7 research outputs found

    TỐI ƯU HÓA VÙNG PHỦ SÓNG CỦA MẠNG CẢM BIẾN KHÔNG DÂY BẰNG THUẬT TOÁN VORONOI TRONG MÔI TRƯỜNG 3D

    Get PDF
    In recent years, wireless sensor networks (WSN) has appeared interesting to many authors. Some methods to optimize the coverage of wireless sensor networks is proposed to improve the efficiency of deploying sensor networks, thus increasing the coverage; howerver, most are built on 2D model, which are often hard to implement in reality. In this paper we extend Voronoi algorithm to deploy sensors in 3D environments where there are obstacles which affect the ability of coverage of wireless sensor networks.Trong những năm gần đây mạng cảm biến không dây (WSN) được nhiều nhóm tác giả quan tâm. Một số phương pháp tối ưu hóa vùng phủ sóng của mạng cảm biến không dây được đề xuất để nâng cao hiệu quả triển khai mạng cảm biến do đó làm tăng độ phủ sóng, nhưng hầu hết được xây dựng trên mô hình 2D, mà thường xa rời với thực tế. Trong bài báo này chúng tôi mở rộng thuật toán Voronoi để triển khai các cảm biến trong môi trường 3D mà ở đó có nhiều vật cản làm ảnh hưởng đến khả năng phủ sóng của mạng cảm biến không dây

    Development of a GIS-based method for sensor network deployment and coverage optimization

    Get PDF
    Au cours des dernières années, les réseaux de capteurs ont été de plus en plus utilisés dans différents contextes d’application allant de la surveillance de l’environnement au suivi des objets en mouvement, au développement des villes intelligentes et aux systèmes de transport intelligent, etc. Un réseau de capteurs est généralement constitué de nombreux dispositifs sans fil déployés dans une région d'intérêt. Une question fondamentale dans un réseau de capteurs est l'optimisation de sa couverture spatiale. La complexité de l'environnement de détection avec la présence de divers obstacles empêche la couverture optimale de plusieurs zones. Par conséquent, la position du capteur affecte la façon dont une région est couverte ainsi que le coût de construction du réseau. Pour un déploiement efficace d'un réseau de capteurs, plusieurs algorithmes d'optimisation ont été développés et appliqués au cours des dernières années. La plupart de ces algorithmes reposent souvent sur des modèles de capteurs et de réseaux simplifiés. En outre, ils ne considèrent pas certaines informations spatiales de l'environnement comme les modèles numériques de terrain, les infrastructures construites humaines et la présence de divers obstacles dans le processus d'optimisation. L'objectif global de cette thèse est d'améliorer les processus de déploiement des capteurs en intégrant des informations et des connaissances géospatiales dans les algorithmes d'optimisation. Pour ce faire, trois objectifs spécifiques sont définis. Tout d'abord, un cadre conceptuel est développé pour l'intégration de l'information contextuelle dans les processus de déploiement des réseaux de capteurs. Ensuite, sur la base du cadre proposé, un algorithme d'optimisation sensible au contexte local est développé. L'approche élargie est un algorithme local générique pour le déploiement du capteur qui a la capacité de prendre en considération de l'information spatiale, temporelle et thématique dans différents contextes d'applications. Ensuite, l'analyse de l'évaluation de la précision et de la propagation d'erreurs est effectuée afin de déterminer l'impact de l'exactitude des informations contextuelles sur la méthode d'optimisation du réseau de capteurs proposée. Dans cette thèse, l'information contextuelle a été intégrée aux méthodes d'optimisation locales pour le déploiement de réseaux de capteurs. L'algorithme développé est basé sur le diagramme de Voronoï pour la modélisation et la représentation de la structure géométrique des réseaux de capteurs. Dans l'approche proposée, les capteurs change leur emplacement en fonction des informations contextuelles locales (l'environnement physique, les informations de réseau et les caractéristiques des capteurs) visant à améliorer la couverture du réseau. La méthode proposée est implémentée dans MATLAB et est testée avec plusieurs jeux de données obtenus à partir des bases de données spatiales de la ville de Québec. Les résultats obtenus à partir de différentes études de cas montrent l'efficacité de notre approche.In recent years, sensor networks have been increasingly used for different applications ranging from environmental monitoring, tracking of moving objects, development of smart cities and smart transportation system, etc. A sensor network usually consists of numerous wireless devices deployed in a region of interest. A fundamental issue in a sensor network is the optimization of its spatial coverage. The complexity of the sensing environment with the presence of diverse obstacles results in several uncovered areas. Consequently, sensor placement affects how well a region is covered by sensors as well as the cost for constructing the network. For efficient deployment of a sensor network, several optimization algorithms are developed and applied in recent years. Most of these algorithms often rely on oversimplified sensor and network models. In addition, they do not consider spatial environmental information such as terrain models, human built infrastructures, and the presence of diverse obstacles in the optimization process. The global objective of this thesis is to improve sensor deployment processes by integrating geospatial information and knowledge in optimization algorithms. To achieve this objective three specific objectives are defined. First, a conceptual framework is developed for the integration of contextual information in sensor network deployment processes. Then, a local context-aware optimization algorithm is developed based on the proposed framework. The extended approach is a generic local algorithm for sensor deployment, which accepts spatial, temporal, and thematic contextual information in different situations. Next, an accuracy assessment and error propagation analysis is conducted to determine the impact of the accuracy of contextual information on the proposed sensor network optimization method. In this thesis, the contextual information has been integrated in to the local optimization methods for sensor network deployment. The extended algorithm is developed based on point Voronoi diagram in order to represent geometrical structure of sensor networks. In the proposed approach sensors change their location based on local contextual information (physical environment, network information and sensor characteristics) aiming to enhance the network coverage. The proposed method is implemented in MATLAB and tested with several data sets obtained from Quebec City spatial database. Obtained results from different case studies show the effectiveness of our approach

