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Résumé

Les réseaux de capteurs sont formés d’un ensemble de dispositifs capables de prendre indi-
viduellement des mesures d’un environnement particulier et d’échanger de l’information afin
d’obtenir une représentation de haut niveau sur les activités en cours dans la zone d’intérêt.
Une telle détection distribuée, avec de nombreux appareils situés à proximité des phénomènes
d’intérêt, est pertinente dans des domaines tels que la surveillance, l’agriculture, l’observation
environnementale, la surveillance industrielle, etc. Nous proposons dans cette thèse plusieurs
approches pour effectuer l’optimisation des opérations spatio-temporelles de ces dispositifs, en
déterminant où les placer dans l’environnement et comment les contrôler au fil du temps afin
de détecter les cibles mobiles d’intérêt.

La première nouveauté consiste en un modèle de détection réaliste représentant la couverture
d’un réseau de capteurs dans son environnement. Nous proposons pour cela un modèle 3D
probabiliste de la capacité de détection d’un capteur sur ses abords. Ce modèle inègre égale-
ment de l’information sur l’environnement grâce à l’évaluation de la visibilité selon le champ
de vision. À partir de ce modèle de détection, l’optimisation spatiale est effectuée par la re-
cherche du meilleur emplacement et l’orientation de chaque capteur du réseau. Pour ce faire,
nous proposons un nouvel algorithme basé sur la descente du gradient qui a été favorablement
comparée avec d’autres méthodes génériques d’optimisation «boites noires»sous l’aspect de la
couverture du terrain, tout en étant plus efficace en terme de calculs.

Une fois que les capteurs placés dans l’environnement, l’optimisation temporelle consiste à bien
couvrir un groupe de cibles mobiles dans l’environnement. D’abord, on effectue la prédiction
de la position future des cibles mobiles détectées par les capteurs. La prédiction se fait soit
à l’aide de l’historique des autres cibles qui ont traversé le même environnement (prédiction
à long terme), ou seulement en utilisant les déplacements précédents de la même cible (pré-
diction à court terme). Nous proposons de nouveaux algorithmes dans chaque catégorie qui
performent mieux ou produits des résultats comparables par rapport aux méthodes existantes.
Une fois que les futurs emplacements de cibles sont prédits, les paramètres des capteurs sont
optimisés afin que les cibles soient correctement couvertes pendant un certain temps, selon
les prédictions. À cet effet, nous proposons une méthode heuristique pour faire un contrôle
de capteurs, qui se base sur les prévisions probabilistes de trajectoire des cibles et égale-
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ment sur la couverture probabiliste des capteurs des cibles. Et pour terminer, les méthodes
d’optimisation spatiales et temporelles proposées ont été intégrées et appliquées avec succès,
ce qui démontre une approche complète et efficace pour l’optimisation spatio-temporelle des
réseaux de capteurs.
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Abstract

Sensor networks consist in a set of devices able to individually capture information on a given
environment and to exchange information in order to obtain a higher level representation
on the activities going on in the area of interest. Such a distributed sensing with many
devices close to the phenomena of interest is of great interest in domains such as surveillance,
agriculture, environmental monitoring, industrial monitoring, etc. We are proposing in this
thesis several approaches to achieve spatiotemporal optimization of the operations of these
devices, by determining where to place them in the environment and how to control them over
time in order to sense the moving targets of interest.

The first novelty consists in a realistic sensing model representing the coverage of a sensor
network in its environment. We are proposing for that a probabilistic 3D model of sensing
capacity of a sensor over its surrounding area. This model also includes information on the
environment through the evaluation of line-of-sight visibility. From this sensing model, spatial
optimization is conducted by searching for the best location and direction of each sensor
making a network. For that purpose, we are proposing a new algorithm based on gradient
descent, which has been favourably compared to other generic black box optimization methods
in term of performance, while being more effective when considering processing requirements.

Once the sensors are placed in the environment, the temporal optimization consists in covering
well a group of moving targets in the environment. That starts by predicting the future
location of the mobile targets detected by the sensors. The prediction is done either by using
the history of other targets who traversed the same environment (long term prediction), or
only by using the previous displacements of the same target (short term prediction). We are
proposing new algorithms under each category which outperformed or produced comparable
results when compared to existing methods. Once future locations of targets are predicted,
the parameters of the sensors are optimized so that targets are properly covered in some future
time according to the predictions. For that purpose, we are proposing a heuristics for making
such sensor control, which deals with both the probabilistic targets trajectory predictions and
probabilistic coverage of sensors over the targets. In the final stage, both spatial and temporal
optimization method have been successfully integrated and applied, demonstrating a complete
and effective pipeline for spatiotemporal optimization of sensor networks.
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Chapter 1

Introduction

1.1 Motivation

With the proliferation of Micro-Electro-Mechanical Systems (MEMS), recent years have seen
great advances in deployment and application of Sensor Networks (SN) [73]. SNs consist of
a network of sensor devices, where each device can autonomously make measurements in the
environment and communicate with other sensors to achieve the goal of delivering valuable
information to the end-users [8]. Besides, the sensor nodes in the SN usually have the capability
to do preliminary processing, and only transfer small amount of valuable information.

Although each sensor alone can provide valuable information to the end-users, it is usually
the combination of the information gathered from different sensors that provides capabilities
to achieve several high level tasks. For example, although a single camera can give us useful
information about the pedestrians who passed through the field of view of the camera, it is
the information gathered from several cameras that can determine the overall trajectory of
the pedestrian.

Sensor nodes have three main components: the sensing unit, the processing unit and the
communication unit [29]. In the case of battery-powered sensor nodes, there is usually an
energy unit which manages the batteries or other power sources (such as solar cells).

Sensors are devices which respond to a specific physical stimulus in their surrounding envi-
ronment and convert the sensed measurements into digital signals, which can then be com-
municated to the end-users. The sensing unit consists of one or several sensors, type of which
depends on the application of the network. Typical sensor types are thermal, biological,
optical, chemical, and magnetic sensors.

The specifications of the processing unit depends on the type of sensors used. Sensors with less
computational need (e.g., thermal sensors) are usually equipped with low power processing
units (e.g., TmoteSky micro controller [69] with 0.375 nJ/instruction power consumption in
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active mode). On the other hand, multimedia sensor units usually require larger amount of
processing, and therefore the processing unit is much stronger. The processing model of the
application also has an effect on the processing requirements of the sensors. In the applications
where the burden of processing is distributed between the sensors (i.e. the bulk of processing
is done locally on the sensors), the processing unit should be stronger compared to centralized
scenarios, where the main responsibility of sensors is to send the raw data to the base station.
The processing units are also equipped with sleep mode capabilities to reduce the power
consumption of the unit even further when the sensor is not in operation.

The communication unit consists of different algorithms for the transport layer, network layer
and data-link layer. Each of the mentioned layers should fulfill the responsibilities usually
assigned to those layers. Besides, they should consider the specific requirements of the sensor
networks.

1.1.1 Applications

By their nature, SNs are able to make a redundant sensing close to the phenomena of interest.
The large number of sensors deployed in the target region makes SNs a suitable candidate for
many applications which need a close monitoring of a physical phenomena. Depending on the
environment the sensors are placed in, the networks can be categorized into different groups
such as: terrestrial, underground, and underwater.

Terrestrial SNs are the most common networks, consisting of hundreds or even thousands
small, battery powered sensor devices. The location of the sensors is either pre-determined,
or the sensors are dropped from the plane in harsh environments. Underground SNs [51] are
usually buried under the ground to monitor the condition of mines. Underwater SNs [38]
have two main challenges. First, they should be designed considering the harsh environmental
conditions, which causes the failure rate to be rather high in these sensors. Second, the wireless
connection between the sensors is unreliable with limited bandwidth, long propagation delay,
and signal fading issues.

From the mobility perspective, the sensors can be either static or mobile. In the static sensors,
as their name suggests, the sensors are static in the position and condition they were initially
placed in, while in the mobile networks, the sensors have the capability to change their initial
conditions, to better adapt to the changing environment. Some networks could be consisted
of both static and mobile sensors.

Application of sensor networks can be categorized from different perspectives, but most ap-
plications can be categorized under two groups [91]:

• Monitoring networks: These systems are usually designed to monitor structures (e.g.,
buildings or bridges for structural problems), farms (e.g., humidity or fertilizer levels in
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the soil), human health (e.g., fire-fighters vital sign monitoring), harsh environments
(e.g., eruptions of volcanos), or child education (e.g., sensor-enhanced toys to monitor
child’s learning process).

• Tracking networks: As the name suggests, in this group the goal is to track animals
(e.g., migration of different species), humans (e.g., surveillance networks) or objects (e.g.,
vehicles for traffic purposes).

As an example, for the case of using SNs to monitor structures, sensors are usually put in place
to [54]: 1. characterize structural vibration characteristics, 2. validate design models, or 3.
better understand nonlinear structural responses resulting from seismic loadings. The result
of measurements made by sensor help to automate the task of assessing structural health.

Another monitoring example is the systems which monitor the humidity and fertilizer levels
in the soil. These systems help the farmers to find the optimal time to water or fertilize the
farm, which can have great economical as well as environmental effects. Abd El-kader et al.
[31] have shown that the cost of the deployed SN can be recovered only after one year from
the savings made in the resources used (water and fertilizer), besides the increase in the yield
size and quality.

FireLine [11] is a heart rate monitoring system, which used to monitor a fire fighter’s heart
rate in real-time to detect any abnormality and stress. The system can send alarm signals to
the base station if the heart rate of the person goes above a mentioned threshold. The sensors
are embedded inside a shirt that the fire fighter wears under his clothes.

Volcanic Monitoring [83] was another system deployed in Volcán Reventador in northern
Ecuador to capture seismic and infrasonic (low-frequency acoustic) signals. As a result of
close monitoring, these systems facilitates scientific studies of wave propagation phenomena
and volcanic source mechanisms.

Under the category of tracking systems, ZebraNet [92] is a system composed of locating sensors
attached to zebra collars. The goal of the system is to track animal migration patterns. Several
collars were attached to animals at the Sweetwaters game reserve in central Kenya. Although
monitored animals showed extra movements in the first week of monitoring, after this time
period there was no significant difference between the movements of collared and non-collared
animals.

Traffic surveillance [24] is an example of intelligent transportation systems designed to detect
and track vehicles using acoustic and magnetic sensors. Currently the detection system in
place uses the inductive loop systems. Authors have shown that the performance of the
magnetic sensors produced superior results compared to the acoustic sensors and comparable
to that of well maintained inductive loop system, in terms of vehicle detection rate. Besides the
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magnetic sensor systems have higher configuration flexibility, which made the system scalable
and deployable everywhere in the traffic networks.

1.1.2 Performance Measurements

Generally speaking, performance refers to the capability of a SN to perform the operation it
was designed for in the first place. Depending on the type of sensors and the application,
different performance criteria could be defined for a sensor network. For example, in some
applications, sensors are battery powered and therefore energy consumption becomes a critical
issue. The reason is that if the energy of a sensor is depleted, the sensor becomes unusable.
In these types of networks, the routing algorithms, the sleeping mechanisms, and the location
of base station have vital role in the overall life time of the network. The reason is that
sensor consumes assigned amount of energy every time the sensor is sensing or sending the
information to other nodes, and therefore communication of sensors with each other and with
the base station should be optimized.

Connectivity is another performance criteria which plays an important role in wireless sensor
networks. In these networks, there need to be a guarantee that all the nodes in the network
can communicate with the base station. In other words, the network should be connected so
that all the measurements made by the sensors would reach the base station, otherwise the
unreachable sensors are useless.

There are other performance criteria such as response time, temporal accuracy, security, etc.,
but the most important performance criteria which is applicable to all types of sensor networks
is the coverage. The initial assumption is that the SN is being used to sense a phenomena,
therefore coverage is a fundamental performance criteria for measuring the quality of network
in sensing the environment [56]. Informally, coverage means that each location in a region of
interest should be within the sensing range of at least one of the sensors. In other words, each
sensor covers part of the environment, and the coverage of the whole network is the aggregation
of the coverage of the individual sensors. Depending on the SN application, coverage can refer
to monitoring an entire area, observing a set of targets, or looking for breach among a barrier.

Maximal coverage is usually attained through optimizing placement. Placement (or spatial
optimization) is an example of a more general problem of configuring sensor parameters. De-
pending on the application of SN and the sensor type being used, each sensor has a number of
parameters that must be determined, (e.g., latitude, longitude and orientation of each sensor).
Placement is the process of determining these parameters to obtain different goals (such as
coverage, connectivity, etc.). Spatial optimization with the goal of coverage maximization is
one of the most important criteria in SN deployment and will be the focus of the first part of
this thesis.

The placement problem focuses to optimize SN deployment from the spatial perspective. The
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other important aspect which should be considered is the temporal perspective. The difference
comes from the nature of the phenomena the sensors are used to cover. In other words, sensors
are sometimes placed in the environment to cover a phenomena which is static (e.g., door of a
building). In these problems the parameters of the sensors are optimized once and then they
will stay unchanged through time.

The other possibility is that the phenomena has a temporal aspect and changes over time
(e.g., tracking people walking in the field). To optimize the coverage of the network form the
temporal perspective, the parameters of the sensors should be controllable over time. These
networks are sometimes referred to as sensor and actuator networks [7]. The goal of temporal
coverage optimization (which will be the focus in the second part of the thesis) is to derive
a mechanism which effectively and efficiently uses the sensing capabilities of sensors during a
time period, for the goal of maximizing the coverage of the network over a phenomena which
is changing over the time (targets moving in the field in this thesis).

Approaches based on human control of the sensor parameters are impractical, as controlling a
large number of sensors is economically inefficient. Besides, humans attention level is variable
over time, and tasks as such are repetitive which results in further lack of attention in human
operators. Therefore, there is a great amount of interest to perform the mentioned tasks
using an automatic system. The system should be able to perform all the tasks necessary to
cover the moving targets automatically. These tasks include the detection and identification
of targets, determining the current location and predicting the future location of targets, and
finally modifying the parameters of the sensors to maximize coverage over the targets. In this
thesis we focus on predicting the future positions of targets and optimizing the parameters of
sensors to cover the moving targets.

1.2 Research Objectives

The research question is: How to optimize location and working parameters of sensors
of a sensor network in order to maximize coverage over a number of targets moving in the
environment.

Before we go into the details of the objectives, we should make clear some of the assumptions
we are going to make about different parts of the system:

1. Sensors: are stationary devices capable of detecting the presence of targets in the
environment. They are stationary meaning that once they are placed in the environment,
they cannot move and change their location. On the other hand, the sensors have
some controllable operating parameters. In other words, although their location is fixed
through time, they have some controllable sensing parameters (e.g., sensing direction)
which is adjustable through time.

5



A sensor can cover a target if the target is within the sensing area of the sensor. Besides,
if the sensor covers the target, the sensor can estimate the identity and location of target
with complete accuracy.

Although connectivity and energy consumption are common research problems when
dealing with SNs, they are outside the scope of this thesis. In other words, we assume
that sensors have uninterruptible connectivity and unlimited energy supply.

2. Environment: is an area with predefined boundaries, which is fixed during the oper-
ation of the system. All the interaction between sensors and targets happen inside the
environment. The environment can contain natural and man-made objects which might
interfere with the coverage of sensors.

