imaging data by extracting the features selected by the user and over a 

particular ROI. 

Once the features of interest are extracted they were passed on to the 

classification system which decided the subtype of cancer image based on the feature 

values. 

4.1.5 Classification 

With various properties of the tissues extracted and quantified, their variations 

from a particular value well help us classify the different subtypes correctly.  If one 

studies Table 1.1 closely he would find that a single feature alone couldn’t differentiate 

between the different subtypes. This derives directly from the fact that that renal tumor 

subtypes exhibit several common morphological characteristics. Adding additional 

features to the analysis however, (see Figure 4.2) help separate the classes from each 

other spatially. It is evident from the scatter plot that these should be easily separated and 

classified if a correct combination of features extracted and used as is the case. To 

attempt the most robust classifier 8 knowledge-based features selected for extraction by 

the pathologist are used by the classifier. The classification scheme used here implements 

a simple, multi-class Bayesian decision rule that assumes multivariate Gaussian 

distributions for the data. To estimate the ability of the classification rule to correctly 

predict the class of a new, unknown sample, complete leave-one-out cross-validation was 
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performed. Results showed that the classifier correctly predicted the class of an 

unidentified sample 98.4%, or 63/64 of the time. 

 

 
Figure 4.2  Scatter Plot showing distribution of Images for three co-occurrence 

features: Contrast, Correlation and Homogeneity (+, Papillary; o, Clear 

Cell; x, Chromophobe; *, Oncocytoma) 

The classification results prove that the strategy of feature extraction based on 

expert pathologist knowledge results in high classification accuracy (98.4%). This 

classification accuracy is particularly high due to the fact that the user oversees the whole 

process from image processing, feature extraction and quantification to classification. 

Although these features correspond to visual properties traditionally used by the 

pathologist and usually correspond to properties not common to all subtypes but same set 

of features will not be useful for different subtypes of cancers and hence a pathologist 

expert input is necessary.    In the present case the presence of lipid structures, Red blood 
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cells and blood vessels varies among different subtypes of renal cancer and their presence 

was quantified using their textural properties. 

4.2 Morphological, textural and wavelets based features 

In this section, we present an image quantification and classification method for 

improved pathological diagnosis of human renal cell carcinoma (RCC). This method 

combines different feature extraction methodologies, and is designed to provide 

consistent clinical results even in the presence of    tissue structural heterogeneities and 

data acquisition variations. The methodologies used for feature extraction include image 

morphological analysis, wavelet analysis and texture analysis, which are combined to 

develop a robust classification system based on a simple Bayesian classifier. We have 

achieved classification accuracies of about 90% with this heterogeneous dataset. The 

misclassified images are significantly different from the rest of images in their class and 

therefore cannot be attributed to weakness in the classification system. 

4.2.1 Feature Extraction 

The input images after initial processing (section 4.1) are segmented in four-level 

grayscale image. We then analyze images from different RCC subclasses and try to 

predict the variations in these regions (e.g., the gray level one represents the nuclei in the 

images). The size of nuclei in one subclass may be different from another subclass, and 

can be used as one of the differentiating features between the classes.  In practice, we 

may find a feature that differentiates between two subclasses, but this feature may not be 

useful for other subclasses. This necessitates finding a larger set of features that can 

differentiate between more subclasses. For this purpose, we have used different 

methodologies and have combined their results into a set of significant features, which 

are then used to improve the accuracy of our classification system. 

The first method uses gray-level co-occurrence matrix (GLCM), also known as 

the gray-level spatial dependence matrix [87, 88].  Unlike the texture filters, which 
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provide a statistical view of texture based on the image histogram without providing any 

information about shape, the GLCM method combines textures and morphological 

statistics into one matrix. 

The GLCM is computed by calculating how often a pixel with the intensity (gray-

level) value i occurs in a specific spatial relationship to a pixel with the value j. Each 

element (i, j) in the resulting GLCM is the sum of the number of times that the pixel with 

value i occurs in the specified spatial relationship to a pixel with value j in the input 

image.  

GLCM computation on our four-level grayscale images generates a four by four 

matrix, and an example is shown in Figure 4.3. Figure 4.3(a) represents a portion of a 4-

level gray scale image with elements (1,1), (1,2) and (4,4) indicated for co-occurrence of 

immediate horizontal neighbors, using an offset mask of 1 | 1.  Figure 4.3(b) shows the 

corresponding entries in the GLCM using the sum of highlighted elements. 

Figure 4.3   GLCM computation using 4-level grayscale images. (a) Representation of 4 

level grayscale image (b) GLCM for highlighted elements in image (a)   

The gray-level co-occurrence matrix can reveal certain properties about the spatial 

distribution of the gray levels in the image. For example, if the entries in the GLCM 

diagonal data are large, the regions are contiguous and the texture is coarse. With a small 

offset and the large concentrated entries, each diagonal element represents an image area 

of the corresponding gray-level region of interest. In our implementation, gray-level ‘1’ 

represents the nuclei, so the GLCM element (1,1) shows the count of total nuclei area in 

the image in terms of pixels. This count divided by the image size (1200x1600) gives the 
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normalized nuclei area in the image and is used as one of our desired features. A few 

significant features extracted from GLCM are shown in Table 4.2. 

Table 4.2  Features extracted from GLCM for clear cell (CC), chromophobe (CHR), 

renal oncocytoma (ONC) and papillary (PAP) with mean and standard 

deviations. 
 CC CHR ONC PAP 

GLCM (1,1) 0.1095±0.0323 0.0608± 0.0105 0.0918± 0.0289 0.1577± 0.0347 

GLCM (1,2) 0.0321± 0.0079 0.0194± 0.0037 0.0285± 0.0083 0.0451± 0.0083 

GLCM (2,2) 0.3988± 0.0478 0.5505± 0.0628 0.4687± 0.1124 0.3614± 0.0587 

GLCM (2,4) 0.0577± 0.0141 0.0547± 0.0057 0.0556± 0.0242 0.0427± 0.0106 

GLCM (3,3) 0.0311± 0.0459 0.0057± 0.0030 0.0217± 0.0465 0.0029± 0.0039 

GLCM (4,4) 0.2613± 0.0922 0.2260± 0.0763 0.2309± 0.0848 0.2943± 0.0637 

The same GLCMs can be used to derive other statistics about the texture of an 

image. The most commonly used statistics include: 

Contrast – it measures local variations in the gray-level co-occurrence matrix. 
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Energy – it is also known as uniformity or the angular second moment, and provides the 

sum of squared elements in the GLCM. 
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Homogeneity - it measures the closeness of the distribution of elements in the GLCM to 

the GLCM diagonal elements. 
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These textural statistics are computed, and their results are listed in Table 4.3. 
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Table 4.3  Statistical Features extracted for clear cell (CC), chromophobe (CHR), renal 

oncocytoma (ONC) and papillary (PAP) with mean and standard deviations. 

 
 CC CHR ONC PAP 

Contrast 0.5712±  0.0726 0.4937± 0.0492 0.5398± 0.2004 0.4592± 0.0893 

Correlation 0.7496± 0.0173 0.7340± 0.0610 0.7392± 0.0701 0.8252± 0.0270 

Energy 0.2640± 0.0283 0.3759± 0.0366 0.3140± 0.0778 0.2596± 0.0193 

Homogeneity 0.8811± 0.0069 0.9040± 0.0091 0.8885± 0.0313 0.8944± 0.0148 

Entropy 2.3825± 0.1960 1.9577± 0.0787 2.2077± 0.2663 2.3110± 0.0639 

 

The use of wavelet transform [86] can also improve feature extraction by 

performing multi-resolutions analysis of the image. Wavelets are mathematical functions 

that decompose data into different frequency components, and then study each 

component with a resolution matched to its scale. Because of its representation of 

piecewise-smooth signals and fractal behavior owing to its multi-resolution, this method 

has been successfully used for many biomedical imaging applications [89, 90]. 