    Spatio-temporal coverage optimization of sensor networks

    Get PDF
    Les réseaux de capteurs sont formés d’un ensemble de dispositifs capables de prendre individuellement des mesures d’un environnement particulier et d’échanger de l’information afin d’obtenir une représentation de haut niveau sur les activités en cours dans la zone d’intérêt. Une telle détection distribuée, avec de nombreux appareils situés à proximité des phénomènes d’intérêt, est pertinente dans des domaines tels que la surveillance, l’agriculture, l’observation environnementale, la surveillance industrielle, etc. Nous proposons dans cette thèse plusieurs approches pour effectuer l’optimisation des opérations spatio-temporelles de ces dispositifs, en déterminant où les placer dans l’environnement et comment les contrôler au fil du temps afin de détecter les cibles mobiles d’intérêt. La première nouveauté consiste en un modèle de détection réaliste représentant la couverture d’un réseau de capteurs dans son environnement. Nous proposons pour cela un modèle 3D probabiliste de la capacité de détection d’un capteur sur ses abords. Ce modèle inègre également de l’information sur l’environnement grâce à l’évaluation de la visibilité selon le champ de vision. À partir de ce modèle de détection, l’optimisation spatiale est effectuée par la recherche du meilleur emplacement et l’orientation de chaque capteur du réseau. Pour ce faire, nous proposons un nouvel algorithme basé sur la descente du gradient qui a été favorablement comparée avec d’autres méthodes génériques d’optimisation «boites noires» sous l’aspect de la couverture du terrain, tout en étant plus efficace en terme de calculs. Une fois que les capteurs placés dans l’environnement, l’optimisation temporelle consiste à bien couvrir un groupe de cibles mobiles dans l’environnement. D’abord, on effectue la prédiction de la position future des cibles mobiles détectées par les capteurs. La prédiction se fait soit à l’aide de l’historique des autres cibles qui ont traversé le même environnement (prédiction à long terme), ou seulement en utilisant les déplacements précédents de la même cible (prédiction à court terme). Nous proposons de nouveaux algorithmes dans chaque catégorie qui performent mieux ou produits des résultats comparables par rapport aux méthodes existantes. Une fois que les futurs emplacements de cibles sont prédits, les paramètres des capteurs sont optimisés afin que les cibles soient correctement couvertes pendant un certain temps, selon les prédictions. À cet effet, nous proposons une méthode heuristique pour faire un contrôle de capteurs, qui se base sur les prévisions probabilistes de trajectoire des cibles et également sur la couverture probabiliste des capteurs des cibles. Et pour terminer, les méthodes d’optimisation spatiales et temporelles proposées ont été intégrées et appliquées avec succès, ce qui démontre une approche complète et efficace pour l’optimisation spatio-temporelle des réseaux de capteurs.Sensor networks consist in a set of devices able to individually capture information on a given environment and to exchange information in order to obtain a higher level representation on the activities going on in the area of interest. Such a distributed sensing with many devices close to the phenomena of interest is of great interest in domains such as surveillance, agriculture, environmental monitoring, industrial monitoring, etc. We are proposing in this thesis several approaches to achieve spatiotemporal optimization of the operations of these devices, by determining where to place them in the environment and how to control them over time in order to sense the moving targets of interest. The first novelty consists in a realistic sensing model representing the coverage of a sensor network in its environment. We are proposing for that a probabilistic 3D model of sensing capacity of a sensor over its surrounding area. This model also includes information on the environment through the evaluation of line-of-sight visibility. From this sensing model, spatial optimization is conducted by searching for the best location and direction of each sensor making a network. For that purpose, we are proposing a new algorithm based on gradient descent, which has been favourably compared to other generic black box optimization methods in term of performance, while being more effective when considering processing requirements. Once the sensors are placed in the environment, the temporal optimization consists in covering well a group of moving targets in the environment. That starts by predicting the future location of the mobile targets detected by the sensors. The prediction is done either by using the history of other targets who traversed the same environment (long term prediction), or only by using the previous displacements of the same target (short term prediction). We are proposing new algorithms under each category which outperformed or produced comparable results when compared to existing methods. Once future locations of targets are predicted, the parameters of the sensors are optimized so that targets are properly covered in some future time according to the predictions. For that purpose, we are proposing a heuristics for making such sensor control, which deals with both the probabilistic targets trajectory predictions and probabilistic coverage of sensors over the targets. In the final stage, both spatial and temporal optimization method have been successfully integrated and applied, demonstrating a complete and effective pipeline for spatiotemporal optimization of sensor networks