3. Target: is a mobile entity in the environment. Each target appears in the environment
at a specific time, makes several movements, and finally disappears from the environ-
ment. The target is sensed (covered) by a sensor if its location is within the coverage
area of a sensor. The system knows the identity of each target once it is detected by
one sensor, and there will not be no confusion between two targets, even if one of them
goes out of the coverage of network for some time. The goal of the system is to cover
the targets while they are present in the environment.

Now that some of the assumptions are clarified, we can focus more on the objectives of this
thesis. As mentioned before, the final goal of the system is to have maximal coverage over
moving targets. For that purpose, the best location for each sensor should be first determined
in the environment. The reason is that although the controllable parameters of the sensors
can be changed later, during the operation of the network, the location of each sensor is the
only parameter which should be defined before the networks is put into operation.

To find the best location of the sensors, we need to have a model for the coverage area of each
sensor. The reason is that the best location for sensors should guarantee that the coverage of
two sensors is not “wasted” by them covering the same part of the environment, while some
other part of the environment is non-covered. Therefore the coverage of each sensor should be
accurately modelled.

The placement of the sensors (what we call spatial optimization) is the only phase which
should be done before the operation of sensors. Once sensors are in place, the network can
start its operation and cover the targets. In this phase, the targets should be first detected in
the environment. As soon as a target enters the coverage area of a sensor, it is assumed that
the target is detected and its location is known. From there on, the task of the system is to
keep the target under coverage until the target exists the environment.

To keep the targets under coverage, the system should predict the future location of each
target. The reason is that at each time step, the system should know the future location of
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targets to plan the change of sensor parameters for the future time step. Once the future
location of targets predicted, the system can adjust the controllable parameters of sensors.
The system then iterates between the trajectory prediction and sensing parameter adjustment
steps, to keep the coverage over the targets as they displace in the environment. The specific
tasks of this objective are as follows:

1. Sensor coverage model defines an adjustable sensor coverage model that allows mod-
elling coverage area of different types of sensors, while taking into to account the effect
of environmental obstacles on the coverage region of each sensor.

2. Spatial optimization aims at finding the best location and direction of sensors, so
that the final network has maximal coverage over the whole environment. The algorithm
should be able to provide proportional coverage over the environment. Meaning it should
be able to provide more complete coverage over more important parts of the environment.
Besides, it should be scalable to large environments.

3. Target trajectory prediction looks for predicting the future location of the targets as
accurately as possible with adjustable prediction horizon, assuming a number of targets
for which the location and identification is known.

4. Sensor control algorithm defines a mechanism to optimize the variable parameters
of the sensors, to have maximal coverage over the prediction produced in the target
trajectory prediction step.

1.3 Outline

This thesis is organized in seven chapters. In chapter 2, we propose a new model for the
coverage area of sensors. The novelty of the model is in the combination of the probabilistic
sensing model with terrain information. Therefore, the model gives more realistic estimates for
the coverage region of sensors with line-of-sight coverage capabilities. In chapter 3, we propose
an algorithm based on the gradient descent method to optimize the location and direction of
sensors, so that the final network has maximal coverage over the environment. The main
advantages of the algorithm are low computational demand and scalability to a large number
of sensors.

Then we switch to temporal optimization in 4, where several methods are proposed to predict
the trajectory of mobile targets. Depending on the prediction horizon, the proposed methods
are divided into two groups of short and long term methods. Later, in chapter 5, the focus is
on the sensor control problem. In this chapter, we propose the Maximum Coverage Strategy
algorithm to change the direction of stationary sensors. The proposed algorithm produces
competitive results compared to more sophisticated optimization algorithms, with less amount
of computation.
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Next, in chapter 6, all the previously mentioned algorithms are integrated into a complete
system and applied in a totally new environment. In this experiments, the sensors are first
placed in the environment, and then the direction of sensors is moved according to the pre-
dictions made over the movement of the targets. Finally, in chapter 7 we conclude the thesis
by presenting the scientific contributions of the thesis, and some of the possible applications
as the future work.
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Chapter 2

Sensor Model

Sensor are designed to sense a phenomenon. This is the principal and most important respon-
sibility of the sensors. In order to simulate and evaluate the behaviour of sensors in different
conditions, the sensing capability of the sensors should be modelled. For the sensing model,
the goal is to get a more realistic model for the coverage area of the sensor in the environment.
In other words, the preference is over the models which rely on more realistic assumptions so
that difference between the coverage of the network in the simulated setting and later in the
real experiments would be as small as possible.

For the rest of the chapter, in section 2.1 we cover some of the models proposed for the sensing
model in the literature, in section 2.2 we provide the formulation for the coverage function
of our sensor model, which itself includes the visibility, distance and orientation membership
functions. The visibility function is explained in 2.3, and the membership functions for distance
and orientation are given in section 2.4. Finally, in section 2.5, we provide the coverage model
for a specific type of sensor which we will use later in the rest of thesis.

2.1 Sensing Model

The sensing model has two components; the sensor model and the environment model. This
division comes from the fact that the coverage of a sensor over a location in the environment
does not only depend on the characteristics of the sensor alone; but also the environmental
factors take an important role in the final coverage of the network. Sensor models can also
be categorized according to different perspectives. Two are of particular interest for our work:
sensing distance and coverage direction.

2.1.1 Sensing Distance

The main issue in the sensing distance is to establish the relationship between the detection
ability of a sensor and the distance it has with the object of interest. The conventional
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approach assumes a binary coverage for each sensor [37], meaning that the sensor can only
cover the locations which are within a specific range from its location. This range is usually
referred to as the sensing range of the sensor. More precisely, for the coverage C(., .) between
sensor S and location q in the environment we define the following coverage function:

C(S,q) =

{
1 ‖S− q‖ ≤ r
0 otherwise

, (2.1)

where ‖S − q‖ is the euclidean distance between S and q, and r is the sensing range of the
sensor.

A more reasonable assumption is that the sensing ability of the sensors diminish as the distance
increase from the sensor. These methods are usually referred to as the probabilistic sensing
models, as the underlying assumption is that the probability of detecting an event in a specific
location diminishes as the distance between the event and the sensor increases. Many different
methods have been proposed under the probabilistic sensing model approach.

Zhu et al. [98] proposed the following equations for the coverage model of the sensor:

C(S,q) =


1 ‖S− q‖ ≤ r − re

e−λα
β

r − re ≤ ‖S− q‖ ≤ r + re

0 otherwise
, (2.2)

where re is the critical distance around the sensing range of the sensor, and λ, β, and α are
the three parameters of the decaying function.

The model proposed by Liu et al. [53], assumes a ring coverage around the sensor location.
The model is based on the assumption that the detectability of an event by a sensor is related
to the energy emitted by the event and therefore suggested the following formula:

C(S,q) =

{
α

‖S−q‖β r1 ≤ ‖S− q‖ ≤ r2

0 otherwise
, (2.3)

where r1 and r2 define the range of sensor detection capability, α is the energy of the event
happening at location q, and β is the signal decaying parameter.

Finally, the model proposed by Ahmed et al. [3] was based on a staircase model for the
coverage of sensors in their surrounding. The model can be viewed as an extension of the
binary model. Unlike the binary model in which the coverage goes from one to zero in one
step, in this model the coverage diminishes at different distances, until it gradually reaches
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zero. The following is a four step model of coverage:

C(S,q) =



1 0 ≤ ‖S− q‖ ≤ r1

α1 r1 ≤ ‖S− q‖ ≤ r2

α2 r2 ≤ ‖S− q‖ ≤ r3

α3 r3 ≤ ‖S− q‖ ≤ r4

0 otherwise

, (2.4)

where 0 ≤ α3 ≤ α2 ≤ α1 ≤ 1 are the coverage degrees at different levels, and 0 ≤ r1 ≤ r2 ≤
r3 ≤ r4 are different distances at which the coverage decrease.

2.1.2 Sensing Direction

A common assumption [41, 62] is that each sensor can sense a circular area around itself
having a radius known as the sensing range. This is the simplest assumption for the coverage
region of a sensor. Although, this assumption of omni-directional sensing ability is valid for
some type of sensors, such as temperature, humidity and magnetic sensors, this assumption
does not hold true for many types of sensors, such as cameras, and ultrasound sensors, which
have a directional sensing area.

Jing et al. [4] proposed a sector shaped model for the coverage of sensors. This model
resembles in the definition to the omni-directional model. The only difference is that sensor
has a sensing direction D, and a sensing angle α. In other words, the sensor can only cover a
sector of the circle defined by the sensing direction and the sensing angle. More precisely, an
event is detected by the sensor if the following two conditions are satisfied, between sensor S
and location q:

‖S− q‖ ≤ r, (2.5)

cos(
α

2
) ≤ cos∠(S− q), (2.6)

Another coverage model was proposed in [1], where Adriaens et al. modelled the coverage
region of a sensor as a isosceles triangle. The parameters for this model included the coverage
angle α and maximum sensing distance (the length of each side of the triangle).

A 3D directional coverage model was proposed by Ma et al. [55]. In the new model, the
sensing direction of the sensor has two parameters. Notice that in the 3D space, the direction
has three parameters, which are usually refereed to as pan, tilt, and yaw. While the pan and
tilt parameters are important, the yaw degree do not change the sensing area of the sensor.
Also the sensing angle has two parameters, to define the maximum sensing range along the
pan and tilt angles. Therefore the final model has four parameters, the direction along the
pan and tilt angles, and the maximum degree the sensor can cover along each of those angles.

11



Recently, Peng et al. [66] also proposed a 3D coverage model for directional sensors. Besides,
they proposed an algorithm to detect the coverage holes in the environment, and another
algorithm based on the virtual potential fields was proposed to remedy the coverage holes.

Notice all the directional models presented here, have binary coverage using the definition
given in the previous section.

2.1.3 Environment Model

As mentioned before, the coverage of a sensor over the environment depends on the coverage
model of the sensor and the model with which the environment is represented. Here we review
some of the models used for the environment.

The model most commonly used for the environment is a flat 2D space [10, 37]. In this model
sensors can be placed anywhere in the environment, and the coverage region of the sensors
only depend on the sensor model. This is the most simplistic model for the environment and
this simplification usually results in an overestimation for the performance of the network.
In other words, in a realistic model the effect of the obstacles and topography of the terrain
should also be taken into consideration.

Sometimes the 2D environment is divided into a regular grid, and the coverage is calculated
over the grid cells. This is usually referred to as the grid based coverage [21]. The important
factor in the grid based coverage is the size of each grid cell. The coverage calculated over
the environment with small grid cells, can closely simulate the result over the actual 2D map,
while larger grid cells are less accurate.

The problems of the simple model encouraged authors to consider more realistic models for the
environment. For example, authors in [30, 52], used some square shaped obstacles to model
the interference that the environment can make over the coverage region of each sensor. The
problem is that square obstacles cannot accurately represent all types of obstacles present in
the environment, especially they are not suitable to represent the topographical information.

Mittal et al. [59], studied the effect of moving obstacles on the coverage of a visual sensor
network. In this study, the dynamical visibility constraints are modelled for simple circle
obstacles, therefore the final result could represent the effect of humans moving within the
scene of several sensors.

A configuration less studied in the literature is the coverage model in 3D environments. This
is the most realistic model, but due to computational complexities of the placement problem,
the approach has been considered only by few [60]. For example, in [68] authors proposed to
model the volume under the surface of ocean as a 3D environment for sensor placement. Due
to computational complexities, sensor models used for these environments are restricted to
omni-directional with binary coverage models.
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Figure 2.1: The free parameters (xi, yi, θi, ξi) for sensor si inside the environment.

2.1.4 Proposed Model

In this chapter, we are proposing a probabilistic coverage model for directional sensors in a
2.5D environment. The proposed model has several advantages over other models presented in
the literature. First, the model is applicable to both directional and omni-directional sensors.
Second, the coverage ability of the model decays gradually both with respect to distance and
angle. Finally, the model assumes a topological terrain model for the environment.

2.2 Coverage Formulation

The sensing model mainly depends on distance, orientation, and visibility. We first assume
that all sensors are positioned at a certain constant height τ above the ground level. The
sensor position is thus described by a 3D point p = (x, y, z), where (x, y) are free parameters
and z = g(x, y) + τ is constrained by the terrain elevation g(., .) at position (x, y), as defined
by a Digital Elevation Model (DEM) provided by a Geographic Information System (GIS).
We further assume that the anisotropic properties of sensors are fully defined by a pan angle
θ around the vertical axis and a tilt angle ξ around horizontal axis. Given the DEM, a
sensor network N = {s1, s2, . . . , sn} of n sensors is thus fully specified by 4n free parameters
si = (pi, θi, ξi), i = 1, 2, . . . , n, with pi = (xi, yi) (see Figure 2.1). The typical resolution of
DEMs in this thesis is one square meter.

Now the coverage C(si,q) of sensor si at point q in the environment can be defined as a
function of distance d(si,q) = ‖pi − q‖, pan angle p(si,q) = ∠p(q − pi) − θi, tilt angle
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Figure 2.2: The effect of visibility function. Here sensor and point A are inter-visible, therefore
v(si,A) = 1, but it is not the case for si and B, because the line of sight is obscured at point
C.

t(si,q) = ∠t(q− pi)− ξi, and visibility v(si,q) from the sensor:

C(si,q) = f [µd(‖pi − q‖), µp(∠p(q− pi)− θi), µt(∠t(q− pi)− ξi), v(pi,q)], (2.7)

where ∠p(q−pi) = arctan
(
yq−ypi
xq−xpi

)
is the angle between the sensor si and the point q within

the XY plane, and ∠t(q− pi) = arctan
(
zq−zpi
‖pi−q‖

)
is the angle between the sensor si and the

point q within the XZ plane. In other words, for q to be covered by sensor si, we need to take
into account its sensing range, sensing angles, and visibility. Let µd, µp, µt ∈ [0, 1] represent
some membership functions of the mentioned coverage conditions, then Equation 2.7 can be
rewritten as multiplication of these memberships:

C(si,q) = µd(‖q− pi‖) · µp(∠p(q− pi)− θi) · µt(∠t(q− pi)− ξi) · v(pi,q) (2.8)

Function v(pi,q) is binary. Given a sensor position pi, if the line of sight between sensor
si and q is obscured, then we assume that the coverage cannot be met (v = 0), otherwise
the visibility condition is fully respected (v = 1), (see Figure 2.2). In our experiment, we
assume that all sensors are one metre above the ground (τ = 1). Memberships µd, µp, and µt
need to be defined according to their parameters. At each position q ∈ Ξ of environment Ξ,
the coverage for a single sensor is thus the multiplication of the three above conditions. The
coverage function is probabilistic as each of the membership functions provide the probability
that an object of interest at point q is detected by the sensor si. Therefore, C(si,q) represents
the probability of coverage while 1 − C(si,q) gives the probability of non-coverage. If more
than one sensor covers q, then a way to compute the local network coverage Cl is:

Cl(N,q) = 1−
∏

i=1,...,n

(1− C(si,q)) . (2.9)

This formulation is based on the assumption that the coverage of several sensors with respect
to one position in the environment is independent from each other. This assumption roots
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in the probabilistic coverage definition of each sensor. More precisely, assume that a location
q in the environment is covered by the sensor s1 with the probability C(s1,q). This model
follows a Bernoulli probability distribution, for which we define a random variable Xs1q. The
random variable takes the value of one (P (Xs1q = 1) = C(s1,q)) if the location is covered
by sensor, and value of zero otherwise (P (Xs1q = 0) = 1 − C(s1,q)). Now assume that the
location is covered also by another sensor s2 with probability C(s2,q). Therefore, the location
q is covered by the network if at least one of the sensors cover the location, or we could say
that the location is not covered if none of the sensors cover the location. More precisely, the
probability of the coverage is:

Cl({s1, s2},q) = 1− [P (Xs1q = 0, Xs2q = 0)], (2.10)

but we assumed that the coverage of the two sensors over the location is independent from
each other so we have:

Cl({s1, s2},q) = 1− [P (Xs1q = 0)P (Xs2q = 0)], (2.11)

= 1− [(1− C(s1,q)) (1− C(s2,q))], (2.12)

which can be generalized for n sensors to the formula proposed in Eq. 2.9.