We have used our four-level grayscale segmented images for wavelet analysis. 

Bi-orthogonal wavelet pairs of the third order, a family of B-Splines, are used as the 

wavelet basis. The transformation generates four component sub images, known as 

Approximation and Detail (Horizontal, Vertical and Diagonal). Figure 4.4 shows the 4-

level DWT image, selected sub-images, and the original grayscale image. 

The Wavelet coefficients from the previous stage are processed to enhance the 

objects of interests. These coefficients contain positive and negative intensities. In post 

processing, we take the absolute of these intensities and reduce the number of gray levels 

to four. The remaining analysis of the wavelet images is identical to the process above for 

four level grayscale images. Each sub image is analyzed using GLCM as well as textural 

analysis of GLCM by finding properties like contrast, correlation, etc. 
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Figure 4.4  (a) 4 level DWT image, (b) Level three approximation component, (c) 

Level two horizontal detail component, (d) 4-level grayscale ONC image.  

Features are computed from 4 levels of wavelet transform. Every sub image from 

every level contributes to a large cumulative set of features. These features are ranked 

based on how well they can discriminate between the RCC images in the training 

database. Some significant features obtained through the wavelet analysis are listed in 

Table 4.4. Once the features of interest are extracted, they are used by the classification 

system to determine the subtype of cancer image. 

Table 4.4  Features extracted after DWT for clear cell (CC), chromophobe (CHR), 

renal oncocytoma (ONC) and papillary (PAP) with mean and standard 

deviations 

 CC CHR ONC PAP 

GLCM(1,1) (level1-Approx) 0.1072±0.0297 0.0582±0.0109 0.0918±0.0265 0.1601±0.0404 

GLCM(1,1) (level1-Diagonal) 0.6327±0.0261 0.6951±0.0383 0.6844±0.0882 0.6915±0.0370 

GLCM(1,2) (level1-Diagonal) 0.1122±0.0051 0.0920±0.0089 0.0986±0.0237 0.0988±0.0110 

GLCM(2,2)(level1-Horizontal) 0.1260±0.0103 0.1053±0.0116 0.1137±0.0296 0.1080±0.0146 

Homogeneity (level 1- Vertical) 0.7618±0.0212 0.7976±0.0222 0.7881±0.0629 0.8048±0.0317 

Energy (level 1-Diagonal) 0.4054±0.0329 0.4874±0.0528 0.4627±0.1131 0.4828±0.0513 

Entropy (level 1-Horizontal) 0.3941±0.0364 0.4628±0.0476 0.4429±0.1130 0.4677±0.0555 

Energy (level 2-Diagonal) 0.3221±0.0420 0.3896±0.0534 0.3652±0.1157 0.3969±0.0562 
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4.2.2 Classification 

Various features extracted from the RCC tissue images using different 

methodologies are used to classify the subtypes correctly. The analysis of data in Tables 

1, 2, and 3 shows that the RCC subtypes have considerable similarities that make it 

difficult for a single feature to differentiate all the subclasses. This problem can be 

addressed by increasing the dimensionality and adding more features.  As shown by the 

scatter plot in Figure 4.5, the different subclasses can be separated by using three 

features.   

We have used simple, multi-class Bayes classifier assuming multivariate Gaussian 

distributions to predict RCC image subclasses. The leave-one-out cross-validation 

method is used to evaluate the ability of our features and the classifier to correctly predict 

unknown images. Our results show that by using the features listed in Table 4.5, our 

classifier can correctly predict the class of an unidentified sample with an accuracy of 

87.5 % from our significantly heterogeneous image data.  It is interesting to note that 

most of the misclassified images are significantly different from other images in their 

own class, thereby contributing to false detection. 

 

Table 4.5  List of features selected for the best classification performance with mean 

and standard deviations. 
 

 CC CHR ONC PAP 

GLCM(1,1) (level1-Approx) 0.107±0.0297 0.058±0.0109 0.091±0.0265 0.160±0.0404 

GLCM(2,2)(level1 Diagonal) 0.067±0.0031 0.054±0.0060 0.058±0.0200 0.057±0.0083 

GLCM(1,1) 0.109±0.0323 0.060±0.0105 0.091±0.0289 0.157±0.0347 

GLCM(2,2) 0.398±0.0478 0.550±0.0628 0.468±0.1124 0.361±0.0587 

Homogeneity 0.881±0.0069 0.904±0.0091 0.888±0.0313 0.894±0.0148 

Energy 0.264±0.0283 0.375±0.0366 0.314±0.0778 0.259±0.0193 
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Figure 4.5:  Scatter plot showing distribution of images for three features: GLCM based 

Energy, GLCM based Diagonal component representing cytoplasm area and 

Wavelet level 1 Diagonal detail GLCM component (2,2)   

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4.6:  (Center) PAP image misclassified as ONC. (Left) another PAP image 

(Right) ONC image  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7:  (Center) CC image misclassified as ONC. (Left) another CC image (Right) 

ONC image   
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Due to significant difference of these images from other images in their class, 

some images are misclassified but even the misclassified images are unanimously 

annotated to one class by most of the features. Figure 4.6 and 4.7 shows two examples of 

the misclassified images along with an image from their correct class as well as an image 

to the incorrect class to which the image was annotated. 

    Although this study showed promising results, much work is still needed 

towards the eventual goal of a clinical image classification system for routine 

pathological use. 

 Image features from a single methodology may be good enough for a less 

varying dataset. But as we increase the complexity and heterogeneity of the images, it 

becomes difficult to find a set of features that can consistently produce accurate results.  

By combining features obtained using different methodologies, we show that the feature 

set becomes more robust and can achieve accurate and consistent results.  In addition to 

improving the feature extraction and classification process, the standardization of tissue 

sample preparation and the image acquisition process are also important factors.  Further, 

in actual practice the pathologist only concentrates on part of the image and bases his or 

her classification on the specific region of interest. Manual segmentation of ROI 

considerably improves the classification accuracy approaching 100% for some datasets. 

Automatic segmentation of these areas is by itself a problem of considerable complexity. 

It is thus important to combine these two problems into one system and use areas of high 

correlation with the training database. Work is ongoing to provide a sophisticated system 

to assist pathologists in their diagnosis and early cancer detection leading to improved 

survivability of renal cancer patients.  

4.3 Cellular features of elliptical models of segmented nuclei clusters  

In this section, we present the results of our computer aided diagnosis system for 

subtype classification of Renal Cell Carcinoma pathological images based on features of 
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individual cells. Traditionally, cancer diagnosis is done by an expert pathologist by 

studying biopsy tissue under a microscope. Heterogeneity in patient tissue samples, 

variation in sample preparation process, intra and inter-observer variability make the 

classification task quite complex and challenging. This requires use of a computational 

diagnosis system to improve the repeatability and accuracy of the process as well as assist 

the pathologist in decision making. Previous sections proposed different methodologies 

and used a combination of several features, derived from the complete image, as a 

solution to this problem. However, pathologists inherently consider only a part of the 

biopsy slide and also take into consideration the features of the individual cells.  To 

replicate this human behavior, we need to segment individual cells in the tissue images to 

extract features for classification. This, in-turn, poses a significant challenge as some 

images have dense nuclei clusters which are very difficult to segment. Based on our 

recent work, we used concavity based ellipse fitting technique to segment the nuclei 

clusters and then determine individual cell features. We report high classification 

accuracy (94%) on a heterogeneous tissue image data set which has significant intra-class 

variations. We also hope that this methodology will help pathologist’s decision making in 

the clinical setting. 