    Déploiement optimal de réseaux de capteurs dans des environnements intérieurs en support à la navigation des personnes à mobilité réduite

    Get PDF
    La participation sociale des personnes ayant une incapacité (PAI) est l'un des enjeux majeurs de notre société. La participation sociale des PAI est influencée par les résultats des interactions entre les facteurs personnels et les facteurs environnementaux (physiques et sociaux). L'une des activités quotidiennes les plus importantes en milieu urbain est la mobilité, ce qui est fondamental pour la participation sociale des PAI. L'environnement urbain est composé des infrastructures et des services principalement conçus pour les personnes sans incapacités et ne prend pas en compte les besoins spécifiques des PAI. Dans ce contexte, la conception et le développement des environnements intelligents peuvent contribuer à une meilleure mobilité et participation sociale des PAI grâce à l'avancement récent de technologie de l'information et de télécommunication ainsi que de réseaux de capteurs. Cependant, le déploiement de réseaux de capteurs en tant que technologie d'assistance pour améliorer la mobilité des personnes n'est conçu que sur la base des modèles trop simplistes de l'environnement physique. Bien que des approches de déploiement de réseaux de capteurs aient été développées ces dernières années, la plupart d'entre elles ont considéré le modèle simple des capteurs (cercle ou sphérique dans le meilleur des cas) et l'environnement 2D, (sans obstacle), indépendamment des besoins des PAI lors de leur mobilité. À cet égard, l'objectif global de cette thèse est le déploiement optimal de réseau de capteurs dans un environnement intérieur pour améliorer l'efficacité de la mobilité des personnes à mobilité réduite (PMR). Plus spécifiquement, nous sommes intéressés à la mobilité des personnes utilisatrices de fauteuil roulant manuel. Pour atteindre cet objectif global, trois objectifs spécifiques sont identifiés. Premièrement, nous proposons un cadre conceptuel pour l'évaluation de la lisibilité de l'environnement intérieur pour les PMR, afin de déterminer la méthode appropriée pour évaluer les interactions entre les facteurs personnels et les facteurs environnementaux (par exemple, pentes, rampes, marches, etc.). Deuxièmement, nous développons un algorithme d'optimisation locale basé sur la structure Voronoi 3D pour le déploiement de capteurs dans l'environnement intérieur 3D pour s'attaquer à la complexité de la structure de l'environnement intérieur (par exemple, différentes hauteurs de plafonds) afin de maximiser la couverture du réseau. Troisièmement, pour aider la mobilité des PMR, nous développons un algorithme d'optimisation ciblé pour le déploiement de capteurs multi-types dans l'environnement intérieur en tenant compte du cadre d'évaluation de la lisibilité pour les PMR. La question la plus importante de cette recherche est la suivante : quels sont les emplacements optimaux pour un ensemble des capteurs pour le positionnement et le guidage des PMR dans l'environnement intérieur complexe 3D. Pour répondre à cette question, les informations sur les caractéristiques des capteurs, les éléments environnementaux et la lisibilité des PMR ont été intégrés dans les algorithmes d'optimisation locale pour le déploiement de réseaux de capteurs multi-types, afin d'améliorer la couverture du réseau et d'aider efficacement les PMR lors de leur mobilité. Dans ce processus, le diagramme de Voronoi 3D, en tant que structure géométrique, est utilisé pour optimiser l'emplacement des capteurs en fonction des caractéristiques des capteurs, des éléments environnementaux et de la lisibilité