2.3 Visibility Function

Visibility function calculates the visible area for each sensor. The main factor which affects
the visibility between two points is the elevation of all points in the straight line connecting
those two points. This information is provided by a DEM, which is basically a two dimen-
sional matrix, where each cell stores the elevation of the corresponding location in the real
environment (see Fig.2.3).

In order to calculate visibility between two points p and q, the list of all cells in the matrix
which intersects with the line of sight between those two points should be first calculated.
Then each point in the list is checked versus the line connecting points p and q. If the
elevation of an intermediate point is more than the elevation of the line at that point, then
points p and q are not inter-visible, otherwise they are inter-visible.

Assuming that point p represents the location of a sensor in the environment, first the eleva-
tion of point p is increased by the elevation of the sensor and then the mentioned visibility
calculation process is repeated between point p and all other points in its vicinity.
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(a) Elevation map (b) Coverage map

Figure 2.3: Visibility function behaviour. Assuming that the visibility between two points
p and q is of question, the grey cells represent the set of cells whose elevation should be
compared with the straight line between points p and q.

2.4 Probabilistic Membership Functions

The membership functions µd, µp, and µt can be defined as crisp function, with value of 1

when the position is within a fixed sensing range or angle of view, and otherwise 0.

µd(‖pi − q‖) =

{
1 ‖pi − q‖ ≤ dmax

0 otherwise
, (2.13)

µp(∠p(q− pi)− θi) =

{
1 (∠p(q− pi)− θi) ∈ [−a, a]

0 otherwise
, (2.14)

µt(∠t(q− pi)− ξi) =

{
1 (∠t(q− pi)− ξi) ∈ [−b, b]
0 otherwise

. (2.15)

However, such functions used in a coverage function provide essentially a binary 0/1 signal,
which is not a realistic performance model of real sensors. Moreover, for a method such
as gradient descent, differentiable coverage functions are needed. Therefore, we propose to
use probabilistic membership functions that provide a monotonically decreasing membership
value over distance and relative angle of position to sensor. Hence, these functions have two
benefits: first, they better comply with the performance of the real sensors, and second, they
are differentiable.

We propose to use sigmoid function for distance membership function:

µd(‖pi − q‖) = 1− 1

1 + exp (−βd(‖pi − q‖ − αd))
, (2.16)

with βd and αd as the parameters configuring the membership function (see Figure 2.4).
Parameter βd can be approximated using experimental observations on sensor behaviours.
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Figure 2.4: The effects of variations of βd on µd(‖pi − q‖). Assuming that αd = 5.
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Figure 2.5: The effects of variations of βp on µp(θi − ∠p(q− pi)). Assuming that αp = 60.

As shown in the figure, parameter βd controls the slope of the function and αdi determines
the distance where the sensor has 50% of its maximum coverage. We suggest the sigmoid
function because of its resemblance to the Cumulative Distribution Function of the normal
distribution. In other words, if we assume that the sensing range of a sensor is defined by a
normal distribution (rather than a dirac delta function in case of binary coverage) then the
sigmoid function would represent the coverage region of the sensor (instead of the unit step
function in case of binary coverage).
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(a) Elevation map (b) Coverage map

Figure 2.6: Probabilistic coverage model of a sensor. (a) The underlying elevation map used
for the experiment; (b) Assuming there are three sensors on the map (each shown with a
white circle above the ground), the colour shows the different degree of coverage for the whole
network. The effect of the visibility function can be seen by the non-visible areas within the
coverage region of each sensor. The values used for the sensor models are: βd=0.2, αd = 100,
βp = 0.5, αp = 60, βt = 0.5, and αt = 30.

As for the pan angle membership functions, we propose another sigmoid function:

µp(∠p(q− pi)− θi︸ ︷︷ ︸
γi

) =
1

1 + exp (−βp(γi + αp))
− 1

1 + exp (−βp(γi − αp))
, (2.17)

where αp controls the “width" of the function and βp controls the slope of the function at the
boundaries (see Figure 2.5). Note that the proposed function has the range [-180,180] degrees.
Therefore, any calculated angle should be brought into this range accordingly. In the same
way, membership function µt is defined as:

µt(∠t(q− pi)− ξi︸ ︷︷ ︸
ζi

) =
1

1 + exp (−βt(ζi + αt))
− 1

1 + exp (−βt(ζi − αt))
, (2.18)

with a range in [-90,90].

2.5 Zoom Factor

Cameras could be viewed as a special type of sensors. The sensor model explained in the
previous section closely resembles the coverage region of the conventional cameras over the
environment. Later in chapter 4, we will focus on a special type of sensors, called the Pan-
Tilt-Zoom (PTZ) cameras. These cameras can change their coverage region in three ways
by panning, tilting and zooming. The pan and tilt capabilities are well explained by the
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Figure 2.7: The relationship between parameters α(t)
pi , Lh and f (t)

i .

general sensor model we defined in the previous section. Focal length (zoom) is the additional
parameter of the PTZ cameras which we define using the f (t)

i parameter. This parameter
represents the focal length of the camera (sensor) si at time t.

Notice that the formulation given in the previous section was designed for the spatial opti-
mization problem. In the temporal optimization problem, we need that the properties of the
sensors be variable through time, and our formulation should reflect this fact. As a result, in
the temporal optimization problem the αd would change to α(t)

di , which defines the αd parame-
ter of sensor si at time t. In the same way we would define the parameters α(t)

pi , α
(t)
ti , θ

(t)
i , and

ξ
(t)
i . Therefore, the state of each camera is defined by (pi, θ

(t)
i , ξ

(t)
i , f

(t)
i ). Next, we define how

the newly defined focal length parameters affects the other parameters for the sensor coverage
model.

The pan and tilt membership functions are related to the focal length value through the α(t)
pi

and α(t)
ti parameters. More precisely, these parameters define the angle of view for the camera,

so we have:

α
(t)
pi = 2 arctan(Lh, 2f

(t)
i ), (2.19)

α
(t)
ti = 2 arctan(Lv, 2f

(t)
i ), (2.20)

where Lh and Lv are the horizontal and vertical sizes of the camera’s sensor, respectively.
The pinhole model of the camera and the relationship between the parameters in Eq. 2.19, is
shown in Fig. 2.7. The same figure could be drawn for the parameters in Eq. 2.20.

The distance membership function is also related to the focal length value f (t)
i through the

following formula:

α
(t)
di =

[
αdmax − αdmin
fmax − fmin

(f
(t)
i − fmin)

]
+ αdmin , (2.21)
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where αdmax and αdmin are the maximum and minimum value that α(t)
di can take. In practice,

the value of these parameters depends on the camera type, size of the targets, the minimum
number of pixels inside the images needed for accurate detection of target, and so forth.

2.6 Conclusion

This chapter proposes a novel coverage model for sensors in the environment. The novelty of
this model lies in the integration of terrain information (elevation maps) with a probabilistic
sensor model. The visibility function was added to the sensor model to take in to account
the interference of the obstacles on the coverage region of each sensor. Besides, the proposed
probabilistic sensing model is applicable to both directional and omni-directional sensors, and
therefore can model both sensor types. The decay in coverage of sensors is both valid with
respect to distance and angle, modelled with independent parameters. Thus, the final model
can adapt to different types of sensors. The proposed functions are also differentiable. As
we will show later, this is of great importance in derivation based optimization algorithms.
Finally, we presented a model for a specific type of sensors, that is the Pan-Tilt-Zoom (PTZ)
cameras.
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Chapter 3

Spatial Optimization

In order to evaluate the performance of the sensor network on the assigned task, a measure of
performance should be defined. The most commonly used performance criteria is the coverage.
In the previous chapter, we modelled the coverage of a sensor over the environment. Based
on the sensing model, different coverage goals could be defined. A natural step from there
is to place the sensors in the environment considering the coverage goal, as the placement of
the sensor can greatly affect the overall coverage of the network. That is what we call spatial
optimization, the goal being to find the best placement for the sensors (e.g. location and
direction) so that the final network has maximal coverage over the environment.

The chapter is organized as follows. In section 3.1, different coverage goals and optimization
methods proposed for the spatial optimization problem are presented. Then in section 3.2,
the spatial optimization problem is defined based on the sensor model proposed in chapter 2.
In section 3.3, two classical optimization methods are proposed for the placement problem.
Next, in section 3.4, a new algorithm is explained for the placement problem which is based on
the gradient descent method. The performance of the proposed algorithm is compared with
other optimization algorithms in section 3.5, and the results are presented in section 3.6.

3.1 Placement Problem

Once the sensing model is defined, the coverage goal of the whole network should be deter-
mined. The coverage goal is closely related to the phenomena under study. For example, in a
surveillance system of a building, some specific parts (e.g. entrances) are more important than
others and therefore should receive a more thorough coverage. Based on the defined coverage
goal, the placement optimization algorithms try to find the best parameters for the sensors so
that the final network has a maximal coverage over the environment. In this section, we cover
some of the common coverage goals and placement optimization algorithms mentioned in the
literature.
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3.1.1 Coverage Goal

Flat coverage (or field coverage) is the most common coverage goal. In this approach, all the
locations in the environment have the same importance for the coverage problem [10]. In its
simplest version, the goal is to get all the locations in the environment within the coverage
region of at least one sensor. The measure of performance in these experiments is the ratio of
the covered area to the overall deployment area.

Some applications which require high reliability for the final coverage, put the requirement
that each location in the environment should be within the coverage range of at least k sensors.
This is usually known as the k-coverage problem [41, 82]. The redundant coverage of the envi-
ronment is justified by the possibility that some of the sensors might break while in operation
(in binary coverage model as explained in the previous chapter), or in the probabilistic model,
one of the sensors might not detect the event, and having coverage by more than one sensor
over one location, increases the probability of detecting the event.

In the point coverage models [19] (also called weighted coverage [5]), some specific locations
in the environment (such as buildings, doors, etc.) need more complete coverage than other
locations. In most of the literature, the focus has been on the stationary targets, where the
important locations usually model the buildings, side walks, etc. A subcategory of point
coverage models are the barrier coverage models where the goal is to detect the intruders
penetrating into a restricted environment [49].

Some of the literature has focused on the concepts of maximal breach path and maximal
support path [57]. In the maximal breach path, the goal is to find the path between two
points inside the environment which is less covered by the sensors inside the field. Conversely,
the maximal support path looks for the path which has maximum coverage by sensors. The
argument is that these two paths provide an estimate for best or worst coverage provided by
the SN. The maximal breach path defines the vulnerability of the network with respect to
intruders, and so is a valuable source of information for surveillance networks.

3.1.2 Spatial Optimization

Assuming that the coverage goal, sensing, and environmental model for a problem has been
defined, it is the responsibility of the spatial optimization algorithm to find the best location
(and direction if sensors are directional) of the sensors. The goal with spatial optimization
is to get the placement with the least amount of computation and with the final coverage as
high as possible.

One classical problem studied in computational geometry and closely related to SN placement
problem is the “Art Gallery Problem” [65]. In a 2D version of the problem, the objective is
to cover the area of a polygon with a number of cameras. The minimum number of cameras
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and location of each camera constitute a solution to the problem. One of the solutions to this
problem is achieved by dividing the area into non overlapping triangles and putting camera
on the vertices of triangles. Although the problem can be solved in polynomial time for
2D problem, the extension of the problem to 3D makes it a NP-hard problem. One of the
differences between this problem and SN placement problem which makes the solutions of Art
galleries problem inapplicable to coverage in SNs is that in this problem it is assumed that
each camera has unlimited sensing range, unless there is an obstacle in between. As we saw in
the previous section, this assumption does not hold true for SNs, because usually it is assumed
that sensors have a defined maximum sensing range.

Voronoi diagrams and Delaunay triangulation have also been used to optimize the location of
sensors [9]. Considering the structure of Voronoi diagrams, each sensor is responsible to cover
its Voronoi cell, because all of the points inside each cell are closer to the sensor generating
that cell compared to other sensors. It can be easily concluded that if all Voronoi vertices of
a Voronoi cell are within the coverage range of sensor, then there are no coverage holes inside
that SN. Extending this idea, Wang et al. [78] proposed an effective heuristic to estimate the
relative size of coverage holes using the distance between each sensor and its furthest Voronoi
vertex. Using the same heuristic, a simple approach to heal the Voronoi holes is to move each
sensor toward its farthest Voronoi vertex.

Voronoi diagram has also been used in the construction of maximal breach path, because
points on Voronoi edges have maximum distance to closest sensors. In the same way, maximal
support path lies on the edges of Delaunay triangles because Delaunay triangulation produces
triangles with minimum edge length. A simple search algorithm (e.g. breadth-first-search) is
used to find the optimal path for each problem.

Another approach is based on the virtual potential fields [40]. In this strategy, sensors are
moved by the repulsive forces that they sense from other sensors and the obstacles in the envi-
ronment. These repulsive forces tend to spread sensors across the environment. At the same
time, sensors sense a viscous friction force, which helps the sensors reach a static equilibrium.

Besides the approaches based on computational geometry concepts, methods proposed for
placement optimization can be classified into two categories: exact methods and heuristic-
based approaches. A group of approaches have considered the placement problem as a special
case of the maximum coverage problem [2, 43]. In these approaches, the problem is formulated
so that a greedy algorithm can produce near-optimal results with approximation boundaries.
Other algorithms, such as integer linear programming [39] and binary integer programming
[94] methods, have also been employed for the placement problem.

A wide variety of meta-heuristic methods have also been applied to the placement problem,
ranging from genetic algorithm [44], evolution strategies [6], evolution algorithm with special-
ized operators [75, 90, 97], swarm optimization [81, 96] and simulated annealing [25]. An issue
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with meta-heuristic algorithms is their high computational cost, because these optimization
algorithms usually need many evaluations of candidate solutions through simulations, which
requires high processing resources. This issue makes these algorithms unsuitable for on-line
applications with limited computing resources, where the position and orientation of sensors
should be adapted after deployment and during utilization. The computational requirement
also limits the size of the networks for which a solution can be found in a reasonable time.

In another set of approaches, spatial phenomena are modelled using Gaussian processes. As a
solution for the placement problem under this assumption, sensors could be placed in locations
with highest entropy [28], or maximum mutual information [48]. Krause et al. [48] have shown
a polynomial-time algorithm for the placement problem, which is within a constant factor of
the optimal result. Even though the complexity of this algorithm is reduced to O(kn) for
k sensors in n possible sensor locations (n � k), it can still remain inapplicable for large
environment where n is proportional to the map area.

There has been some work conducted on the usage of the classical gradient descent method
for the sensor placement problem. Cortes et al. [27] proposed a distributed mechanism for
maximal coverage in multi-robot sensor systems. They showed that if the coverage perfor-
mance between sensor and target is based on Euclidean distance, the optimal coverage could be
achieved by moving each omni-directional sensor in the direction of its Voronoi cell centroid.
In this approach, authors have assumed an omnidirectional coverage area for each sensor,
therefore the “dominance region” of each sensor is simulated by its Voronoi cell.