We obtained reasonably good classification accuracy in our previous works[49, 

54, 79].  In[49, 54], we extracted textural and wavelet based features from the whole 

image. In [79], we excluded necrotic regions and large lumen spaces to guide our 

technique closer to a pathologist’s method of analyzing only the relevant regions in a 

biopsy tissue image. In this work, we further extend our technique to imitate yet another 

crucial step followed by pathologists. Pathologists not only look at the significant 

portions of an image, but they also look at the characteristics of individual nuclei.  Our 

present work involves feature extraction from individual nuclei and thus encapsulates 

several inherent procedures followed in manual grading by pathologists.  Since necrotic 

regions and large lumen regions lack nuclei, they are automatically rejected for feature 
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extraction. We also extract features from regions around the nuclei. The characteristics of 

these regions are an important criterion to distinguish the subtypes. For example, CH 

subtype is clearly distinguished by a clear halo around the nuclei while in PA, nuclei are 

clustered together and the region around a single nucleus may be overlapped by another 

nucleus. ON and CC nuclei are far apart, however, the region around their nuclei are 

eosinophilic and clear respectively. Our method combines relevant region analysis with 

knowledge-based feature extraction.  Our automated classification system classifies the 

renal cell carcinoma images into four subtypes with minimal user interaction and 

reasonable accuracy showing the potential for future clinical use.  

In [49], we used knowledge-based RCC features to obtain high classification 

accuracy using our test data set which was selected by the pathologist as a good 

representative of each RCC subtype.  However, in practice, clinical image data is highly 

heterogeneous with significant variations in the images of each RCC subtype. Our 

algorithm in [49] gives reduced classification accuracy when used for significantly 

heterogeneous images within each subtype class. In addition to the heterogeneity, the 

tissue samples also contained necrotic regions which contribute to the reduced accuracy. 

In [54], we designed a new methodology to overcome the reduced accuracy in the 

presence of heterogeneous data. We extracted features using a combination of 

morphological analysis, wavelet analysis and texture analysis. In [79], we augmented our 

knowledge-based classification system with automatic region of interest (ROI) selection 

and rejecting necrotic zones. We demonstrated the importance of intelligent ROI 

selection to reduce computation time and increase classification accuracy. Taking a step 

further and imitating pathologist practice of basing decision on individual cells, we 

propose a new system which segments the nuclei clusters based on ‘concavity based 

ellipse fitting methodology [91]. We compute individual cell features and then use a 

KNN classifier to finally classify RCC tissue image to one of its four sub-classes. We 

focus on nuclear segmentation and derive features for each segmented nuclei with several 
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angle and distance measures. We report high classification accuracy (94%) on a 

heterogeneous tissue image data set which has significant intra-class variations. We also 

hope that our proposed methodology will help pathologists in their decision making 

process. 

4.3.1 Methodology 

We use standard photo micrographs of hematoxylin & eosin (H & E) stained 

biopsy tissue sections as our image dataset. We process these images using the 

methodology shown in Figure 4.8.  First, we color segment each image and then convert 

it into four-level grayscale images (one level for each color corresponding to nuclei, 

cytoplasm, red blood cells and unstained clear tissue).  Next, we segment the nuclei using 

a mask corresponding to nuclei derived from color segmentation. Nuclei shape features 

are extracted using the fitted ellipse model over segmented nuclei while the texture 

features inside and outside nuclei are computed using GLCM. These features were then 

used to train the KNN classifier with subsequent classification of the unknown images 

into subtypes of the RCC. We will describe the detailed processing steps in the remainder 

of this section.  

 

Test image Training images 

KNN Classifier 
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4 level gray 

segmentation 

using K-means 

Nuclei cluster 

segmentation 

4x4 GLCM Nuclei ellipse 

fitting 

Shape feature 

extraction 

Texture feature 

extraction 

Feature 
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Figure 4.8 Flowchart for the overall methodology 
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4.3.2 Image acquisition & image color segmentation 

The image acquisition and initial processing of the images was done in a similar 

fashion as discussed in section (4.1) above. The H&E staining with red blood cells and 

the background results in four distinct colors in the images. The color and intensity of the 

images, however varies considerably due to variations in sample preparation and the 

image acquisition processes. Consequently, to be consistent with tissue staining, we 

segment the images into four-level grayscale images, each level corresponding to a mask 

for one out of four object categories, that is, nuclei, gland, cytoplasm and red blood cells. 

A large variation in intra-sample color and intensity requires some intelligent processing 

to segment the RGB images into quantized grayscale images representing region masks.  

We use K-means clustering for our RCC subtype images. We start with the fixed initial 

values of the staining colors as the means of the k=4 clusters. The K-means algorithm 

adjusts to the variation in the images by shifting the cluster means and updating the pixel 

assignments. Figure 4.9 shows the results of this segmentation. Our seeded K-means is 

constrained and can only shift means with in a specific range there by capturing stain 

variations but cannot shift means enough to change color classes beyond standard 

staining colors. We also provide visual feedback to the user to validate the color 

segmentation and provide slider control if the user wants to bias the color classes. All 

these methods leave a little room for major segmentation discrepancies while our method 

is robust enough for minor discrepancies in segmentation. 
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4.3.3 Nuceli cluster segmentation and ellipse fitting 

Nuclei mask generally contains clusters of nuclei which need to be split, before 

being considered for computation of their individual features. Classical splitting-nuclei 

methods such as watershed can only split simple clusters with small overlap. These 

algorithms frequently produce erroneous results which can seriously affect overall image 

statistics and can lead to misclassification. We use a methodology for cluster 

segmentation using notch detection and ellipse fitting proposed in our previous work [91] 

to achieve this goal.  A comparison of watershed segmentation with our algorithm is 

shown in Figure 4.10.  

The segmentation process involves certain steps as explained below: 

a) Preprocessing: The nuclei masks are obtained during image color 

segmentation process as explained in section 2.2 above. These masks suffer from 

salt and pepper noise and small holes in the nuclei area due to misclassification 

during K-means. These artifacts are removed using standard morphological 

 
Figure 4.9 K-Means segmentation (Left to right): 1) original image; 2) gray level 

segmented image; 3) segmented pseudo color image; 4) Nuclei mask 
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Figure 4.10 (Left) Cluster segmentation by watershed method (Right) Cluster 

segmentation by notch detection and ellipse fitting method 
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techniques like image closing and opening.  The cleaned up masks are then 

processed for concavity detection. 

b) Notch detection: Each cluster in the nuclei masks is processed for detection of 

sharp notches along the boundary of the cluster. These notches are considered as 

possible points for cluster splitting. The notches on the surface can be either 

concave or convex.   The points where two cells touch each other are concave. 

We detect this by dividing the complete cluster boundary into small linear 

segments and determining the tangential vectors for every segment using 

endpoints. If p1, p2, p3 are end points of two consecutive segments then their 

tangential vectors a and b are given by equation 7. Considering each pair of 

consecutive segments as vectors, we compute their cross product. As a and b has 

zero z-component, cross product will be in z-direction. The sign of cross product 

determines the surface to be convex or concave while the angle between the 

vectors determines the sharpness of these notches. Equation 7 explains the 

process.  

