5 research outputs found

    Topological descriptors for 3D surface analysis

    Full text link
    We investigate topological descriptors for 3D surface analysis, i.e. the classification of surfaces according to their geometric fine structure. On a dataset of high-resolution 3D surface reconstructions we compute persistence diagrams for a 2D cubical filtration. In the next step we investigate different topological descriptors and measure their ability to discriminate structurally different 3D surface patches. We evaluate their sensitivity to different parameters and compare the performance of the resulting topological descriptors to alternative (non-topological) descriptors. We present a comprehensive evaluation that shows that topological descriptors are (i) robust, (ii) yield state-of-the-art performance for the task of 3D surface analysis and (iii) improve classification performance when combined with non-topological descriptors.Comment: 12 pages, 3 figures, CTIC 201

    SuPP & MaPP: Adaptable Structure-Based Representations For Mir Tasks

    Get PDF
    Accurate and flexible representations of music data are paramount to addressing MIR tasks, yet many of the existing approaches are difficult to interpret or rigid in nature. This work introduces two new song representations for structure-based retrieval methods: Surface Pattern Preservation (SuPP), a continuous song representation, and Matrix Pattern Preservation (MaPP), SuPP’s discrete counterpart. These representations come equipped with several user-defined parameters so that they are adaptable for a range of MIR tasks. Experimental results show MaPP as successful in addressing the cover song task on a set of Mazurka scores, with a mean precision of 0.965 and recall of 0.776. SuPP and MaPP also show promise in other MIR applications, such as novel-segment detection and genre classification, the latter of which demonstrates their suitability as inputs for machine learning problems

    Adaptive Topological Feature via Persistent Homology: Filtration Learning for Point Clouds

    Full text link
    Machine learning for point clouds has been attracting much attention, with many applications in various fields, such as shape recognition and material science. To enhance the accuracy of such machine learning methods, it is known to be effective to incorporate global topological features, which are typically extracted by persistent homology. In the calculation of persistent homology for a point cloud, we need to choose a filtration for the point clouds, an increasing sequence of spaces. Because the performance of machine learning methods combined with persistent homology is highly affected by the choice of a filtration, we need to tune it depending on data and tasks. In this paper, we propose a framework that learns a filtration adaptively with the use of neural networks. In order to make the resulting persistent homology isometry-invariant, we develop a neural network architecture with such invariance. Additionally, we theoretically show a finite-dimensional approximation result that justifies our architecture. Experimental results demonstrated the efficacy of our framework in several classification tasks.Comment: 17 pages with 4 figure
    corecore