Schwager et al. [72] have proposed another gradient descent method for the unmanned aerial
vehicle (UAV) placement problem, but their approach relies on a two dimensional view of
the environment, and the covered area of each sensor is strictly binary. As the mentioned
approach is designed for placement of the UAVs, each pixel of the camera can cover different
area sizes depending on the elevation of the UAV. Therefore, the main notion of coverage in
the cost function is the pixel per unit area that the optimization method is trying to minimize.

3.1.3 Proposed Method

In this chapter, we are proposing to use gradient descent (GD) as an optimization method for
the sensor placement problem with a weighted coverage goal. At each step of the algorithm,
we calculate the analytical derivatives of the coverage function with respect to the position and
orientation of each sensor and try to move them in a way that maximizes the overall coverage of
the network. Besides the system was designed with weighted coverage goal, therefore, different
locations in the environment can have different importance for the coverage task.

Unlike previous approaches on sensor placement optimization using the gradient descent
method [27, 72], we use a realistic model for the terrain and a directional probabilistic sensing
model for the coverage of each sensor (as defined in the previous chapter). We show that in

24



addition to its simplicity, our method can produce results comparable to more sophisticated
black box optimization methods, without the need for large computational resources.

3.2 Spatial Optimization Problem

The coverage goal of the system is weighted coverage, as a result, each position q is also
attributed with another parameter wq ∈ [0,∞). This parameter defines the importance of
location q for the coverage task. Therefore, higher values of wq represent higher importance
of the location q in the goal coverage problem. In the same way, we extend the previous
coverage formulation (as proposed in Eq. 2.9) to encounter the effect of weights and define
the global coverage of network N over the environment Ξ as:

Cg(N,Ξ) =
1∑

q∈Ξwq

∑
q∈Ξ

wqCl(N,q). (3.1)

The goal of the spatial optimization is to find the setting for the parameters of the sensors
which maximizes the coverage of the final network over the environment. More precisely, the
goal is to find a real-valued vector composed of four values per sensor (xi, yi, θi, ξi), so as to
maximize the global sensor network coverage Cg(N,Ξ) (Eq. 3.1) over a given elevation map
Ξ:

N = {(x1, y1, θ1, ξ1), (x2, y2, θ2, , ξ2), . . . , (xn, yn, θn, ξn)}, (3.2)

N∗ = argmax
N

Cg(N,Ξ). (3.3)

Note that the NP-hardness of the mentioned placement problem could be verified by com-
parison with the maximum coverage problem, which is known to be NP-hard [46]. In this
comparison, each sensor at a specific position and orientation is a sample for a subset that
covers a set of locations in the environment, and we want to find the k sensor positions that
allow a maximum coverage when used together. In this problem, the assumption we are mak-
ing is more general, as the position and orientation of sensors are continuous and coverage of
a sensor for each location is probabilistic.

3.3 Implemented Optimization Methods

From this model for sensor coverage model, we compare three spatial optimization schemes:
an adaptation of Simulated Annealing (SA) [47] for sensor placement, the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) [36], an evolutionary algorithm for real-valued
optimization, and finally our proposed Gradient Descent (GD) method.

We briefly explain each method in the following sections.
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3.3.1 Simulated Annealing Method on Single Sensor

SA [47] is a stochastic optimization algorithm. With a generic probabilistic heuristic approach,
simulated annealing may escape local optimum and converge to global optimum, and thus may
be more effective for a global optimization problem of a given function in a large search space.
Our implementation of SA is described in Fig. 3.2. It requires the definition of the temperature
function (temperature(t)), and the setting of two parameters (M , σ)

• Parameter M defines the maximum iterations for simulated annealing. The larger the
M , the more time consuming the optimization, and the more likely the global optimum
can be reached.

• σ defines candidate generator, i.e., the size of neighbourhood where subsequent solutions
will be generated. An essential requirement for σ is that it must provide a sufficiently
short path from the initial state to any state which may be the global optimum. Another
issue is that σ should be selected so that the search path avoids becoming trapped in a
local minimum, i.e., it must be large enough to cross local minima in an effort to reach
the global optimum.

• Temperature function (temperature(t)) defines the probability of accepting a move in
simulated annealing. Initially, the temperature(t) is set to a high value, then it is
decreased at each step according to some annealing schedule, and finally ends with
temperature(t) → 0 towards the end of the allocated maximum steps, M . When the
temperature is high, the probability of accepting a move will be high. When the cooling
rate is low, the probability of accepting a move decreases. The idea is that the system
is expected to wander initially towards a broad region of the search space containing
good solutions, ignoring small features of the energy function; then drift towards low-
energy regions that become narrower and narrower. To satisfy the conditions above, the
temperature(t) is defined as an exponential decay function (see Fig. 3.1) as follows:

temperature(t) =
1

2
exp

[
−2 ln 2× t

M

]
. (3.4)

3.3.2 CMA-ES Evolutionary Algorithm

CMA-ES [36] is an evolutionary algorithm known for its good performance and stability [34].
It updates the covariance matrix of the distribution to learn a second order model of the
underlying objective function, similar to the approximation of the inverse Hessian matrix in
the Quasi-Newton method in classical optimization. However, it does not require analytical
derivatives of the partial derivatives.
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Figure 3.1: Illustration of the temperature function used for the simulated annealing method.
Here, it is assumed that the maximum number of iterations (M) is 4550.

CMA-ES was chosen among different population-based stochastic optimization methods, as it
was shown several times that it has overall superior performance compared to other optimiza-
tion methods on a variety of standard continuous black-box optimization benchmarks (as an
example in [58])

For sensor placement optimization, the position and orientation of the sensors can be encoded
inside an individual, and a population of individuals can be evolved through generations. At
the end of the evolution, the individual with the best coverage is chosen as the final solution.

The algorithm’s parameters include the number of parents (µ), the number of offspring (λ),
the mutation factor (σ), and the number of generations through which the algorithm runs. In
each generation of the algorithm, a collection of the best µ candidate solutions are selected
from the set of λ offsprings of the previous generation. These solutions are then used to
update the distribution parameters, which will eventually generate the offsprings for the next
generation.

3.4 Gradient Descent Method

Gradient descent (GD) is a classical numerical optimization method used to find the local
optimum of an error function. At each step of the algorithm, the gradient of the error function
(loss function in our formulation) is calculated and the free parameter of the system is updated
to make a small step in the opposite direction to the gradient [15]. Next, the gradient is
recalculated for the new solution, and this step is repeated until a maximum number of
iterations is reached or the size of the gradient falls beneath a threshold.
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Initialize sensor network with random positions uniformly distributed in place-
ment domain (assuming domain to be in pi ∈ [0, 1]2), and random orientations,

xi ∼ Unif(0, 1), i = 1, . . . , n,

yi ∼ Unif(0, 1), i = 1, . . . , n,

θi ∼ Unif(0, 1), i = 1, . . . , n,

ξi ∼ Unif(0, 1), i = 1, . . . , n,

N = {(p1, θ1, ξ1), (p2, θ2, ξ2), . . . , (pn, θn, ξn)}.

Assess performance of initial sensor network, f = Cg(N,Ξ).
Set best sensor network and best performance to the initial one, Nbest =
N, fbest = f.
for t = 1, . . . ,M do

Select a random sensor with uniform distribution, s ∼ DiscUnif(n).
Apply a random perturbation of sensor position ps = (xs, ys) and orientation
(θs, ξs) to generate new candidate sensor network placement N ′,

rx ∼ N (0, σ), ry ∼ N (0, σ), rθ ∼ N (0, σ), rξ ∼ N (0, σ),

x′s = xs + rx, y
′
s = ys + ry, θ

′
s = θs + rθ, ξ

′
s = ξs + rξ,

N ′ = {(p1, θ1, ξ1), . . . , (p′s, θ
′
s, ξ
′
s), . . . , (pn, θn, ξn)}.

Evaluate performance of new candidate sensor network N ′, f ′ = Cg(N
′,Ξ).

if f ′ > f , the new sensor network is better than current one, then
Accept new sensor network, N = N ′, f = f ′.
if f ′ > fbest, new sensor network is better than best so far, then

Set best sensor network and best performance to the current one,
Nbest = N ′, fbest = f ′.

end if
else

Get temperature of current iteration, Ei = temperature(t).
if ei < Ei, ei ∼ Unif(0, 1), current sensor network is accepted given the
temperature, then

Accept new sensor network, N = N ′, f = f ′.
end if

end if
end for
Return best sensor network found, Nbest, as final result.

Figure 3.2: Pseudo-code of sensor placement with simulated annealing, with perturbation of
one sensor position at a time.

3.4.1 Loss Function

Eq. 3.1 defines the objective function for a maximization problem, while the GD method is
defined as a minimization method. Therefore, we define the loss function L(N,Ξ) as the
negative of the coverage function to form a minimization problem. More precisely, the loss
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function for network N and environment Ξ is given by:

L(N,Ξ) =
1∑

q∈Ξ

wq

[ ∑
q∈Ξ

wqLv(N,q)

︸ ︷︷ ︸
visible loss

+ν
∑
q∈Ξ

wqLu(N,q)

︸ ︷︷ ︸
non-visible loss

]
, (3.5)

where Lv(N,q) is the loss incurred by the sensors of network N for which point q is visible
and Lu(N,q) is the loss incurred by the sensors of network N for which point q is non-visible,
ant the ν parameter records the weighting of the non-visible component against the visible
loss component. With respect to the two parts of the loss function, we take the visibility
function away from the formula using two disjoint sets Uq and Vq. Here, Vq contains all of
the sensors from which location q is visible, and sensors in Uq contain all of the sensors from
which location q is not visible. More precisely:

Uq = {s ∈ N | v(s,q) = 0} , (3.6)

Vq = {s ∈ N | v(s,q) = 1} . (3.7)

The visible loss is thus defined as:

Lv(N,q) = 1−

[
1−

∏
si∈Vq

(1− C(si,q))︸ ︷︷ ︸
Lv(si,q))

]
︸ ︷︷ ︸

Cl(N,q)

=
∏

si∈Vq

[1− µd(‖pi − q‖) · µp(θi − ∠p(q− pi)) · µt(ξi − ∠t(q− pi))]

=
∏

si∈Vq

[1− µdi · µpi · µti]

=
∏

si∈Vq

Lv(si,q) (3.8)

where, for simplicity, we denote µd(‖pi − q‖) as µdi, µp(θi − ∠p(q − pi)) as µpi, and µt(ξi −
∠t(q− pi)) as µti.

To explain the loss function rather informally, the visible loss is the loss incurred by the
visible points; similarly the non-visible loss is the loss incurred by the non-visible points.
The optimization algorithm tries to maximize the coverage of the visible points through the
visible loss and tries to minimize the number of non-visible points through the non-visible loss.
Although these two goals seem similar (and they do have similar effects in most of the cases),
they are complementary. We will later see in section 3.4.3 how they complement each other.

The visible loss for the whole network comes to one minus the global coverage defined in
Eq. 3.1, which is the coverage function used here as the parameter criterion. However, this
measure provides no useful feedback for non-visible positions. Still, these positions are as
important as the visible positions in the optimization problem, and their effect should be
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taken into consideration. In order to provide a better signal to the optimization algorithm,
we add a non-visible component to the loss function, which adds the effect of the positions in
the environment that are not visible by any sensor or poorly covered by some sensors.

Non-visible loss between sensor si and location q is defined as the difference between the
current coverage (given by visible loss Lv(N,q)) of point q and the coverage that it would
have if it was visible from sensor si:

Lu(si,q) = Lv(N,q)− [Lv(N,q) · (1− µdi · µpi · µti)]

= µdi · µpi · µti · Lv(N,q) (3.9)

Accordingly, the non-visible loss for a network N and location q is:

Lu(N,q) =
∑
si∈Uq

Lu(si,q) =
∑
si∈Uq

µdi · µpi · µti · Lv(N,q) (3.10)

3.4.2 Analytical Gradient Descent on Distance, Pan Angle and Tilt Angle

In this section, we calculate the analytical gradient on distance, pan angle and tilt angle for
the sensor placement optimization problem.

Given independent variables xi, yi, θi and ξi, we need to obtain partial derivatives of the loss
function for all of these variables (see Appendix A for more details). Let:

fi(N,q) =
∏

sj∈Vq\{si}

[1− µdj · µpj · µtj ] (3.11)

As there are four free parameters for each sensor, we show the derivative of the overall loss
with respect to a generic parameter ψ of sensor si. ψ can be any of the four parameters (i.e.,
x, y, θ, or ξ). The derivations are as follows:

∂L(N,Ξ)

∂ψi
=

1∑
q∈Ξ

wq

∑
q∈Ξ

wq

[
∂Lv(N,q)

∂ψi
+ ν

∂Lu(N,q)

∂ψi

]

=
1∑

q∈Ξ

wq

∑
q∈Ξ

wq

[
∂ [fi · (1− µdi · µpi · µti)]

∂ψi
+ ν

∂

[ ∑
sj∈Uq

µdj · µpj · µtj · Lv(N,q)

]
∂ψi

]

=
1∑

q∈Ξ

wq

∑
q∈Ξ

wq gψ(si,q) (3.12)

where,

gψ(si,q) =

{
−fi

∂[µdi·µpi·µti]
∂ψi

if v(si,q) = 1

ν Lv(N,q)
∂[µdi·µpi·µti]

∂ψi
if v(si,q) = 0

(3.13)
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The derivative of the loss function with respect to parameter ψ can be divided into two parts.
The visible loss is constant when the position q is not visible from the sensor si, and therefore,
the derivative equals zero. Similarly, the non-visible loss has a derivative of zero when sensor
si can see position q. Therefore, the derivative was divided into two equations using the
gψ(si,q) function.

Therefore, in each step of the GD method, all of the gradients are calculated with respect to
the free parameters of each sensor (i.e., xi, yi, θi and ξi), and the position and orientation of
all sensors are updated using the pseudocode shown in Algorithm 3.3.

In this algorithm, ψ(t)
i is a free parameter of sensor i at iteration t and ηψ is the learning rate

for the generic parameter ψ. Furthermore, ω is the momentum parameter used to help the
algorithm escape from local minima. The momentum is a classical method used for neural
network optimization to encourage faster convergence of the gradient descent algorithm [71].
It increases the step sizes taken for a free parameter if the gradient points in the same direction
for several iterations. Therefore, the algorithm can ignore small features in the loss function
surface and skip shallow local minima.

Given a sensor network N and the environment Ξ as the input:
for t = 1, . . . ,max_iter do

for all si ∈ N do
∆ψ

(t)
i = ηψ

∂L(N,Ξ)
∂ψi

+ ω∆ψ
(t−1)
i , ∀ψ ∈ {x, y, θ, ξ}

ψ
(t+1)
i = ψ

(t)
i − ∆ψ

(t)
i , ∀ψ ∈ {x, y, θ, ξ}

end for
end for

Figure 3.3: The proposed gradient descent method for sensor placement optimization.

The gψ(si,q) function needs the value for the derivative of [µdi · µpi · µti] with respect to the
free parameters. We have calculated this derivative for all free parameters and reported the
result in Eq. 3.14 to Eq. 3.17 (see Appendix A for more details).