    0  ;  0 ;23;23;12;12 yyxxyyxx pppppppp  ba ; ][
||||

1
sin xyyx baba

ba
    (7) 

For concave portion of an edge, sin 0   and for convex portions, 

sin 0  . Notches can be detected by using low positive threshold. Multiple 

concavities may be detected in near vicinity of each other. The concavity with 

maximum angle change amongst its neighbors is selected as a seed point for 

cluster splitting.  

c) Straight line segmentation: After identifying the possible seed points for cluster 

splitting, an iterative process of cluster splitting is used where a split is created 

based on two nearest seed points and then each sub-cluster is evaluated for further 

split. This initial segmentation of the clusters is further refined during the ellipse 

fitting session. 
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d) Ellipse fitting: We use direct ellipse fitting method proposed by Fitzgibbon et 

al. [81] for its accuracy and performance. Our ellipse fitting process iteratively fits 

an ellipse to the boundary points of each portion of the segmented cluster.  At 

every step, we check the overlap of the present ellipse with the previously fitted 

ellipses to avoid over segmentation. Figure 4.11 shows the nuclei segmentation 

with ellipse fitting process.  

4.3.4 Feature extraction and selection 

We use shape and texture features of the individual cells. The shape features are 

purely dependent on the elliptical model of each nucleus while the texture features are 

based on the GLCM within nuclei and immediate neighborhood of the nuclei (e-glcm -> 

GLCM of exterior region). Our previous work [54]show independent results primarily 

from GLCM alone provide good accuracy. The reason for using elliptical descriptors is 

that they are closer to the human interpretation e.g. how round are the nuclei? How big 

are the nuclei clusters? What is average nuclei count in each cluster? In addition these 

descriptors are more useful for the next CAD step of cancer grading which is primarily 

done on the basis of morphological shape analysis. These features are explained below: 

Shape based features:  

After ellipse fitting, for each nucleus we have basic ellipse parameters like major 

axis, minor axis, eccentricity and angle between the major axis and x-axis. Using these 

 
Figure 4.11  Nuclei cluster segmentation for PA RCC tissue image. (a) RGB image, 

(b) Binary nuclei mask, (c) Individual nuclei marked on RGB tissue 

image using ellipse fitting. 
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parameters we can determine shape features of the individual nuclei and also their 

distribution in the image. The features we used for our classification system are listed 

below. 

1. Nuclear area given by  

A  a b    (8) 

where a is major axis and b is minor axis.     

2. Nuclear Eccentricity given by  

2

2
 1E b

a
 

 (9) 

where a is major axis and b is minor axis.     

3.  Inter-nuclear distance in neighborhood nuclei,
ijN : We select a fixed number of 

neighbors around each nucleus and calculate its distance from each neighbor. An 

average value of the inter-nuclear distance is used as a feature. 

4. Major axis alignment with neighboring nuclei: In PA subtype, sometimes there 

are chains of cells oriented in the same direction. Also, in compact tumor regions, 

cells are pressed against one another. Rapidly dividing cells might also result in a 

particular orientation. To capture these effects, we calculate the relative alignment 

of major axis of a given nucleus with its neighbors.  

5. Nuclei density: Since the image size is constant for all images, nuclear density 

provides an implicit measure of the degree of compactness of tumor region.  

Texture features:  

Our texture feature extraction is based on gray level co-occurrence matrix 

(GLCM) for each individual cell. The area inside each nucleus as well as area outside 

each nucleus is considered separately. The outside region is a similar elliptical region 

with both major and minor radii double than the radii of nucleus under consideration as 

shown in Figure 4.12.  The GLCM computed within each area captures the frequency that 
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a gray-level value occurs adjacent to another gray-level value [92]. As we already 

segmented the images into four gray level intensities, our GLCM is a 4x4 matrix 

glcm(i,j).  One GLCM matrix of size 4×4  represents one spatial relation (e.g. horizontal) 

between the intensities of the image. Therefore, we calculated four GLCM matrices to 

cover all the four spatial relations (horizontal, vertical, diagonal at the angle of 45 degree 

and diagonal at -45 degrees) between the intensities from the image and take the average 

of these four to present the overall spatial relation of the gray level intensities within the 

image.  

Some of the GLCM measurements can be easily correlated to the tissue 

properties. For example, with color selection as shown in Figure 4.9, glcm(1,1)is a 

measure of amount of nuclear stain in the region under consideration, glcm(2,2) is a 

measure of amount of cytoplasmic stain, glcm(4,4) is a measure of amount of unstained 

tissue and glcm(1,2) combined with glcm(2,1) is a measure of amount of edges between 

nuclei and cytoplasm regions. 

In our four color selection, color 3 corresponds to the red blood cells (RBC). 

Presence of RBC cannot be attributed as one of the properties to any RCC sub-class and 

therefore it is expected that all the GLCM with color 3 that is glcm( 3,1), (3,2), (3,3), 

(3,4), (1,3), (2,3) and (4,3)  will not contribute as a significant feature. In addition, the 

GLCM matrices obtained are near symmetric, so we included average of upper and lower 

triangle of GLCM matrices as part of our features set. Each GLCM matrix triangle has 10 

elements and eliminating 3 RBC related elements reduces the set to 7 GLCM based 

                  

Figure 4.12 (Left) CC input image. (Right) Mask of regions outside the nuclei. 
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features.  Our total feature space includes 7 GLCM features inside the nuclei ellipse, 7 

GLCM features in the area around nuclei ellipse and 5 shape based features.  

4.3.5 Classification 

We used the features extracted in the previous step for classification of images 

into the subtypes using the KNN classifier. The KNN classifier was selected based on the 

fact that our image data set have significant intra-class variation Each test image is 

expected to have some similar images in its class, although it may not be similar to all the 

images in the corresponding class.  

Our data consists of 4 subtype classes with 12 images in each class. We split the 

data in three folds with 32 images used for training and 12 images were used as test data.  

We performed leave-one-out cross validation (CV) on training images varying all 

combinations of features and values of K. The selected models were used to perform 

external validation (EV) using the test images.  Multiple models have same CV accuracy. 

Figure 10 shows a relationship of these CV models with their corresponding EV models. 

It can be seen that CV and EV results are well correlated with accuracies for best models 

above 90%. Figure 8b shows how frequently a value of K appeared for best model. 

Analyzing the top models, with accuracy greater than 90%, we pick our best feature size 

as 8(Figure 8c). We rank our features (Figure 8a) based on how frequently they appear in 

top models. Figure 9 shows a bar graph with averages values of these features 

highlighting significant variation in these features for different subtypes.  
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Figure 4.13 Statistics for top models. (a -top) Most significant features based on how 

frequently they showed up in top models (b - bottom left) Best K-value 

selection for KNN. (c -bottom right) Number of features used by top models  
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Table 4.6  Confusion Matrix 

 

 CC CH ON PA 

CC 91.7% 8.3% 0% 0% 

CH 0% 100% 0% 0% 

ON 0% 8.3% 75% 16.7% 

PA 0% 8.3% 0% 91.7% 

 

 
Figure 4.14 Distribution of normalized features for different subtypes 

 

Figure 4.15  Correlation between cross validation and external validation results 
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4.3.6 Results and discussion 

Our results show that each subtype of H&E stained RCC images can be classified 

with high accuracy. We obtained above 90% classification accuracy for our best models.  

The confusion matrix in Table 4.6 also supports that the error is low and is distributed. 

Even the subtypes like CH and ON which are generally hard to classify are identified 

correctly. Although, the rate of occurrence of some sub-types is much larger than the 

others, correct diagnosis of rarely occurring subtypes is also critical. If a malignant class 

is misclassified as the benign class ON, the patient may be left un-treated resulting in 

serious future consequences. This fact further supports the use of our system being used 

as a decision support in aid of pathologist to verify and validate their diagnosis.  

Selected features of our model (Figure 4.13) highly correlate with the human 

knowledge of feature selection and the explanation of some of these is given below.  

Inter-nuclear distance:  PA images have a property of forming dense nuclei 

clusters and it is expected that ijN
computed from the near neighbors will be less in 

case of PA images as compared to the other classes like ON where the nuclei are 

well separated. Our statistical results (Figure 4.14) show that PA images have 

least inter-nuclear distance. 