des PMR. L'optimisation locale proposée a été mise en œuvre et testée avec plusieurs scénarios au Centre des congrès de Québec. La comparaison des résultats obtenus avec ceux des autres algorithmes démontre une plus grande efficacité de l'approche proposée dans cette recherche.Social participation of people with disabilities (PWD) is one of the challenging problems in our society. Social participation of PWD is influenced by results from the interactions between personal characteristics and the physical and social environments. One of the most significant daily activities in the urban environment is mobility which impacts on the social participation of PWD. The urban environment includes infrastructure and services are mostly designed for people without any disability and does not consider the specific needs of PWD. In this context, the design and development of intelligent environments can contribute to better mobility and social participation of PWD by leveraging the recent advancement in information and telecommunications technologies as well as sensor networks. Sensor networks, as an assistive technology for improving the mobility of people are generally designed based on the simplistic models of physical environment. Although sensor networks deployment approaches have been developed in recent years, the majority of them have considered the simple model of sensors (circle or spherical in the best case) and the environment (2D, without obstacles) regardless of the PWD needs during their mobility. In this regard, the global objective of this thesis is the determination of the position and type of sensors to enhance the efficiency of the people with motor disabilities (PWMD) mobility. We are more specifically interested in the mobility of people using manual wheelchair. To achieve this global objective, three specific objectives are demarcated. First, a framework is developed for legibility assessment of the indoor environment for PWMD to determine the appropriate method to evaluate the interactions between personal factors with environmental factors (e.g. slops, ramps, steps, etc.). Then, a local optimization algorithm based on 3D Voronoi structure for sensor deployment in the 3D indoor environment is developed to tackle the complexity of structure of indoor environment (e.g., various ceilings' height) to maximize the network coverage. Next, a purpose-oriented optimization algorithm for multi-type sensor deployment in the indoor environment to help the PWMD mobility is developed with consideration of the legibility assessment framework for PWMD. In this thesis, the most important question of this research is where the optimal places of sensors are for efficient guidance of the PWMD in their mobility in 3D complex indoor environments. To answer this question, the information of sensors characteristics, environmental elements and legibility of PWMD have been integrated into the local optimization algorithms for multi-type sensor networks deployment to enhance the network coverage as well as efficiently help the PWMD during their mobility. In this process, Voronoi diagram as a geometrical structure is used to change the sensors' location based on the sensor characteristics, environmental elements and legibility of PWMD. The proposed local optimization is implemented and tested for several scenarios in Quebec City Convention Centre. The obtained results show that these integration in our approach enhance its effectiveness compared to the existing methods

    Simulation driven machine learning methods to optimise design of physical experiments and enhance data analysis for testing of fusion energy heat exchanger components