∂ [µdi · µpi · µti]
∂xi

=

[
dsg(φdi,−βd,−αd) ·

(xi − xq)
φdi

· µpi · µti

+ [dsg(φpi,−βp,−αp)− dsg(φpi,−βp, αp)] ·
yq − yi
φ2
di

· µdi · µti (3.14)

+ [dsg(φti,−βt,−αt)− dsg(φti,−βt, αt)] ·
(zi − zq)(xi − xq)

φdi[φ
2
di + (zi − zq)2]

· µdi · µpi

]
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∂ [µdi · µpi · µti]
∂yi

=

[
dsg(φdi,−βd,−αd) ·

(yi − yq)
φdi

· µpi · µti

+ [dsg(φpi,−βp,−αp)− dsg(φpi,−βp, αp)] ·
xi − xq
φ2
di

· µdi · µti (3.15)

+ [dsg(φti,−βt,−αt)− dsg(φti,−βt, αt)] ·
(zi − zq)(yi − yq)

φdi[φ
2
di + (zi − zq)2]

· µdi · µpi

]
∂ [µdi · µpi · µti]

∂θi
= [dsg(φpi,−βp, αp)− dsg(φpi,−βp,−αp)] · µdi · µti, (3.16)

∂ [µdi · µpi · µti]
∂ξi

= [dsg(φti,−βt, αt)− dsg(φti,−βt,−αt)] · µdi · µpi (3.17)

In these equations dsg(δ, β, α) is an auxiliary function used to simplify the equations:

dsg(δ, β, α) =
β exp(β(δ + α))

(1 + exp(β(δ + α)))2
= β sig(δ, β, α)[1− sig(δ, β, α)], (3.18)

which corresponds to the derivative of the so-called sigmoid function:

sig(δ, β, α) =
1

1 + exp(β(δ + α))
. (3.19)

Although we presented the algorithm in a centralized fashion, it is distributed in nature.
Each sensor only needs to know its own position, orientation and visible area, in addition to
the overlap between its covered area and other sensors in its neighbourhood to calculate its
derivatives. Therefore, if we are using mobile sensors capable of communicating with their
neighbours (which is essential in most SNs), they can transfer the required information, and
each sensor can compute its movement independently.

3.4.3 Sanity Checks

In order to check the behaviour of the GD optimization algorithm in real settings, we performed
some simple experiments to check if the method performs reasonably in these simple settings,
so that we can later extend the experiments to more complex experiments.

In the first experiment, we examine the effectiveness of the non-visible loss on the overall
coverage achieved by the GD algorithm. The setting contains one sensor in a map that has a
cube-shaped obstacle in the middle (see Fig. 3.4). The values used to generate the coverage
region of each sensor are the same as Fig. 2.6. Two sets of experiments were performed on the
map to optimize the location of the sensors. In the first experiment, we use only the visible
loss part of the loss function (Eq. (3.5)). In the second experiment, the combination of both
visible and non-visible losses were used for optimization (see Fig. 3.5). In these experiments,
the final coverage percentage achieved by the visible and combined loss were 23.2% and 27.4%,
respectively. Therefore, we observe that even in the simple example shown, the inclusion of
the non-visible loss (in the overall loss function) helps in producing better final results.
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(a) 3D view (b) 2D view

Figure 3.4: Simple experiment to show the effect of different parts of the loss function, with a
3D view (a), and 2D view (b) of the covered region of the sensor in a flat environment having
a cubic obstacle in the centre. In (b), the cyan arrow shows the non-visible loss gradient,
the magenta arrow shows the visible loss gradient and the green arrow is the combined loss
gradient aggregating the effect of the two mentioned losses.

(a) Initial position (b) Visible loss result (c) Combined loss result

Figure 3.5: Optimizing with different loss functions: (a) the initial position of the sensor over
a map (facing one of the sides of the obstacle); (b) the final result of the optimization using
only the visible loss with a final coverage of 23.29%; (c) the final result of the optimization
performed using both the visible and non-visible loss parts with a final coverage of 27.47%.

In the second experiment, we evaluated the effect of overlap between the coverages of two
sensors over the gradient calculated for each one (see Fig. 3.6). In this experiment, two sensors
are initially placed in a flat environment (no obstacle), where there is an overlap between the
coverage of the two sensors. The gradient calculated for each sensor makes the sensors move
away from each other to reach a final position where the total coverage is maximum.

In the final experiment, we show how a coverage gap can be filled with the GD method (see
Fig. 3.7). In this experiment, there are four sensors in a flat environment, each heading
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(a) Initial positions (b) Final positions

Figure 3.6: An experiment to show the effect of overlap on coverage over the gradient; (a) the
initial position of the sensors and the green arrow shows the gradient of the loss function with
respect to each sensor; (b) the final position of the sensors after the optimization.

outward, so creating a coverage gap in the centre. The goal is to determine whether the GD
method can detect this gap and displace the sensors in order to cover it. As shown in Fig. 3.7b,
the sensors have moved to cover most of the gap.

(a) Initial position (b) Final position

Figure 3.7: An experiment to show the effect of a coverage gap over the gradient; (a) initial
positions of the sensors, with the green arrow showing the gradient with respect to each sensor;
(b) final position of the sensors after the optimization has been completed. As can be seen
the initial coverage gap in the centre has been filled by the sensors.

3.5 Experiments

In order to evaluate the performance of the proposed GD method, we compared it with
two other optimization methods, namely simulated annealing (SA) and covariance matrix
adaptation evolution strategy (CMA-ES), which we briefly summarized before. Next, we
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Figure 3.8: Probabilistic coverage model of a sensor. Assuming that a sensor is positioned at
(30,40) heading upward, the colour shows different degrees of coverage for points inside the
map.

explain the parameters of the sensor model based on the model proposed in chapter 2.

3.5.1 Sensor Model Parameters

For a reasonable model of a sensor, we propose to use the parameters shown in Table 3.1.
With these values, the sensors have 50% of the maximum coverage at 30m or at sensing angle
of 120o. The coverage region of a sensor with these parameters is shown in Fig. 3.8.

Table 3.1: The parameter values for a realistic model of a sensor which has a 50% of the
maximum coverage at 30m or span of view of 120o.

Parameter αd βd αp βp αt βt
Value 30 1 60 1 30 1

3.5.2 Maps

To conduct our experiments, we first selected a mountainous area in North Carolina, USA.
The data was provided by a raster layer map in the “OSGeo Edu” dataset (Available at http:
//grass.osgeo.org/download/sample-data/). More specifically, we focused on a portion of
the map that covers a small watershed in a rural area near Raleigh, the capital city of North
Carolina. The coordinate system of the map is the NC State Plane (Lambert Conformal
Conic projection), metric units and North American Datum (NAD83) geodetic datum. We
used four portions of the map for our experiments. The information concerning different
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selected portions of the map is presented in Table 3.2. Testing the optimization methods with
different map sizes, allows the scalability of each method to be verified.

We also tested the optimization algorithms over a map of Université Laval campus. The map
of the area is shown in Fig. 3.9. In this experiment, which is an example of a surveillance
system for the campus, the goal is two-fold. First, we want to test the performance of different
methods in the presence of man-made obstacles (i.e., buildings). Second, the target area is
weighted, meaning that each pixel is attributed with a different weight (wq) as described in
section 3.2. For this experiment, we assume that the top of the buildings have low importance
in the total coverage (wq = 0.1), the streets have an average importance (wq = 0.4) and
the ground level where the pedestrians walk have the highest importance (wq = 0.8). The
specifications for the coordinates of the campus maps are also provided in Table 3.2.

Table 3.2: Information concerning the test maps used for the experiments.

Method NC-A NC-B NC-C NC-D UL-A UL-B

Highest elevation (m) 130.65 127.81 131.6 131.55 100.0 107.3
Lowest elevation (m) 125.95 109.3 103.7 103.76 85.25 82.85

No. of Columns 100 200 500 500 100 250
No. of Rows 100 250 250 500 100 200
No. of pixels 10,000 50,000 125,000 250,000 10,000 50,000

Figure 3.9: Part of the Université Laval (UL) map, chosen for the weighted experiments. Here,
different parts of the map have different weights. Buildings are shown in red and have a weight
of wq = 0.1, the ground is represented in green and has a weight of wq = 0.8 and the streets
are shown in black and have a weight of wq = 0.4.

3.5.3 Optimization Algorithm Settings

For SA, the perturbations for positions and orientations follow a Gaussian distribution with
standard deviation σsa. The optimal value for σsa has been established by trial and error (over
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the range σsa ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2}), and set to σsa = 0.01 for each map. CMA-
ES is run following recommendations of its author [35], with a population of λ = b4+3 log(N)c
offspring and µ = bλ2 c parents. Here, N is the dimensionality of the given problem, determined
by the number of sensors in each map. A mutation factor σcma = 0.167 is also used. For the GD
method, the list of parameters include the learning rates ηx and ηy for positions, the learning
rate ηθ for pan angles, the learning rate ηξ for tilt angles and the weighting parameter ν.
The values of these parameters used in the experiments have been found by trial and error,
with the same values used over all maps. For that, we performed a grid search for all of
the parameters over the NC-A map. More precisely, we had a grid search over parameters
η ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}, ν ∈ {0, 0.5, 1, 1.5, 2} and ω ∈ {0, 0.5, 1}. Then, we chose
the best five selections of the parameters and among them chose the one that performed best
(on average) on all of the other maps. All parameters used for the experiments are summarized
in Table 3.3.

Table 3.3: The parameter values used for simulated annealing, gradient descent and covariance
matrix adaptation evolution strategy (CMA-ES) methods.

SA CMA-ES GD

Parameter σsa σcma ηx ηy ηθ ηξ ν ω
Value 0.01 0.167 0.05 0.05 0.5 0.005 1 0.5

The most computationally demanding part of each algorithm lies in calculating the overall
coverage for a candidate solution. Therefore, to allow fair comparison between different op-
timization methods regarding computation requirements, we put a limit on the number of
candidate network coverage calculations each method can do. SA and GD methods perform
one coverage calculation per iteration; therefore, the maximum number of iterations for these
methods equal the maximum number of coverage calculations for each map. The CMA-ES
method calculates coverage for each of its offspring at each generation, so this algorithm pro-
ceeds for tmax

λ iterations on each map, where tmax is the maximum number of iterations and
λ is the number of offspring. We have reported the maximum iteration for each map and
algorithm in Table 3.4. The maximum number of iterations define the stop criterion for each
algorithm on each map.

Table 3.4: Maximum number of iterations for each method on each map.

Method NC-A NC-B NC-C NC-D UL-A UL-B

Simulated Annealing (SA) 6000 30,000 103,500 144,000 6000 30,000
Gradient Descent (GD) 6000 30,000 103,500 144,000 6000 30,000

CMA-ES 400 1500 4500 6000 400 1500
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In the GD method, we added another criteria for the termination of the algorithm. In this
algorithm, if the fitness of the candidate solution is not improved after a specific number of
iterations, the algorithm will stop and report the best solution found so far. In our implemen-
tation, this number of iterations is set to be 50.

For the CMA-ES and SA methods, each sensor placement optimization scheme has been run
30 times, from which are estimated the average and the standard deviation of each method.
CPU times are also averaged over the 30 runs, in order to compare the resources required
by each method to produce a solution. These time values, reported in Table 3.5, have been
evaluated by running the methods on a single Intel i7 core running at 2.8GHz.

Comparatively, the running time of GD on a specific map is much less than the other two
methods. Therefore, we implemented a restart mechanism for our experiments. More precisely,
we accomplished this by calculating, on average, how many runs GD is able to perform with
restart to be comparable in terms of the number of evaluations calculated. In stochastic
optimization, restarting consists in making several runs of the algorithm and using the best
solution of these runs as the final result. Joined to a stop criterion that halts the optimization
process as soon as it converges, this leads to better results than one single long run. SA and
CMA-ES are executed 30 times, so GD is executed for 30× the average number of runs with
restart executed on each map. In Table 3.5, for the GD method, we have reported the average
coverage percentage between the 30 repetitions with restart as “GD with restart” and the
average between all runs as “GD single run average”.

Each optimization method begins the optimization process from an initial network setting.
We take the random distribution as our initial setting for the optimization methods. Random
distribution is the simplest scenario, meaning that all sensors are randomly distributed in the
environment.

All optimization programs are implemented in the Python language. The CMA-ES imple-
mentation was taken from Distributed Evolutionary Algorithms in Python (DEAP), available
at http://deap.gel.ulaval.ca [32]; a Python library for evolutionary algorithms developed
at Université Laval.

3.6 Results

Here, we compare the performance of optimization methods on the mentioned test maps. Each
optimization method was run 30 times, except GD, which was run for 30× the average number
of runs with restart, from which the average coverage percentage and standard deviation were
recorded. A good optimization method should have high coverage and low standard deviation.
The results are reported in Table 3.5. In the experiments, each scheme has been run 30 times,
with coverage averages and the corresponding standard deviations reported. Note that 100%
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coverage is not possible with a finite number of sensors, given its probabilistic nature. Fig. 3.10
and Fig. 3.11 also present the best results obtained by the GD method for each map. There
are several aspects that should be pointed out in Fig. 3.10b. First, the coverage of each sensor
is scaled by the weight of the area that the sensor is placed on (the same way that the coverage
of sensors are weighted in Eq. (3.1)). This gives us the ability to differentiate between areas
with different weights. For example, on the top of the buildings (where the weight is smallest),
the sensors have blue coverage, or on the roads, the coverage of sensors is green. Next, notice
that the area which has lower weights (e.g., the top of the buildings) is not covered as well as
the areas with higher weights (e.g., the ground level). This makes sense as the algorithm has
balanced the coverage capacity and put more emphasis on the more important areas.

Table 3.5: Coverage percentage and standard deviation on the target areas with various
numbers of sensors. Results in bold denote the best results that are statistically significant
according to the Wilcoxon–Mann–Whitney test (pairwise compared with the other results
with p-value of 0.05). As the range of the time requirements for different algorithms is large,
time is reported either in seconds (s), minutes (m), hours (h) or days (d).

Method NC-A NC-B NC-C NC-D UL-A UL-B

Number of sensors 12 60 150 300 12 60
Search dimension 48 240 600 1,200 48 240

SA average 88.4% 89.4% 89.0% 84.9% 89.1% 83.6%
SA SD 1.6% 0.6% 0.4% 0.5% 1.7% 2.5%

SA CPU time 17.7m 10.2 h 4.1 d 11.1 d 15.1m 10.1 h
CMA-ES average 90.2% 92.4% 91.7% 60.3 % 90.4% 87.6%
CMA-ES SD 1.9% 0.7% 0.6 % 2.3 % 1.5% 1.0%

CMA-ES CPU time 18.0m 11.0 h 4.4 d 11.4 d 15.9m 11.1 h
GD with restart 88.6% 92.1% 95.1% 91.7% 91.4 % 83.2%

GD single run average 85.0% 90.7% 94.3% 90.3% 86.7% 76.2%
GD single run SD 0.9% 0.2% 0.1% 0.3% 1.0% 1.6%

GD average # of restart 13 19 112 165 15 27
GD CPU time single run 85 s 33.9m 52.0m 1.5 h 72 s 22.2m

Results indicate that CMA-ES outperformed other methods on three maps and GD performed
better on the other three maps. In general, the performance of the three methods is very similar
on smaller maps, but on larger maps, the difference is significant. CMA-ES performed better
on smaller maps, while GD with restart performed better on larger maps. Still, the difference
between the performance of CMA-ES and GD on smaller maps (∼ 1%) is much less than the
difference on larger maps (∼ 30%), except for one small map (UL-B) where the difference
is larger (∼ 4%). The larger difference of the performance on UL-B map could be related
to the abrupt changes of the elevation and visibility on this map, which itself is caused by
the abundance of buildings on this map. These changes make the derivative of the objective
function discontinuous in the search space; therefore, it will be harder for the GD method to
escape local minima. The main difference occurs on the largest map (NC-D) where CMA-ES
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is unable to obtain a better estimation than the initial random positions. It is well-known
that CMA-ES does not scale well in high dimensionality [70]. The reason is that large maps
generate high dimensional search spaces (i.e., hundreds of dimensions), and estimating the
covariance matrix from a relatively small sample set is brittle. Therefore, the CMA-ES with
full covariance matrix is only usable for problems with a small number of sensors (less than
250).