Nuclear eccentricity: ON class has round nuclei which correspond to lower 

eccentricity values. This fact is also well supported by the computed statistics 

(Figure 4.14).  

e-glcm(2,2): This measure has been found lowest in CC class due to presence of 

clear tissue around nuclei, relatively lower in case of PA due to touching nuclei 

and relatively larger for CH and ON classes (Figure 4.14) 
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Nuclear count:  PA images have large nuclei clusters and overall larger nuclear 

density in comparison to the other subtypes. The fact is accordingly observed with 

PA class having highest and CC with lowest nuclear count (Figure 4.14). 

Our proposed methodology takes care of the unwanted necrotic regions 

automatically by considering only area inside nuclei and in immediate vicinity around 

nuclei. Figure 14 shows some larger black zones which are devoid of nuclei and were not 

used for computation of statistics thereby maintaining the higher accuracy proposed in 

our previous work[54]. 

With our improved classification system replicating a pathologist’s method, we 

are highly motivated to apply this system for classification of other cancer types. Our 

results are consistent with our previous work [79]which showed improved classification 

accuracy by using better ROI segmentation. By using nuclei segmentation, only selective 

zones within the image contribute to the statiscal computation, there by resulting in much 

improved and robust system .  Evaluation of  nuclear features is also expected to provide  

important features  for computer assited grading of RCC subtypes.  For example, CC 

grade III and IV are distinguished by nuclei and nucleoli size variation along with texture 

of nucleoli[5]. Our methodology, thus can also be acclimated to perform computer 

assisted grading of various cancer types.   
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CHAPTER - V 

RCC GRADING BASED ON FUHRMAN NUCLEAR GRADE 

 

In 1932, Hand and Broders study [93] found that Renal Cell Carcinoma (RCC) 

grade was associated with the outcome of the patient.  Patients with higher grade 

carcinoma had more mortality and shorter survival time than patients with lower grade. 

Since then different grading systems have emerged based on a number of studies which 

examined these relationships.  Most RCC grading systems [94] target combination of 

nuclear and nucleolar characteristics, and a few have also analyzed the cell type and 

tumor architecture.  The grading systems [95-97] have shown prognostic merit of the 

RCC grading and its correlation with the likelihood of metastases or local recurrence.  

Although RCC grading correlates with survival and stage, it is not an independent, 

significant predictor.  Studies like [98] have shown other factors like proliferating cell 

nuclear antigen (PCNA) expression as a prognostic indicator for RCC.  

There is a consensus with regard to the utility of RCC grading, but there is no 

agreement regarding which grading system should be used. Each system has significant 

advantages and disadvantages. 

5.1 Fuhrman Grading 

Most pathologists in North America use the Fuhrman et al. grading system[99], 

and many studies that have examined the utility of RCC grading have employed this 

system. It is a four-tiered system where grade I carries the best prognosis and grade IV 

the worst. The major criterion that distinguishes each tumor grade is the presence of a 

nucleolus, it size, and the magnification at which it can be observed. Based on the fact 

that the system is based on just the appearance of the nuclei of the cancer cells, rather 
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than the appearance or structure of the cells as a whole, it is also termed as Fuhrman 

Nuclear Grade.  

Nuclear characteristics used in the Fuhrman Grade particularly indicate how 

actively the cells are making protein. These characteristics include size and shape of the 

nucleus as a whole, number and size of nucleoli (Nucleoli are organelles found in the cell 

nucleus which make ribosomes which in turn are protein making factories. More nucleoli 

implies more active protein synthesis) and chromatin clumping.  Chromatin is the 

substance of chromosomes, which includes DNA, chromosomal proteins, and 

chromosomal RNA. Chromatin stains strongly with basic dyes. It is thought that the 

chromatin is most deeply stained when it is most condensed and inactive. Well 

differentiated tumors are recognized as exhibiting orderly stratification, obvious cellular 

bridges, and keratin pearl formation. In contrast, poorly differentiated squamous cell 

carcinomas are noted for their lack of keratinization and lack of intercellular bridges. 

Tumors are graded with respect to the least differentiated areas. A general guideline for 

Fuhrman grading is given in Table-5.1 and the characteristics can be easily correlated 

with the images for different grades in Figure 5.1.  

 

Table 5.1 General guideline for Fuhrman nuclear grading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grade  Nuclear 

Diameter 

in 

microns  

Nuclear 

Outline  

Nucleoli  Additional Features  

I 10 round, regular 

and uniform 

absent or inconspicuous   

II 15 irregular can be seen at high power 

(400x), but not on low 

power (100x) 

  

III 20 irregular prominent, easily seen at 

low power 

  

IV 20 very irregular prominent, easily seen at 

low power 

bizarre shapes, multi-

lobed 

heavy chromatin 

clumps 
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The automated grading system based on Fuhrman nuclear grade will primarily 

involve segmentation of the individual nuclei from clusters, determining their shape and 

size and analyzing the texture inside the nuclei. A proposed flowchart for the process is 

shown in Figure 5.2   

 

 

 

Input images 

Color segmentation of 

nuclei masks 

Segmentation of nuclei 

clusters 

ROI selection of least 

differentiated areas 

Texture analysis inside 

nuclei 

Shape analysis of nuclei 

Scoring individual nuclei 

 

Assign Grade 

User 

feedback 

Figure 5.2 Workflow for the proposed methodology of RCC grading 

Grade I Grade II 
Grade III Grade IV 

Figure 5.1 RCC images of different grades showing variation in nuclear features. 
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Major steps that are involved include segmenting appropriate regions (least 

differentiated areas), segmenting individual nuclei, texture analysis inside nuclei, shape 

analysis of nuclei, scoring individual nuclei and assigning combined grade to the 

complete image. The process accuracy may suffer due to challenges in differentiating 

between nuclei clusters, large malignant nuclei and artifacts. Rather than a fully 

automated system, we propose a decision support system involving human feedback to 

select regions or cells to be graded. This will improve grading accuracy for the samples 

with artifacts and those involving multiple grades.  We also propose the grading to be 

carried out on a continuous scale of 1 to 4 rather than four discrete levels to utilize the 

precision scoring and quantification advantage available in the proposed methodology.  

5.2 Nuclear segmentation of high grade images  

The most challenging part in an automated system for Fuhrman grading is to 

segment the nuclei properly otherwise the computation of nuclear characteristics can lead 

to erratic results. We already have solved problem of clustered nuclei (section 3.3) but 

high grade nuclei have very light large regions as shown in Figure 5.3, which are 

unstained due to high chromatin activity. If we try to fill the regions inside nuclei using 

morphological techniques, neighboring nuclei being too close form clusters before 

complete fill is achieved. The disjoint portions of nuclei have a common characteristic 

generally appear to be part of same circular object. This property can be used to group 

these regions together to find properly segmented nuclei. Circular Hough transform 

(CHT) can be one of the solutions to the problem.   
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Figure 5.3 Higher grade image showing lightly stained nuclei due to chromatic activity 

Nuclear Segmentation using CHT 

The Hough transform can be described as a transformation of a point in the x,y 

plane to the parameter space. The parameter space is defined according to the shape of 

the object of interest. 

A straight line passing through the points (x1,y1) and (x2,y2) can, in the x,y-

plane, be described by: 

y = ax+b 

This is the equation for a straight line in the Cartesian coordinate system, where a 

and b represent the parameters of the line. The Hough transform for lines does not using 

this representation of lines, since lines perpendicular to the x-axis will have an a-value of 

infinity. This will force the parameter space a,b to have infinite size. Instead a line is 

represented by its normal which can be represented by an angle θ and a length ρ. 