    Get PDF
    Plasma facing components (PFCs) must be designed to routinely withstand the harsh environment of a fusion device, where temperatures at the core of the plasma exceed 150,000,000 °C. The heat by induction to verify extremes (HIVE) experimental facility was established to replicate the thermal loads a PFC is subjected to during normal operation of a fusion device.To maximise its impact on the design of PFCs, HIVE must deliver smarter testing and improved component insight. Currently, the experimental parameters required to deliver a certain response to the component are decided at the point of testing through a combination of previous experience, intuition, and trial & error, which is both time-consuming and unreliable. To assess a PFC’s suitability, knowledge of its mechanical performance while operating at high temperatures is desirable, however HIVE only records pointwise temperature measurements on the component’s surface using thermocouples. Currently, HIVE has no method of inferring a component’s mechanical response using the temperature measure-ments.Both the challenges of smarter testing and improved component insight can be achieved through the identification of inverse solutions. A popular approach to solving engineering inverse problems is surrogate assisted optimisation, where a machine learning model is trained using finite element (FE) simulation data. Much of the work in literature use single value surrogate models on quite simplistic problems, however HIVE is a real-world, multi-physics problem which requires full field (FF) surrogate models to solve its multitude of inverse problems.The development of a method which can easily construct FE data driven FF surrogates would be invaluable for a variety of tasks in engineering, as well as solving inverse problems. In this work, it demonstrates that it can provide a much more robust and comprehensive method of characterising a PFC’s strengths and limitations, enabling more informed decisions to be made during its design cycle

    Enhancing graph-routing algorithm for industrial wireless sensor networks

    Get PDF
    Industrial Wireless Sensor Networks (IWSNs) are gaining increasing traction, especially in domains such as the Industrial Internet of Things (IIoT), and the Fourth Industrial Revolution (Industry 4.0). Devised for industrial automation, they have stringent requirements regarding data packet delivery, energy consumption balance, and End-to-End Transmission (E2ET) time. Achieving effective communication is critical to the fulfilment of these requirements and is significantly facilitated by the implementation of graph-routing – the main routing method in the Wireless Highway Addressable Remote Transducer (WirelessHART), which is the global standard of IWSNs. However, graph-routing in IWSN creates a hotspot challenge resulting from unbalanced energy consumption. This issue stems from the typical configuration of WirelessHART paths, which transfers data packets from sensor nodes through mesh topology to a central system called the Network Manager (NM), which is connected to a network gateway. Therefore, the overall aim of this research is to improve the performance of IWSNs by implementing a graph-routing algorithm with unequal clustering and optimisation techniques. In the first part of this thesis, a basic graph-routing algorithm based on unequal clustering topologies is examined with the aim of helping to balance energy consumption, maximise data packet delivery, and reduce the number of hops in the network. To maintain network stability, the creation of static clusters is proposed using the WirelessHART Density-controlled Divide-and-Rule (WDDR) topology. Graph-routing can then be built between Cluster Heads (CHs), which are selected according to the maximum residual energy rate between the sensor nodes in each static cluster. Simulation results indicate that graph-routing with the WDDR topology and probabilistic unequal clustering outperforms mesh topology, even as the network density increased, despite isolated nodes found in the WDDR topology. The second part of this thesis focuses on using the Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) algorithm. This addresses the three IWSN requirements that form the focus of this research, by proposing three single-objective graph-routing paths: minimum distance (PODis), maximum residual energy (POEng), and minimum end-to-end transmission time (POE2E). The research also adapts the CMA-ES to balance multiple objectives, resulting in the Best Path of Graph-Routing with a CMA-ES (BPGR-ES). Simulation results show that the BPGR-ES effectively balances IWSN requirements, but single-objective paths of graph-routing does not achieve balanced energy consumption with mesh topology, resulting in a significant reduction in the efficiency of the network. Therefore, the third part of this thesis focuses on an Improvement of the WDDR (IWDDR) topology to avoid isolated nodes in the static cluster approaches. The IWDDR topology is used to evaluate the performance of the single-objective graph-routing paths (PODis, POEng, and POE2E). The results show that in IWDDR topology, single-objective graph-routing paths result in more balanced energy consumption
    corecore