(a) Campus maps (b) Placement results with gradient descent

Figure 3.10: Result of placement on the Université Laval campus map: (a) two sub-parts
of the maps used for the experiments, the specifications concerning each map are given in
Table 3.2; (b) position of the sensors in the best placement obtained by the GD method.
Here, white circles represent the position of sensors on the map and the black line connected
to each circle shows the direction of each sensor. Different colours present different degrees of
coverage using the same colour map as Fig. 3.8.

The other major difference is attributed to the computational demand of different algorithms.
SA and CMA-ES consume roughly the same amount of computational power, while GD re-
quires between 13- to 165-times less computation time. For example, Fig. 3.12 compares the
speed of convergence between different methods on map NC-B.

3.7 Conclusion

This chapter presented an analytical gradient descent (GD) algorithm for optimizing sensor
placement (spatial optimization). The algorithm was implemented with a realistic model
for the environment and a probabilistic model for the sensors. Other optimization methods
(CMA-ES and SA) were also implemented and compared with the GD method. In comparison,
CMA-ES performed slightly better on smaller maps, while GD performed significantly better
on larger maps. Another advantage of the GD method lies in its processing time, as on the
tested maps, its performance was between 13- to 165-times superior to that of the other two
methods. The final advantage of the algorithm is related to its distributed nature. Although,

40



(a) North Carolina maps (b) Placement results with gradient descent

Figure 3.11: Result of placement on the North Carolina rural area map: (a) four sub-parts of
the maps used for the experiments (the specification concerning each map is given in Table 3.2);
(b) position of the sensors in the best placement obtained by the GD method.

we have tested the algorithm in a centralized fashion, GD has the capability to be executed
in a distributed fashion, where each sensor only needs to know the position and coverage of
neighbour sensors.
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Figure 3.12: Comparison between speed of convergence for different methods on a sample run
for map NC-B.

42



Chapter 4

Trajectory Prediction

In the temporal optimization, the assumption is that the sensors have already been placed
in the environment, using the spatial optimization algorithms presented in chapter 3. Still,
the sensors have some parameters (e.g. direction) which can be changed over time during the
operation of the network. The goal of the temporal optimization is to find a control mechanism
to automatically change the variable parameters of the sensors, so that the final network has
the maximal coverage over phenomena which is changing over time. Here, we focus on the
problem of covering a number of moving targets in the environment.

For this purpose, first the targets should be detected, and their location be estimated with
good accuracy. Next, the trajectory of each target should be predicted for a future time
step. The reason for the prediction step is that all the mentioned steps (target detection,
location estimation, coverage optimization) will take some time. Therefore, the algorithm
should plan to cover the targets before their movement. This shows the importance of the
trajectory prediction step. In this chapter we look at the algorithms proposed for the trajectory
prediction step, and in the next chapter we will look at the control mechanisms available to
change the parameters of the sensors.

In section 4.1 we look at the algorithms proposed for the trajectory prediction problem in the
literature. The approaches are categorized under short term and long term prediction methods.
In section 4.2, we define the problem of trajectory prediction and propose a performance
criteria. In section 4.3, we go over some short term prediction methods and propose some
probabilistic prediction methods for this problem. In section 4.4, long term prediction methods
are studied and kernel density estimation method is proposed for the problem. Next, section
4.5 presents the experiments settings, and finally in section 4.6 results under both categories
are presented.
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4.1 Trajectory Prediction

Trajectory prediction is the process of estimating the future location of the target moving
inside an environment. The trajectory is usually modelled as a sequence of observed locations
of the target. Therefore, in trajectory prediction, the goal is to predict the future location of
a target, given the history of its previous locations. A simple approach for this problem is
to perform estimation using only the previous trajectory of the same target. We refer to the
approaches in this category as the short term prediction methods, as in these methods, the
prediction step can not be arbitrarily large. Another possible approach is to use the trajectory
of other targets who traversed the same environment. We refer to these approaches as the
long term prediction methods. Next, we cover some of the methods proposed in the literature
under each of the two mentioned groups.

4.1.1 Short Term Prediction

In the context of sensor networks for target tracking, there has been some work on the tra-
jectory prediction of targets. Xu et al. proposed an algorithm in [86, 87, 88] to predict the
future location of a target using three heuristics (constant, average, and exponential average).
In the constant heuristic, the assumption is that the targets keeps the current direction and
speed in the future. In the average heuristic, the average of the previous movements is used
for prediction and in the exponential average heuristic, the exponential average of the recent
movements predicts the future movement. In all the mentioned methods, the future location
is predicted as a single point, and does not include the prediction uncertainty into the model.

Fuemmeler et al. [33], considered the problem from the perspective of finding the best schedul-
ing mechanism for the sleep period of the sensors. They formulated the problem as an example
of partially observable Markov decision process (POMDP), and considered different tradeoffs
between energy savings and the tracking errors. In a similar work, Yeow et al. [89], consid-
ered the trajectory prediction problem as an example of Markov decision process (MDP) and
applied Q-learning to solve it.

Brooks et al. compared in [16] the performance of three methods for trajectory prediction in
SNs. The compared methods were pheromone routing, extended Kalman Filter, and belief
networks. The authors did not provide any comparison between the performance of different
methods over a single setting. In a similar work, Chong et al. [26], proposed a distributed
Kalman filter mechanism to track several targets moving in the environment. The main
focus of the work is to minimize the communication cost between sensors by sending state
information of targets only when necessary.

More recently, Jiang et. al. [42], proposed two prediction methods to estimate the location of
moving targets. They called the two methods kinematics-based prediction, and probability-
based prediction. In kinematics-based prediction, the assumption is that the target will keep
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the same direction and speed as the previous movement. This corresponds the constant heuris-
tic of [87, 88]. For probability-based prediction, authors assumed that target’s displacement
is represented in polar coordinates. In these coordinates, the uncertainty of displacement size
is represented by a normal distribution, and for the displacement direction a linear model was
used to represent uncertainty. A weaker point that require justification is that, once calcu-
lating the parameters of the normal distribution, authors mentioned that they have used the
“68-95-99.7 rule" of normal distribution (instead of a more straightforward method such as
maximum likelihood).

4.1.2 Long Term Prediction

The main problem with all the short term prediction approaches is that the future location of
the target cannot be estimated for far future time steps. Specifically, as the prediction time
increases the uncertainty of the prediction, it also increases to the limit that it becomes no
more useful for the application. Another possible approach is to use the history of previous
targets who have already traversed the same environment for predicting the trajectory of the
new targets.

One approach for long term trajectory prediction uses hidden Markov models (HMM). In
these approaches the set of previous trajectories is summarized into the HMM model, and the
similarity of a new trajectory is calculated with each of the HMM states from the HMM emis-
sion probabilities it produces. Two types of HMM models can be distinguished for trajectory
prediction: 1) behavioural models, where the HMM is designed to model high level intentional
states (e.g., interactions between peoples) [64, 85], and 2) physical models, where states cor-
respond to positions of the target represented as line segments [74], mixture of Gaussians [13],
Voronoi diagrams [76], etc.

HMM methods can be seen as parametric approaches for trajectory prediction, where the
hidden states, emission and transition probabilities constitute the parameters of the system.
The problem of this approach is that it is not clear what is a good representation for hidden
states (e.g. line segment, probabilistic distribution). Moreover, depending on the chosen
hidden states, the emission probability between a state and an observation must still be
defined.

The problem of defining parameters for parametric approaches (e.g., HMM), gives rise to a
non-parametric approaches. In non-parametric approaches, instead of summarizing previous
trajectories into states, a similarity function is defined between two trajectories. Here, the
two trajectories are that of a new target and another trajectory from the set of trajectories of
previous targets. We exploit the fact that the new target will (more probably) have the same
trajectory as those with which it has a higher similarity.

Compared to parametric methods, non-parametric methods have desirable properties for tra-
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jectory prediction, such as their ability to work in an online fashion. In other words, with
parametric methods, the addition of new trajectories in the history dataset implies the re-
estimation of all system parameters, while this is not the case for non-parametric methods.
This is an important property for the trajectory prediction problem, because new trajectories
are detected all the time and they should be added to the history dataset. Non-parametric
methods have the advantage of being insensitive to the addition of new trajectories, as each
prediction is computed on-demand over the history dataset, with little or no other computa-
tion required beforehand. However, the computation required is proportional to the history
dataset size, such that for a large set of trajectories observed, one should limit computation by
restricting the size of the history dataset used in some way (e.g., through a sliding window).
Specifically, in the case where the obstacles in the environment are mobile, the combination
of online trajectory addition and the sliding variable becomes important, as the most recent
trajectories should be used for prediction of new trajectories.

In non-parametric approaches, the main problem is the definition of the similarity function
between two trajectories. There are several approaches proposed to solve this problem. As
a simple example Nanni et al. [61] proposed to use average Euclidean distance between two
trajectories as a measure of dissimilarity between them. The problem with this approach is
that the results will be poor if the trajectories are not well aligned [67]. In a similar but more
accurate approach Bashir et al. [12] calculated the dissimilarity between two trajectories by
using the Euclidean distance between the Principal Component Analysis (PCA) coefficients
of each trajectory.

Dynamic Time Wrapping (DTW) [45], Longest Common Subsequence (LCSS) [77], and Edit
Distance on Real sequence (EDR) [22] are the three methods which calculate the similarity by
alignment between the subsequent trajectories. The basic idea behind the three algorithms
is sequence alignment. These methods use a dynamic programming approach to align two
trajectories such that the length of the portion which matches between the two trajectories
is maximized. It has been shown that these methods produce stable results for trajectory
prediction problem [93], as they are robust to noise in the input data [17].

The concept of applying density estimation on trajectories has already been proposed by
Chen et al. [20], but in their work the distance function between trajectories was defined on
the absolute locations and without including the displacements. Kernel Density Estimation
(KDE) is a well-known non-parametric density estimation method, but there has been very
limited applications of the KDE method for trajectory prediction. KDE was usually used for
the problem of anomaly detection among trajectories. Laxhammar et al. [50] was among the
first to propose the application of KDE for the problem of anomaly detection in trajectory
datasets. In their work, they assumed trajectories have a Markovian property that the next
location of each target depends only on its previous two locations. Later Oliver [63] also
applied KDE for anomaly detection in trajectory datasets.
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4.1.3 Proposed Methods

In this chapter we are proposing methods under both the short term and long term prediction
algorithms. For the short term prediction method, we are proposing the probabilistic expo-
nential average, and the multimodal methods, and also propose to use maximum likelihood
to learn the parameters of the unimodal method.

As for the long term prediction methods, we propose to use KDE, to model the similarity
between two trajectories, and to use that similarity to predict the future locations of targets.
We also propose a mechanism to adapt the bandwidth parameters of the KDE method for the
case of missing observations in real datasets.

4.2 Trajectory Prediction Problem

Trajectory prediction is the process of estimating the future location of a given target using the
information of its previous movements (in short term trajectory prediction) and the movements
that other targets have made in the same environment (in long term trajectory prediction).
More precisely, assume T(t)

j is an on-going trajectory of target j in the environment Ξ, currently

being observed at time t, where T(t)
j = (L

(t)
j ,∆L

(t)
j ). Here, L

(t)
j = (x

(t)
j , y

(t)
j ) represents the

location of the target and ∆L
(t)
j = (∆x

(t)
j ,∆y

(t)
j ) its previous time step displacement.

We wish to measure the location of the target after s time steps (i.e. T̂(t+s)
j ) as accurately

as possible. Here we propose a probabilistic model for the future location of each target.
More precisely, for a target Tj at time t+ s we define a discrete random variable X(t+s)

j over

the sample space of all the locations q ∈ Ξ. X(t+s)
j is defined by a probability mass function

P (X
(t+s)
j = q) which returns the probability of target Tj being at location q at time t+s. For

brevity, we note this measure as P(t+s)
jq . The goal is to incrementally learn the probabilistic

model for each target as it moves within the environment.

The performance of the trajectory prediction method can be evaluated through the average
(or expected value of) distance between the prediction and the actual location of the target.
More precisely, prediction error for the location of a test trajectory Tj at time t+ s is defined
as follows:

E
(t+s)
j =

∑
q∈Ξ

P(t+s)
jq

∥∥∥q− L
(t+s)
j

∥∥∥
2
, (4.1)

which is the sum over the Euclidean distance between all possible positions of the environment
and the actual location of the target at time t+s, weighted by the predicted probability P(t+s)

jq

that the target will be at position q. The goal of the prediction method is to find the prediction
mechanism which gives the minimum value for the prediction error:

P∗(t+s)jq = argmin
P(t+s)
jq

E
(t+s)
j . (4.2)
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The result of the trajectory prediction at time t is a prediction map R(t). The prediction map,
sums up the result of prediction for different targets which are moving in the environment. So
that, if the prediction method predicts that two targets are moving into one location with high
probability, then that location is getting a high value in the prediction map. More precisely,
for each element r(t)

q ∈ R(t) we have:

r
(t)
q =

∑
j

P∗(t+s)jq . (4.3)

4.3 Short Term Trajectory Prediction

In this section we are looking to predict the future location of a target considering the previous
movements of the same target in the environment. The main idea behind the short term
prediction methods is that the target tend to proceed with the same direction within its
movement. The main problem with this approach is that the uncertainty related to the
prediction grows linearly with the prediction step. We will elaborate more on this issue at
section 4.3.8. But for now, we assume that the prediction horizon is restricted to one step
ahead. In other words, at each time step, the location of all present targets are predicted for
the next time step.

The short term methods are limited for predicting one time step into future. Therefore, the
prediction method can be defined in terms of the displacement that the target will make
at each time step. The displacement vector of each target Tj at time t is represented by

∆L
(t)
j = L

(t)
j −L

(t−1)
j . The goal is to predict the next displacement ∆̂L

(t+1)

j using the history

of past movements {∆L
(tj+1)
j ,∆L

(tj+2)
j , . . . ,∆L

(t)
j }.