ρ  = x cos(θ)+y sin (θ) 

The parameter space can now spanned by θ and ρ , where θ  will have a finite 

size, depending on the  resolution used for θ . The circle is actually simpler to represent in 

parameter space, compared to the line, since the parameters of the circle can be directly 

transfer to the parameter space. The equation of a circle is 

r
2
 = (x−a)

2
+(y−b)

2
 

As it can be seen the circle got three parameters, r, a and b. Where a and b are the 

center of the circle in the x and y direction respectively and where r is the radius. The 

parametric representation of the circle is 

x = a+r cos(θ) 

y = b+r sin (θ) 

Thus the parameter space for a circle will belong to R
3
 whereas the line only 

belonged to R
2
. As the number of parameters needed to describe the shape increases as 

well as the dimension of the parameter space R increases so do the complexity of the 
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Hough  transform. Therefore is the Hough transform in general only considered for 

simple shapes with parameters belonging to R
2
 or at most R

3
. In order to simplify the 

parametric representation of the circle, the radius can be held as a constant or limited to 

number of known radii. 

a

b

r

 
Figure 5.4  The parameter space used for CHT 

 

The process of finding circles in an image using CHT is to start by finding all 

edges in the image. At each edge point we draw a circle with center in the point with the 

desired radius. This circle is drawn in the parameter space, such that our x axis is the a-

value and the y axis is the b value while the z axis is the radii. At the coordinates which 

belong to the perimeter of the drawn circle we increment the value in our accumulator 

matrix which essentially has the same size as the parameter space. In this way we sweep 

over every edge point in the input image drawing circles with the desired radii and 

incrementing the values in our accumulator. When every edge point and every desired 

radius is used, we can turn our attention to the accumulator. The accumulator will now 

contain numbers corresponding to the number of circles passing through the individual 

coordinates. Thus the highest numbers correspond to the center of the circles in the 

image.  
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x

y b

a
 

Figure 5.5 A Circular Hough transform from the x,y-space (left) to the parameter space 

(right), this example is for a constant radius  

 

We implemented this solution based on standard CHT implementation[100]. The 

steps in the algorithm can be listed as below: 

 Convert images to grayscale. 

 Find edges 

 Iterate for all possible radii sizes r 

o For each edge point 

o Draw a circle with center in the edge point with radius r and increment all 

coordinates that the perimeter of the circle passes through in the 

accumulator. 

o Find one or several maxima in the accumulator 

 Map the found parameters (r,a,b) corresponding to the maxima back to the 

original image 

We started testing our implementation on a synthetic image with all possible 

variations. The major variation from standard implementation was only considering 

accumulator values above a specific threshold and using large disk (average size of 

nuclei) for local maxima. The algorithm segments circular objects properly and rejects 

unwanted objects as shown in Figure 5.6  
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 Figure 5.6 [
   
   

](a) Synthetic image (b) Accumulator array for one specific radius (c) 

sum of all radii accumulator planes (d) Sum of accumulator after 

thresholding values (e) Binary mask of (d) (f) resultant circlular models. 

 

Another issue with CHT surfaces when the nuclei are too ecentric. In this case 

they can’t be modeled as circular objects and may result in errors as shown in Figure 

5.7(c) where a single elliptical cell has been modeled as two circular objects. 

 
Figure 5.7 [       ](a) Synthetic image (b) Sum of all radii accumulator planes (c) 

Resultant circlular models. (d) Accumulator using radial lines 
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Before we discuss the solution to the problem of elliptical objects we shall 

considered a common approach used with CHT i.e. use of gradient information. This can 

be a useful addition to this algorithm as it will reduce the number of points incremented 

in accumulator array. This can help increase processing speed and may improve 

accuracy. 

We tested the gradient based approach and the results are similar to the one with 

full accumulator results with some improvement in speed.  

Nuclear segmentation using Gradient based lines. 

Instead of drawing circles around each edge pixel, we can draw radial lines (to 

populate accumulator) in the direction of gradient as shown in Figure 5.7(d). This is more 

efficient approach and also takes care of non-circular objects. For real life images we 

need to perform objects merging and splitting to find nuclei with more accuracy. The 

major criterion to split the objects is their size. For the objects which aren’t detected as 

independent nuclei, we try to find if they belong to a nucleus within their neighborhood 

and merge objects if needed. The overall flow chart for this algorithm is given in Figure 

5.8 
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Figure 5.8 Flow chart for nuclear segmentation using gradient lines based approach 

 

The results of this algorithm on synthetic data figure 5.9 clearly show that 

algorithm successfully detected nuclei and merged objects together where needed and 

also split a cluster into two nuclei.  

   
Figure 5.9   Results of gradient lines algorithm on synthetic data showing accumulator 

array, merging and splitting objects to detect nuclei. 

Testing this scheme on one of the challenging real images in our dataset produced 

satisfactory results. Some regions which are not nuclei but are bounded by multiple 

nuclei are also detected as desired objects. The true positives are shown as green while 
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while false positives are shown as blue circles in Figure 5.10. These false positives can be 

rejected by thresholding based on percentage of stained area under the object. Figure 5.10 

below shows these results. 

 

Figure: 5.10 [
 

   
](a) Resultant image with Green circles showing detected nuclei and 

blue circles showing rejected objects(b) Input image(c) Nuclear mask of 

input image (d) Edges used for computation of Hough transform 

5.3 Feature extraction for Fuhrman grading 

Fuhrman grading is primarily based on two features of the nuclei: size of the 

nuclei and prominence of nucleolus. The nucleolus prominence features, because of light 

staining, results in objects which have holes. In addition, the nuclear area segmented 

doesn’t reflect true area or size of nuclei. We found the convex area of the segmented 

object to be a better measure for the nuclei size . Convex area is based on the convex hull 

of the object as shown in figure 5.11. The second feature related to the nucleolous is 

called solidity. This is an indirect measure of how solid the objects are and is computed 

as the proportion of the pixels in the convex hull that are also in the region. The third 

feature, the eccentricity, serves a dual purpose. First as a measure of circularity of the 

nuclei and second as a criterion to remove objects like non-split nuclei clusters and long 

streaks. 
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Taking a quantitative approach resulted in a large number of features. We selected 

38 knowledge based features which can be easily co-related to the existing knowledge of 

pathologists. The approach helps in improved confidence in use of the quantified features 

for decision making. Details of these features are shown in Table 5.2: 

Table 5.2  Features used for grading of RCC images 

 

Type of features Number of features Most useful features 

Nuclear morphology, shape 

and texture 

12 
Nuclear area, convex hull area of 

nuclei, filled nuclear area, 

unstained nuclear area, nuclear 

area variance, solidity, 

circularity, stained/unstained 

area ratio, area solidity ratio, 

edge to edge inter-nuclei 

distance, center to center inter-

nuclei distance, and number of 

nuclei. 

Cytoplasm features 11 

Image based features 8 

Unstained region/ 

background features 

7 

 

 

Figure: 5.11 [     ](a) Nucleus image (b) Nuclear area (c)  Nuclear area filled (d) 

Convex hull area of nuclei (e) Nuclear area unstained - red 

5.4 Scoring Nuclei  

The pathologist, while grading ignore a lot of information like healthy cells and 

normal regions. They only evalute nuclear characteristics in the least differntiated areas. 

Following the same guidelines, we selectively pickup nuclei for analysis. The major 

criterion for our selection is the maximum size of the nucleui which are expected to be 

seen at a given magnification and the eecentricity. If the nuclei size is too large, it means 

that its is a cluster which has not been split due to its shape or it may be an artifact. The 
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same logic applies to the eccentricity. Objects with eccentricity less than 0.5  are 

generally correctly identified nuclei. The second consideration based on the nuclei size is 

that we may ignore small sized nuclei, as pathologist do in real life, to ignore healthy and 

lower grade nuclei. The nuclei which are relatively large must be considered as a basis 

for grade prediction. At present our application is designed to select top 25% of the nuclei 

(based on size) for analysis. 

