66,377 research outputs found

    Bulk-boundary correspondence for three-dimensional symmetry-protected topological phases

    Full text link
    We derive a bulk-boundary correspondence for three-dimensional (3D) symmetry-protected topological (SPT) phases with unitary symmetries. The correspondence consists of three equations that relate bulk properties of these phases to properties of their gapped, symmetry-preserving surfaces. Both the bulk and surface data appearing in our correspondence are defined via a procedure in which we gauge the symmetries of the system of interest and then study the braiding statistics of excitations of the resulting gauge theory. The bulk data is defined in terms of the statistics of bulk excitations, while the surface data is defined in terms of the statistics of surface excitations. An appealing property of this data is that it is plausibly complete in the sense that the bulk data uniquely distinguishes each 3D SPT phase, while the surface data uniquely distinguishes each gapped, symmetric surface. Our correspondence applies to any 3D bosonic SPT phase with finite Abelian unitary symmetry group. It applies to any surface that (1) supports only Abelian anyons and (2) has the property that the anyons are not permuted by the symmetries.Comment: 31 pages, 14 figures, 1 tabl

    Recoverable Information and Emergent Conservation Laws in Fracton Stabilizer Codes

    Full text link
    We introduce a new quantity, that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information, as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information, and prove their equivalence. To demonstrate its utility, we compute recoverable information for fracton models using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z2Z_2 Gauss-law type constraints, which in turn imply emergent Z2Z_2 conservation laws for point-like quasiparticle excitations of an underlying topologically ordered phase.Comment: Added additional cluster model calculation (SPT example) and a new section discussing the general benefits of recoverable informatio

    Hartle-Hawking Wave-Function for Flux Compactifications

    Get PDF
    We argue that the topological string partition function, which has been known to correspond to a wave-function, can be interpreted as an exact ``wave-function of the universe'' in the mini-superspace sector of physical superstring theory. This realizes the idea of Hartle and Hawking in the context of string theory, including all loop quantum corrections. The mini-superspace approximation is justified as an exact description of BPS quantities. Moreover this proposal leads to a conceptual explanation of the recent observation that the black hole entropy is the square of the topological string wave-function. This wave-function can be interpreted in the context of flux compactification of all spatial dimensions as providing a physical probability distribution on the moduli space of string compactification. Euclidean time is realized holographically in this setup.Comment: 37 pages, 2 figure

    Complex Networks and Symmetry I: A Review

    Get PDF
    In this review we establish various connections between complex networks and symmetry. While special types of symmetries (e.g., automorphisms) are studied in detail within discrete mathematics for particular classes of deterministic graphs, the analysis of more general symmetries in real complex networks is far less developed. We argue that real networks, as any entity characterized by imperfections or errors, necessarily require a stochastic notion of invariance. We therefore propose a definition of stochastic symmetry based on graph ensembles and use it to review the main results of network theory from an unusual perspective. The results discussed here and in a companion paper show that stochastic symmetry highlights the most informative topological properties of real networks, even in noisy situations unaccessible to exact techniques.Comment: Final accepted versio
    • …
    corecore