4.3.1 Constant Prediction

The simplest assumption for predicting the displacement in the next time step is that the
targets keeps the current direction and speed in the next displacement. This was proposed as
the constant method in [86, 87, 88]:

∆̂L
(t+1)

j = ∆L
(t)
j . (4.4)

4.3.2 Average Prediction

Another approach would be to take the average of all the previous movements that the target
has made in the environment. We will refer to this method as the average method [86, 87, 88]:

∆̂L
(t+1)

j =
1

n

t∑
s=tj+1

∆L
(s)
j , (4.5)

where n = t− tj .
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4.3.3 Exponential Average Prediction

One of the problems related to the average method is that it gives equal weight to all previous
movements. For example, if a target has moved towards the West and then suddenly changed
direction and moved towards the East, this method keeps predicting the next position within
the West side, until the East movements can outweigh the West movements. Therefore, it is
clear that more recent movements are more important. Therefore in the third method, Xu et
al. [86] proposed the exponential average method:

∆̂L
(t+1)

j = (1− η) ∆̂L
(t)

j + η ∆L
(t)
j , (4.6)

where η ∈ [0, 1] is the learning rate

4.3.4 Probabilistic Exponential Average Prediction

All the three mentioned prediction methods has a similar shape for the final result. In all
these methods the final result is a vector, so these methods gives maximum probability to one
location in the environment and all neighbour locations obtain zero probability. In terms of
the formulation we developed in section 4.2 for the probabilistic prediction, we have P(t+1)

jq* = 1

for one location q* and zero for all other locations. This represents a simple binary probability
function; we can further improve these approaches by using a bivariate Gaussian distribution
around the predicted location:

P(t+1)
jq = N2(q; ∆̂L

(t+1)

j ,Σ), (4.7)

where P(t+1)
jq is the predicted probability that the target moves to location q in the next time

step, ∆̂L
(t+1)

j is the mean of the bivariate distribution which we calculated in (4.6), and Σ is
the covariance matrix. Here, for simplicity we assume Σ = σ2

pI. From now on, we refer to this
prediction method as the probabilistic exponential average approach.

4.3.5 Multimodal Prediction

We can further improve the probabilistic exponential average prediction, by addressing the
following problem. Assume the target has moved to the West for some time and then moved
towards the North. After the transition, the predicted location would be towards the North-
West for some time until it is gradually directed towards the North. While the target has
never moved towards the North-West, and still, after the prediction has moved North, there
is no probability of the target moving towards the West, while it is more reasonable that the
probability of a West movement would be larger than a probability of a movement in other
directions (e.g. East or South). To solve this problem, we define the probabilistic measure for
all the previous movements and then sum up their values for all the locations q. Therefore,
in each time step, the probabilistic model of the last movement P(t)

jq for location q is added
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to the prediction based on the recent movement of the target with respect to that location
R

(t)
jq , to predict the probability for the future time step. We call this approach the multimodal

approach and it is formalized as follows:

P(t+1)
jq = (1− η) P(t)

jq + η R
(t)
jq , (4.8)

R
(t)
jq = N2(q; ∆L

(t)
j ,Σ), (4.9)

As can be seen, each movement is creating a Gaussian distribution (4.9), and the effect of
these distributions is incrementally added through time (4.8). This way, if the target has
already moved toward a direction before, the probability of that direction would always be
higher than other directions towards which the target has never moved.

We can observe that the probabilistic exponential average method and the multimodal method,
both make an exponential average between the observed displacements. In the case of prob-
abilistic exponential average the average is taken between the displacements, while in the
multimodal the average is taken between the probability distributions used to represent each
displacement.

4.3.6 Unimodal Prediction

So far, we have assumed that the covariance matrix is constant for all the movements. Another
approach is to estimate the mean and covariance matrix of the next movement using the
previous movements. In this approach, all the previous displacements are weighted and the
parameters are calculated using the maximum likelihood estimation. We call this approach
the unimodal approach. More precisely, assuming that θ(t+ 1) = (∆̂L

(t+1)

j ,Σj(t+ 1)) are the
parameters of the bivariate normal distribution that we want to estimate, we have:

θ̂(t+ 1) = argmax
θ(t+1)

t∏
s=tj+1

N2(ηt−s∆L
(s)
j |θ(t+ 1)), (4.10)

P
(t+1)
jq = N2(q; θ̂(t+ 1)). (4.11)

Note that the estimation is done in polar coordinate systems. In other words, the distance r
and angle θ between target position L(t)

j and location q are used for calculations in this space.
The reason is that, it is usually assumed that the target’s movement consists of a direction
and a step size. These parameters are more easily represented in a polar coordinate system
than in a cartesian system.
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4.3.7 Kalman Filter Prediction

Another possible approach for next movement prediction is the classical Kalman Filter method.
In this approach the mean and covariance matrix is updated at each time step using the
following formulas:

Correction step

K = Σj−(t)(Σj−(t) + Σ1)−1, (4.12)

∆̂L
(t)

j = ∆L
(t)
j− + K(∆L

(t)
j −∆L

(t)
j−), (4.13)

Σ̂j(t) = (I−K)∆L
(t)
j−, (4.14)

Prediction step

∆L
(t+1)
j− = ∆̂L

(t)

j , (4.15)

Σj−(t+ 1) = Σ̂j(t) + Σ2. (4.16)

In the correction step, our prediction for the future movement of the target is combined with
the new measurement (the recent displacement of the sensor) that we observe. Within this step
Σ1 represents the noise we have in our measurements. In our experiments, we assumed that we
observe the movements of the targets with infinite accuracy, therefore we have Σ1 = 0. K is
called the Kalman gain, and measures the relative certainty between the new measurement and
the current estimate. In the prediction step (as it names suggests), we expand our estimation
into the next time step. In this step Σ2 = σ2

pI is the process noise. Adding all the mentioned
modifications our formulas boils down to:

∆L
(t+1)
j− = ∆L

(t)
j , (4.17)

Σj−(t+ 1) = Σ2, (4.18)

P(t)
jq = N2(q; ∆L

(t+1)
j− ,Σj−(t+ 1)), (4.19)

This way the Kalman Filter can be viewed as a probabilistic exponential average method
where all the weight is given to the latest movement. In other words, the prediction of the
Kalman Filter is a Gaussian distribution centred on the recent movement. All these prediction
methods are presented in Fig. 4.1.

4.3.8 Shortcoming of Short Term Prediction Methods

As mentioned in the beginning of the section, in short term prediction methods, we restrict
ourselves for prediction of one step into the future. The reason is that the uncertainty (vari-
ance) of the prediction increases linearly with the number of steps of prediction into the future.
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(a) Constant (b) Avg. (c) Exp. Avg.

(d) Prob. Exp. Avg. (e) Kalman filter (f) Unimodal

(g) Multimodal

Figure 4.1: Assume that target T1 was detected in the first time step t1 = 0, and currently
we are at t = 3. Therefore, we have the history of target T1 movements for the past three
time steps ∆L1 = {∆L

(1)
1 ,∆L

(2)
1 ,∆L

(3)
1 }. The goal is to predict the next movement. The

probability of next movement is shown for different prediction methods.
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(a) One step prediction (b) Two steps prediction

Figure 4.2: Problem of the probabilistic short term methods for long prediction steps.

For example in Fig. 4.2 we have shown the prediction of the probabilistic exponential average
method for one and two steps in the future. As can be seen, even increasing the prediction
step from one to two, increases the prediction uncertainty to a level that the prediction is
much less usable. Therefore, it is clear that the short term prediction methods cannot be
used for arbitrary prediction steps, and that is the reason we look further into the long term
prediction methods in the next section.

4.4 Long Term Trajectory Prediction

In the short term prediction methods explained in the previous section, only the previous
displacements of each target is used to predict its future location. As mentioned before, the
main limitation of the short term prediction methods is that the prediction step is limited to
one time step for these methods.

In this section we cover another group of methods proposed for the trajectory prediction
problem, namely the long term prediction methods. In these methods, the trajectory of other
targets who traversed the same environment is used to predict the trajectory of a new target.
The information obtained from other targets help the system to predict the trajectory of new
targets for longer prediction steps.

The point that should be clarified more is the reason for longer prediction steps. In other
words, why does the system needs to predict the location of the targets longer into the future.
For the response, notice the time requirement for different steps of any temporal optimization
algorithm:

1. The prediction algorithm needs some time to predict the future location of each target
based on its current locations (and possibly the history of previous targets).

2. When the prediction method has made its estimations, the sensor control method uses
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these estimations to calculate the best parameter setting for each sensor and then move
the direction of sensors.

Therefore there is a limitation between consecutive states of the system. Specifically, assume
that at some time t, the prediction step takes s1 time, and the sensor control step takes s2

time. Having this, the system should make the prediction and optimization for time t+s1 +s2.
It is because each step depends on the result from the previous step, and all the steps should be
done in sequence. We combine all these constraints and at each time t we make the prediction,
optimization and movement for time t+s where s = s1+s2. This parameter should be adjusted
appropriately for different choices of prediction and sensor control algorithms. In other words,
performing the sensor control at each time step (i.e. s = 1), which was assumed in the short
term prediction methods, is not plausible in some real settings.

Target coverage problem is an example of a scheduling problem. If the coverage of the sensors
is planned based on the current location of the targets (or their location in near future as
in the short term prediction methods), the overall coverage of the network over the targets
might converge to a suboptimal solution in long term. That is, a specific setting of the sensors
might give good coverage in the near future while the long term coverage of the setting is
inferior to another setting which gives lower coverage in short term but better results in
long term. Predicting the location of the targets longer into the future will provide more
information for the control mechanism of the sensors, and helps the algorithm to avoid locally
optimal solutions. This is another reason which favours the application of long term prediction
methods.

In the long term prediction methods, we use the history of the displacements of other targets
who traversed the same environment. More precisely, assume that when a new target Tj

arrives in the environment at time tj , we have a dataset T of j − 1 previously observed target
trajectories in the environment, T = {T1,T2, . . . ,Tj−1}. The goal is to use the history T to
predict the future location of Tj as it moves in the environment.

4.4.1 Similarity Function

We propose to do the prediction using the similarity measure between the trajectories. The
principal assumption is that the similarity between the previous locations and displacements
of two trajectories is directly related to the closeness of their future locations. The main
problem is how to define the similarity between two trajectories.

More formally, at a time step t, we wish to measure the similarity S(T
(t)
j ,Tm) between the

current state T
(t)
j of an on-going trajectory and the whole history of another trajectory Tm ∈

T. Having this, we form a four dimensional space, where the state of a trajectory at one
time step is represented by a point in this space, consisting of its current location L

(t)
j =
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(x
(t)
j , y

(t)
j ) and its most recent displacement ∆L

(t)
j = (∆x

(t)
j ,∆y

(t)
j ). As a result we have

T
(t)
j = {x(t)

j , y
(t)
j ,∆x

(t)
j ,∆y

(t)
j }. Note that the displacement was added to the state in order

to differentiate trajectories that pass through a given location in the environment, but with
different directions or velocities. The prediction algorithms uses the dataset T to get a better
estimate of the trajectory of the newly arrived targets.

4.4.2 Kernel Density Estimation (KDE)

In the mentioned four dimensional space we estimate the density of trajectory Tm, and we
define the similarity between the state of trajectory Tj at time t, as its value within the density
estimated for the trajectory Tm. More formally we have:

S(T
(t)
j ,Tm) = F̂Tm(T

(t)
j ), (4.20)

where S(., .) is the similarity function, and F̂Tm(T
(t)
j ) is the density estimated for trajectory

Tm evaluated at the point T
(t)
j . For density estimation, we use the nonparametric multivariate

kernel method. More precisely we have:

F̂Tm(z) =
1

nm

nm∑
t=1

K(T(t)
m , z,hm), (4.21)

where nm is the total number of displacements of target Tm, and hm = {h1, h2, h3, h4} are
the bandwidth parameters for trajectory Tm along the four mentioned dimensions. These
parameters define the length-scale of the function for location and displacement, respectively.
Informally speaking, h1, and h2 defines how far two locations should be in the environment
to be considered far (along the x and y dimensions), and h3, and h4 defines how much the
directions of the two displacements should be diverged before they are considered different
(along the ∆x and ∆y dimensions).

As kernel function K(., ., .), we use the Gaussian kernel defined as:

K(z, z′,h) =

4∏
d=1

1

hd
K

(
zd − z′d
hd

)
, (4.22)

K(u) =
1√
2π

exp

(
−u

2

2

)
. (4.23)

4.4.2.1 The Problem of Missing Observations

The mentioned similarity function is defined in four dimensions and therefore difficult to
visualize. As a result we present the behaviour of the similarity function in a one dimensional
space (Fig. 4.3). In this figure, there are two consecutive observations at positions 1 and 5,
and we observe that the similarity is higher close to those points. In the figure, the dotted
lines represent the underlying normal distributions we mapped over each observation.
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Figure 4.3: The behaviour of similarity function in one dimension.
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Figure 4.4: The behaviour of similarity function with unknown intermediate observations and
fixed bandwidth parameters.
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Figure 4.5: The behaviour of similarity function with unknown intermediate observations and
variable bandwidth parameters.

The assumption behind the similarity function is that the trajectory of the history target Tm,
has been observed at all time steps. As we saw in the previous section, this is not the case
in most real datasets. In reality the time step difference between consecutive observations
of the same trajectory might be different. For example, assume that for the data presented
in Fig. 4.3, the time difference between the two observations is four time steps (instead of
one). The current model is not compatible with this assumption, and therefore should be
modified. One possibility is to evenly divide the space between the two observations and add
each interpolated point as an observation [63]. In this model all the newly created observations
would have equal bandwidth parameters h. This model is presented in Fig. 4.4.

The problem with this approach is that it assumes that the intermediate observations (which
we didn’t actually observe), have the same bandwidth parameter as the actual observations
we made. For the example given in Fig. 4.4, the similarity at point 3 is higher than that of
point 5, while we had an observation at point 5, but none at point 3.

For that reason, we propose a model in which the bandwidth parameter of the interpolated
observations increase linearly as the interpolated point gets further away from an actual ob-
servation. Fig. 4.5 represents our model for the example given before. As can be seen, the
bandwidth parameter is the same for the points where we had an observations (points 1 and
5), and the bandwidth parameter increases as we get away from the observations. In the
same way, we modify the similarity equation (Eq. 4.21), so that the bandwidth parameter is
a function of the observation, and therefore not fixed for all points. The modified version of
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the similarity equation (Eq. 4.21) is as follows:

F̂Tm(z) =
1

nm

nm∑
t=1

K(T(t)
m , z,h

(t)
m ). (4.24)

where in the new formula the bandwidth parameter h
(t)
m is defined for each trajectory m at

each time step t.

4.4.2.2 Parameter Estimation

The only parameters of the KDE method that should be decided are the bandwidth pa-
rameters. As previously mentioned, the bandwidth parameters define the distance at which
two points are considered close. We calculate the bandwidth parameter using the maximum
likelihood leave-one-out cross-validation method:

F̂Tm−i(Tm) =
1

nm − 1

nm∑
t=1,t 6=i

K(T(t)
m ,T

(i)
m ,hm). (4.25)

In other words, in order to evaluate a parameter hm for trajectory Tm, only one of the
displacements of the trajectory (T(i)

m ) is removed from the summation and the likelihood of
the similarity function is evaluated at that point. For a given bandwidth parameter, the
process is repeated for all displacements in the trajectory. Therefore the final process is:

nm∏
i=1

F̂Tm−i(Tm) =
1

(nm − 1)nm

nm∏
i=1

nm∑
t=1,t 6=i

K(T(t)
m ,T

(i)
m ,hm). (4.26)

In the given formula the multiplicands are usually small and the final product leads to under-
flow. Therefore it is more convenient to maximize the log of the likelihood:

nm∑
i=1

log
[
F̂Tm−i(Tm)

]
= −nm log (nm − 1) +

nm∑
i=1

log

 nm∑
t=1,t 6=i

K(T(t)
m ,T

(i)
m ,hm)

 . (4.27)

Taking the derivative of the given formula with respect to the bandwidth parameters leads to
complex equations, which cannot be solved in a closed form. Therefore, in our experiments,
we adjusted the parameters of the method by a linear search conducted within the range
[1, 20] with the precision of 0.5, and the best value was chosen as the value of the bandwidth
parameter for each trajectory.