The psuedocode for individual nuclei scoring is given below along with the 

explanation of variables at the end of code: 

if PerEccN >TEccPercent 

 return Grade 4 // bizzare shape too many elliptical nuclei 

else 

 for count = 1 to NumNuclei 

  if  NEcc < TEcc //confident, it is a regular nuclei 

  FlagN(count) = set 

  ScoreN(count) = Nsize * WtSize + Nsolidity *  WtSolidity  

  endif 

 endfor 

 Nsort = Sorted nuclei high to low 

 for count = 1 to NratioSel *NumNuclei 

  Grade = ScoreNsort(count) +Grade 

 end for 

 return Grade/(NratioSel *NumNuclei) //Avearage grade of top  Nuclei 

endif 

 Variables:  

TEcc:  Threshold for rejection of nuclei based on eccentricity for individual 

score 

PerEccN :  Percentage of nuclei with eccentricity above TEcc 
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TEccPercent: Threshold for percentage  of eccentric nuclei to be considered bizzare 

shapes high grade image 

NSize:  Normalized nuclear size based on image resolution 

WtSize:  Weightage of normalized nuclei size for score 

Nsolidity:  Normailzed Nuclear Solidity measure of nucleolus prominence 

 WtSolidity:  Weightage of nuclei solidity for score 

NumNuclei:  Number of nuclei in the image 

NratioSel:  Percentage of top ranked nuclei considered for grading 

 

Figure 5.12 shows the represntative images of four different grades, the nuclei 

picked up by the algorithm for analysis and their segmentation. Analysis of selected  

features i.e. convex area, solidity, circulatity and unstained nuclear area,  shown in Figure 

5.13,  results in proper clustering and grade prediction adhering to fuhrman grading 

guidelines. 

 

 

 

 

 

 

Figure 5.12  Grade I –IV (left to right) representative images are shown with automatic 

selection of nuclei based on their size and eccentricity. The selected nuclei 

segmentation is also shown as overlay in bottom row. Holes in nuclear 

masks show nucleolus prominence.  
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Figure 5.13 Two views of clustering of different grade images based on the selected 

features i.e. nuclear convex area , nuclear circularity, nuclear solidity and 

unstained nuclear area. 
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As mentioned above, after selecting top 25% nuclei based on size, we assign them 

individual score based on the size, eccentricity and solidity. These scores are assigned on 

a floating scale between 1 to 4 rather than using discrete values in conventional way. This 

is quite useful to compare individual nuclei and provides a usable annotation for use in 

the user’s interface of CDSS. Use of the scoring and annotations are discussed in detail in 

chapter 6. 

In this chapter, we reviewed the Fuhrman grading guidelines and showed that real 

challenge in automated grading is related to nuclear segmentation. With variations from 

very light staining to broken nuclear objects and overlapping nuclear cluster, the nuclear 

segmentation is a significant challenge. We showed how our variant of CHT successfully 

achieved nuclear segmentation. The algorithm also combined techniques to split and 

merge detected objects as detect individual nuclei. Successful detection of nuclei is 

followed by feature extraction and scoring of the individual nuclei leading to grading of 

the images. Though the knowledge extracted out of the image can lead to automated 

prediction of the cancer grade but our study has shown it will be more usable and more 

acceptable if this knowledge is used for supplementing the information available to the 

pathologist for use in decision making process. We designed a CDSS where the user is 

presented with annotated images and other information in easy to use interface to provide 

grading decisions in an accurate and efficient way. The details of the CDSS are discussed 

in the following chapter. 
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CHAPTER – VI 

CDSS FOR FUHRMAN GRADING 

This chapter presents a Clinical Decision Support System (CDSS) for nuclear 

grading of Renal Cell Carcinoma (RCC). The system provides an effective way to 

annotate RCC tissue images with quantitative information, highlighting selected nuclei 

and their features, and performing automated predictions to assist pathologists in the 

decision making process for nuclear grading of RCC. Different image processing and 

analysis algorithms including color and nuclear segmentation techniques, presented in 

earlier chapters, can be used to reliably extract and visualize prime features which can 

facilitate decision making process. Testing our system on clinically challenging dataset of 

images, we were successfully able to extract the desired features and annotate the images 

for review. The system was helpful in identifying real clinical challenges and extending 

the clinical decision making process beyond the existing Fuhrman grading guidelines.   

 The investigation, analysis and interpretation of the pathological imaging 

data mainly depends on the pathologist’s knowledge, experience and his subjective view 

about the data. As Computer Aided Diagnostic (CAD) tools can help reduce this 

subjectivity and the inter-user and intra-user variability,  they are gaining some 

acceptance among clinicians [3, 4].  The clinicians, however, prefer systems which are 

flexible and take into account their individuality when necessary by providing some 

control rather than fully automated system [101]. Studies[34, 35] have shown 

improvement in practitioner’s performance and patient’s outcome for CDSS which 

account for practitioner’s perspective and integrate it in the workflow. Therefore, to be 

able to introduce CDSS in health care, we need to understand users’ perspectives and 

preferences on the new information technology.  This forms as the basis for this CDSS 

where we target to present the quantitative information acquired through the image 
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analysis, annotate the images and provide suitable visualization which can facilitate the 

process of decision making in a clinical setting.   

6.1 Graphical user interface (GUI) 

We designed a GUI which combines the power of 2D color map based 

segmentation (section 3.1.2), gradient lines based nuclear segmentation (section 5.1) and 

the feature extraction for Fuhrman grading (section 5. 2) to provide an interface to the 

user to interact and test the images. The GUI allows users to open all common types of 

images including jpeg, tiff etc. The user is presented with a 2D color map with step by 

step instructions (figure 6.1). The user marks zones using mouse pointer which are 

perceived to belong to a single color class (figure 6.2). The number of color classes can 

be selected using color segmentation data panel. The color segmentation algorithm runs 

in the background and color segmentation results are presented to the user (figure 6.3). 

Correct segmentation enhances user’s confidence to proceed to the analysis step. The 

analysis step computes features and generates vital statistics which are shown in the 

results panel.  Top ranked nuclei, based on the grading score, are highlighted using green 

overlay over the input image. The predicted grade for the overall image is shown in 

results panel (figure 6.4). The final decision made by the user is recorded in the feedback 

panel (figure 6.4) along with the system performance evaluation and specific comments 

related to the image under study. 
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Figure 6.1 GUI showing image  loading, entry for basic parameters, 2D segmentation 

map and user instructions. 

 
Figure 6.2 GUI showing zone marking by user for segmenation 
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Figure 6.3 GUI showing segmenation results in psuedo color. 

 

Figure 6.4 GUI showing top ranked nuclei(overlaid in green) based on their grading 

score(black). The holes in the segmentation masks show nucleolus 

prominence. Major statistics along with the predicted grade are shown in 

results panel. Feedback panel records final decision, system performance 

and specific comments. 
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6.2  Time analysis 

The GUI shown in section 6.1 has two major components i.e. the color 

segmentation and the feature extraction and analysis component. The interactive use of 

color segmentation component is not required every time and is only recommended once 

for a single batch of images stained and captured under identical conditions. Moreover, 

for whole slide scans which may be captured using slide scanners or by using image 

mosaicking to join multiple images, a single representative image can be used to capture 

user color perception. The time taken by this component constitutes of time to generate 

the color map (less than 1 sec), the user interaction time (less than 40 secs.) and 

generating segmentation results(less than 1 sec) is dominated by the user interaction part. 

Detailed time analysis results for this component are shown in the user study (section 

3.1.2, table 3.2 and figure 3.10).  

The feature extraction and analysis component which works on the color 

segmented images is designed to work on image tiles. Smaller images e.g. 1000x1000 

pixels can be processed as a single image or single tile. The whole slide images are split 

in multiple tiles (sub-images) and each tile is analyzed independently. The statistics from 

these tiles are merged to generate combined image statistics. The time taken by large 

images is directly proportional to the ratio of its area to the tile area.  Table 6.1 shows 

time analysis of some example images.  
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Table 6.1 Time analysis showing time required for different components for image 

examples of different sizes. 

Image 

Size 

Tile size Number 

of tiles 

User 

interaction 

time other 

than 

segmentation 

time  

Color 

segmentation 

time  

Feature 

extraction 

and 

analysis 

time  

Total 

time 

(secs) 

600x600 600x600 1 10.5secs 21.32 secs 6.88 secs 38.7 

secs 

1600x1200 800x600 4 12.3 secs 25.32 secs 30.5 secs 68.12 

secs 

 

 

6.3  Grade predictions and decisions  

At present the system is targeted towards a decision support system. The system 

can be used as a second more objective reader to aid the pathologist in making final 

diagnostic decision. For system evaluation, we used a data set of 72 images which were 

initially graded by a urologic pathologist. However, the initial grading was not done 

entirely based on the view covered in the image. The urologic pathologist had whole slide 

available for analysis and other regions of the tissue were considered when a single view 

wasn’t good enough to base their decision. The second limitation of the system was that it 

was based on the Fuhrman grading guideline which is inherently limited to basic 

knowledge, while the pathologists use their experience and knowledge for decision 

making which is way beyond the stated guidelines like Fuhrman grading. We generated 

annotations for these images (Figure 6.5), marked nuclei which were selected for grade 

statistics and assigned the new grade labels based on quantitative analysis. These 

annotated images were again reviewed by the urologic pathologist. During review, the 

results (Figure 6.6) show that 69% of the urologic pathologist’s initial assigned grades 

were correctly predicted by the system, 7% of images lead to re-evaluation of grade with 
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a potential to change the original prediction with system recommendation. 8% of images 

can be considered as correct prediction if the data is restricted to the information 

available in the image; however the initial predictions by the urologic pathologist were 

based on other regions of tissue which was not available to the system. 16% of the 

images were considered as wrong predictions, primarily due to the system design being 

restricted to the implementation of Fuhrman grading guidelines. Our average prediction 

error on a four tier grade system was close to 0.6 and 98.6% of the predictions were less 

than 1 grade level from the pathologist’s assigned labels. 

 

 
Figure 6.5 Original and annotated  images are shown which can be used for 

pathologists review 
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Figure 6.6 Pediction results for the case study of 72 RCC images 

 

 

6.4  Feedback and results  

The feedback collected during the review of the annotated images revealed certain 

limitations of the Fuhrman grading system which were not specifically mentioned in the 

guideline but have become part of the decision making process for the expert 

pathologists. A few of these limitations are.  

a. Fuhrman grading was primarily designed for the clear cell carcinoma being the most 

frequently occurring histopathologic subtype of RCC. Different subtypes have unique 

characteristics and subtype consideration is an important aspect which is not taken 

care off in Fuhrman grading. Figure 6.7 shows that in case of papillary carcinoma the 

nuclear size is generally larger than the one in other subtypes. 

b. Pleomorphism, which is measure of nuclear variance, is another important 

consideration not provided in Fuhrman guideline. For nuclei with similar average size 

and similar nucleolus prominence the tissue exhibiting pleomorphism will tend to 

have higher grade as shown in figure 6.7 

69% 
7% 

8% 
16% 

Correct Predicition

Predicted grade may be correct

Predicted correct, limiting the data to
the image in consideration only

Incorrect Prediction
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c. Another important feature to determine the grade is bi-nucleation which is a measure 

of presence of multiple nuclei in a single cell. H&E stain, generally used for RCC 

tissue images, isn’t targeting cell membranes. It is very hard to see cell boundaries 

and therefore determine whether closely located nuclei are part of single cell or 

independent cells. Figure 6.7(d&e) shows examples with and without prominent cell 

membranes. In case it can be established that bi-nucleation is present, the image is 

categorized in higher grade. 

 

Figure 6.7 (a&b) Nuclei size for papillary carcinoma is larger than the one in 

corresponding clear cell reference. (a&c) For same size and nucleolus 

prominence image exhibiting pleomorphism shows higher grade. (d) Cell 

structure is clear because of prominent cell boundaries. (e) Nuclei are 

clustered together but cell boundaries aren’t visible and bi-nucleation 

cannot be determined. 

 

  

Grade-1 papillary test image Grade-1 clear cell reference Grade-2 papillary reference 

(a) (b) (c) 

(d) (e) 
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Summary 

Our case study of RCC grading has shown that automated analysis where very 

high prediction accuracies are hard to achieve due to complexity and variability of the 

clinical data, the CDSS solutions may be a better approach rather than conventional 

approach of using fully automated CAD tools. The clinicians can still benefit from useful 

semantic knowledge; enhanced visualizations and predictions in a flexible and usable 

interface. It makes the decision making process easier and adds to confidence in clinical 

decisions. During the developmental phase, the instances where the system predictions 

contradict the clinician’s observations can prompt detailed investigation of more data and 

may improve decisions after review. Clinicians recorded feedback and annotated image 

database can be a vital resource to improve the knowledge base and subsequent 

predictions thereby leading to a better and mature CDSS which can be fully integrated in 

the clinical workflow. 
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CHAPTER – VII 

CONCLUSION 

 

The successful case study of RCC subtype classification and grading has shown 

promise for our CAD tools to be used as a more general pathology system especially in 

clinical setting as CDSS. With the ability to process differently stained images, ability to 

segment images efficiently and accurately  and the flexibility to customize features 

already built-in, the system can readily be used for the classification and grading of other 

cancer imaging data. 

In order to ensure our tool’s universal clinical use, more work needs to be done. 

In addition to the features already discussed here, a whole array of features may be added 

to the system including gabor filters, phase congruence analysis and fractal vectors. All 

these features will be available for the user to select from depending on his or her 

preference and the perceived importance during the diagnosis. Aside from adding new 

feature extraction, nuclear and cellular segmentation is open to exploration. New 

techniques for merging and splitting cell clusters can help better segmentation of the 

objects which will in turn result in better feature statistics and improved classification and 

grading results.  

It should be kept in mind, however that a clinical implementation would require 

much more training and validation. In particular, additional effort is required to cater to 

the variation among image acquisition systems, tissue collection, and staining protocols. 

Although computer aided diagnostic tools can never replace the expertise of a 

trained pathologist, they can definitely assist the pathologists and improve upon the status 

quo by increasing accuracy and reducing subjectivity. Furthermore, the power of pattern 

recognition can also be leveraged to find and extract features from these tissue images 

that are beyond human visual perception. 
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It is critical to note that the paradigm of cancer diagnostics based mainly on 

histopathology will soon have to evolve. True[89] and Gao[20] have contended that since 

histological patterns of cancer are not directly correlated with the underlying molecular 

profile that is responsible for cancer progression, new optical image technologies like 

Quantum dots should be used to provide further insight. They state that “With new 

molecular profiling technologies, it should be possible to read the molecular signatures of 

an individual patient’s tumor and correlate a panel of tissue biomarkers with clinical 

outcome and personalized therapy”. Our system can readily analyze and quantify such 

images and their properties and can integrate that information with the underlying 

histopathological information. The advent of these molecular profiling techniques 

coupled with pathological CDSS promises the ability to correlate the histological patterns 

with the specific biomarker profile thereby leading to better clinical diagnosis and 

represents a new horizon for the field of molecular pathology. 
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