Notice the mentioned formula defines the bandwidth parameter for the observed points. For
each interpolated point, we define a level property L(T

(t)
j ), which measures the minimum

distance between the mentioned point and the closest observed point. For the example given
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in Fig. 4.4, points 2 and 4 have level 2, and point 3 has level 3. The observed points (1, and
5) both have level 1. Using this formula the bandwidth parameter is defined as:

h
(t)
j = L(T

(t)
j )× hj , (4.28)

where hj is the base bandwidth parameter calculated using the method proposed in Eq. 4.27.

Next, we will explain two other similarity based prediction methods, which we will later use
to evaluate and compare the performance of the KDE method.

4.4.3 Longest common subsequence (LCSS)

The proposed similarity measure given in Eq. 4.20 is compared with the well-known similarity
measure called Longest Common Subsequence (LCSS) algorithm [77]. It consists in finding
the longest similar subsequence between two trajectories using dynamic programming. More
precisely, for two trajectories that end with states T

(x)
i and T

(y)
j , the recursive LCSS function

is defined as:

LCSSε,δ(T
(x)
i ,T

(y)
j ) =



0 if x < 1 or y < 1

1 + LCSSε,δ(T
(x−1)
i ,T

(y−1)
j ))

if ‖L(x)
i − L

(y)
j ‖2 < ε and |x− y| < δ

max(LCSSε,δ(T
(x)
i ,T

(y−1)
j ), LCSSε,δ(T

(x−1)
i ,T

(y)
j ))

otherwise

, (4.29)

where ε defines the maximum acceptable distances between corresponding target positions,
and δ is the maximum allowable time warp. From this definition, the similarity between two
trajectories is defined as:

S(Ti,Tj) =
LCSSε,δ(T

(ni)
i ,T

(nj)
j )

min(ni, nj)
. (4.30)

The hyper-parameters δ and ε of the LCSS method were optimized by trial-and-error through
a grid search. The value of the ε parameter was set equal to one. The δ parameter was defined
as a function of the length of the two trajectories that the LCSS algorithm was applied to. The
value for the δ parameter was defined as 20% of the maximum length of the two trajectories,
which is in line with the suggestion made by Vlachos et al. [77].

4.4.4 Principal Component Analysis Based Similarity

We also compared our proposal with a second approach to evaluate the similarity between
different trajectories, using the Euclidean distance between the PCA coefficients of the tra-
jectories [12]. For this purpose, all trajectories are first resampled to the median size of the
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trajectories in the dataset, in order to resize trajectories to the same length. Then, a Prin-
cipal Component Analysis (PCA) is applied to these trajectories (PCA is applied separately
to x and y coordinates of each trajectory). The number of coefficients kept from the PCA
was selected in order to retain at least 95 % of the variance (denoted by Kx and Ky for each
dataset). From this, the following similarity measure is devised:

S(Ti,Tj) =
1∑Kx

k=1(γkx)2 +
∑Ky

k=1(γky )2 + 1
, (4.31)

where γkx and γky are the distance between the k-th PCA coefficient of the two trajectories
along the x and y axes.

In our experiments, we observed that matching a full trajectory Ti with part of another tra-
jectory Tj using the PCA method produces poor results. Therefore, in Eq. 4.31, we evaluated
the similarity between the sub-trajectory of the two trajectories. In other words, assuming
that the test target Tj is at the t-th displacement; when computing the similarity between this
target and another target Ti, we consider only the first t displacements of the two trajectories
for the PCA calculation.

4.4.5 Prediction using Similarity Function

Once the similarities have been calculated using any of the methods presented (KDE, PCA,
or LCSS), at each time step, the similarity function behaves as a weighting parameter that
can be used to predict the future locations of target T

(t)
j as a weighted sum of the trajectory

of the previous targets. More precisely we have:

o
(t)
ji =

S(T
(t)
j ,Ti)∑

Tm∈T
S(T

(t)
j ,Tm)

, (4.32)

where o(t)
ji is the normalized similarity between the displacement of target Tj at time t and the

whole trajectory Ti ∈ T. Using this formulation, the future location of a target is a discrete
probability distribution over environment Ξ, where the probability of the target associated
with Tj being at each location q ∈ Ξ after s time steps from current time t is defined as:

P(t+s)
jq =

∑
Tm∈T

o
(t)
jm1(T(υ∗+s)

m ,q), (4.33)

where function 1(T
(υ∗+s)
m ,q) returns one if the target that generated Tm was at location q at

time υ∗ + s, and zero otherwise.

In order to predict the next locations of trajectory T
(t)
j , at each time step, among all of the

displacements T
(υ)
m of a sample trajectory Tm, the displacement which is most similar with
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Figure 4.6: Long term target trajectory prediction process.

the current displacement T
(t)
j of target Tj should be found. This most similar displacement

occurs at time step:

υ∗ = argmax
υ

S(T(υ)
m ,T

(t)
j ). (4.34)

The whole process of trajectory prediction and performance evaluation is shown for a simple
example in Fig. 4.6. As before, Tj is the test trajectory for which we want to predict future
locations, and we have the history of two reference trajectories T1 and T2. We will use the
reference trajectories for predicting the location of the test trajectory. Target Tj is currently
at the third time step, and we want to know its location after four time steps, s = 4.

First, the similarity between the last displacement of the test trajectory (T(3)
j ) and the refer-

ence trajectories is calculated. Let us assume that S(T
(3)
j ,T1) = 0.2, and that S(T

(3)
j ,T2) =

0.3. Therefore (using Eq. 4.32) we have o(3)
j1 = 0.4, and o

(3)
j2 = 0.6. Next, we use Eq. 4.34

to find the displacements in the reference trajectories that maximize similarity with the cur-
rent displacement of the test trajectory (T(υ∗)

1 , T
(υ∗)
2 ). A non-zero prediction probability is

assigned to the two reference trajectories, (P(7)
jq1

, P(7)
jq2

), which are used to predict the future

locations of the test trajectory (T(7)
j ).

To evaluate the performance, the distance between our prediction and the actual location of
the test trajectory is calculated (‖q1 − L

(7)
j ‖2,‖q2 − L

(7)
j ‖2). Having this, the performance of

our prediction would be E(7)
j = 0.4× ‖q1 − L

(7)
j ‖2 + 0.6× ‖q2 − L

(7)
j ‖2.
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4.5 Experiments

In this section we focus of evaluating the performance of the different trajectory prediction
methods presented in sections 4.3 and 4.4. For that purpose, three different experimental
settings are tested, one with simulated trajectories we have designed and two configurations
based on datasets of real targets tracked in 2D.

4.5.1 Simulated Dataset

In order to make the experiments for the trajectory prediction, we need an environment in
which the targets displace and make the trajectories. Next, we explain the environment and
the targets we simulated to perform the experiments.

4.5.1.1 Map

For the experiment we used a map of Université Laval campus, in Québec, Canada. The map
is a larger section of the map presented in section 3.5.2. The new map has 300 rows and 300
columns, with a resolution of one meter per dimension.

4.5.1.2 Targets

In our experiments each target is a simulation of a pedestrian walking on the campus. The
target enters the environment from one gate of a building, walks inside the environment and
exits from another gate (see Fig. 4.7). In this figure, the blue colour represents the buildings,
green represents the street and parkings, and red is the ground. The trajectory of each
target is generated based on the current location and the temporary goal locations defined for
each target. The temporary goal is generated based on the shortest path between the initial
gate and the final gate on the pedestrian path of the campus. Here, the pedestrian path is
represented as a graph with intersections on the path being the vertices of the graph and the
paths themselves being the edges. Each intersection on the shortest path between the two
gates can be a temporary goal for the target.

At each time step, the next location of a target is randomly chosen from a distribution which
itself is produced by the multiplication of two other distributions, namely the beta distribution
and the Gaussian distribution. More precisely, at each time step, a Gaussian distribution
is applied on the angle between the target’s location and its temporary goal and a beta
distribution is applied on the distance to determine the step size. The step size is multiplied
by the maximum step size υ, to get the step size at each time step. The multiplication
between these two distributions is normalized to sum up to one and then used to determine
the probability of each location in the environment to be selected as the next location of the
target. Beta distribution has two parameters α and β and the Gaussian distribution has the
parameters µ and σa. The values for trajectory generation parameters are summarized in
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Figure 4.7: There are eight gates on the campus map. Each gate is represented by a cyan
circle. Targets can enter from any of the eight gates, walk around the campus and exit the
environment through another gate. The trajectory of a sample target is also shown using the
white line. The pedestrian paths inside the campus are shown using the dashed black lines.
The target follows the path to move between gates.

Table 4.1. For our experiments we generated 1000 targets. Given that the maximum step size
υ is set to 5 for our experiments here, and assuming that pedestrians walk with the speed of
1.4 m/s, each time step should be roughly 3.5 seconds.

Table 4.1: The parameter values for the trajectory generation in simulated dataset.

Parameter Value Parameter Value

α 2 β 2
µ 0 σ2

a 125
υ 5

4.5.2 MIT Trajectory Dataset

The MIT Trajectory dataset [80] contains information about trajectories of 40 453 targets
moving in a parking lot. The information was gathered using a single camera for five days.

In most real datasets the time difference between consecutive displacements of trajectories
is not constant. This is also the case for the two real datasets (MIT and Train station) we
present here. In our experiments, we used only the trajectories for which the time difference
between consecutive displacements is less than 10 time steps. If the time difference is more
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Figure 4.8: MIT Trajectory dataset [80]. Trajectories were generated from real targets moving
in a parking lot within five days. A thousand of the 36 075 trajectories used for experiments
are shown in the image.

than 10 time steps, we split the trajectory into two trajectories, and treat each one as an
independent trajectory. The reason for this selection is that if the time difference is more than
10 time steps the two parts of the trajectory can diverge so much that it is not reasonable to
consider them as a single trajectory.

As the other criteria, we only select the trajectories whose length is at least 35 steps. The
reason is that in real datasets, there are some short trajectories which do not add useful
information for the prediction of other trajectories, and therefore we remove them from the
dataset.

Using the mentioned criteria we selected 36 075 among all the trajectories in the dataset.
The parking lot and 1000 of the chosen trajectories used for our experiments is presented in
Fig. 4.8.

4.5.3 Train Station Dataset

The Train Station dataset [95] contains the trajectories of 47 866 targets moving in the New
York Grand Central Station. The data comes from a 30 minutes video with resolution 480×720

pixels at 24 fps. Similarly to the parking lot dataset, only those trajectories who satisfied the
criteria of time difference between consecutive displacements were extracted and used for the
simulations resulting in a subset of 46 741 such trajectories. The train station and 1000 of
these trajectories are shown in Fig. 4.9.
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Figure 4.9: Train Station dataset [95]. The trajectories were generated from the targets
moving in the train station within 30 minutes. A thousand of the 46 741 trajectories used for
experiments are shown in the image.

Table 4.2: The parameter values for the short term trajectory prediction methods.

Parameter Value Parameter Value

η 0.8 σ2
p 1

4.6 Results

In this section we present the performance of different short term and long term prediction
methods over the three datasets mentioned in the previous section. The performance of
different methods is evaluated using the expected distance criteria defined in Eq. 4.1.

4.6.1 Short Term Methods

Here, we compare the performance of seven short term prediction methods, namely, constant,
average, exponential average, probabilistic exponential average, Kalman filter, unimodal, and
multimodal methods. The main parameters of the short term methods are the uncertainty
assigned to each displacement σ2

p, and the learning rate η. The value of these parameters are
summarized in Table 4.2.

The final results of application of each method for the three mentioned datasets are presented
in Table 4.3. As we can see the exponential average method produced the best results in
simulated and MIT datasets, while the constant method produced the best result in the Train
station dataset. Although in the Train station dataset, the results of the exponential average
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Table 4.3: Average error and standard deviation of error for different prediction methods.
Error values are calculated using Eq. 4.1, smaller values are better.

Dataset Simulated MIT Train Station

Constant Avg. err. 3.24m 1.75p 0.78p
Stdev. 1.1 1.3 0.5

Average Avg. err. 3.74m 2.16p 0.86p
Stdev. 1.3 1.7 0.1

Exponential average Avg. err. 2.94m 1.57p 0.81p
Stdev. 1.8 1.2 0.1

Probabilistic exponential avg. Avg. err. 3.68m 3.16p 2.61p
Stdev. 1.2 1.5 0.1

Unimodal Avg. err. 4.61m 6.4p 3.48p
Stdev. 2.5 4.5 0.8

Kalman Filter Avg. err. 3.93m 3.41p 2.67p
Stdev. 1.3 1.8 0.1

Mutimodal Avg. err. 4.31m 3.43p 2.77p
Stdev. 1.3 1.6 0.5

is competitive with that of the constant method.

In general non-probabilistic methods (constant, average and exponential average) produced
better results compared to the probabilistic methods (probabilistic exponential average, uni-
modal, Kalman filter, and multimodal). Looking at the results of predictions produced by
each method in Fig. 4.1, we observe that the predictions of non-probabilistic methods are
more concentrated than the probabilistic methods. Therefore, the reason for the superior per-
formance of these methods with respect to the expected distance metric could be related to the
centralization of the prediction. In other words, in the methods who produced more dispersed
predictions even if the actual displacement lies in the section which was given a weight by the
prediction method, the final result would be inferior of more concentrated methods, even if
the next displacement is not completely aligned with the prediction.

We will see later in chapter 6, that probabilistic methods produce better coverage over the
targets compared to non-probabilistic prediction methods. Therefore, we can conclude that
the expected distance criteria, is not a very informative to compare the performance of different
prediction methods once they are used in the context of temporal optimization in SNs.

4.6.2 Long Term Methods

The performance of the proposed Kernel Density Estimation (KDE) method is compared
with the two other mentioned methods (PCA and LCSS). The same set of experiments that
were used to test the performance of the short term methods were used to test the long term
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methods. The only difference between the two experiments is that for the short term methods,
the prediction horizon is one time step. For the long term methods, the prediction horizon
can be arbitrarily large, as the prediction relies on the trajectory of other targets. To evaluate
the performance of the mentioned long term methods, we performed two set of experiments
with different prediction horizons of (s = 5) and (s = 10) time steps.

The similarity based prediction method presented here is categorized as non-parametric method.
Therefore, the performance of the mentioned methods depend on the size of the history of
reference trajectories used for prediction. We performed some experiments and observed that
as the size of the history of reference trajectories goes beyond 1000 trajectories, the increase
in size does not significantly affect the performance of the prediction method (see Figs. 4.10,
4.11). Therefore, we keep the trajectory history as a sliding window with the size of 1000.
That means that at each time step, in order to predict the trajectory of a new target, only
the trajectories of the previous 1000 targets are used. In this manner, the prediction time for
each trajectory remains manageable for the large datasets (e.g. MIT and Train Station).
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Figure 4.10: Affect of the sliding window size on the performance of different prediction
methods over the MIT trajectory dataset.

The performances of the KDE, LCSS, and PCA prediction methods are reported in Table 4.4.
Each method has been run 30 times, where each run uses a different order for processing of the
trajectories. Therefore, for each run for KDE, LCSS, and PCA a different set of trajectories
have been used for the prediction of each trajectory. Reported results are average performances
over 30 runs. In this table, the average distance between the prediction made by each method
and the actual location of the target is reported (as defined by Eq. 4.1).
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Figure 4.11: Affect of the sliding window size on the performance of different prediction
methods over the Train station dataset.

It can be seen that the KDE method outperformed the LCSS and PCA methods considering
the error measure on all datasets and with all simulation settings. The reason for the strong
performance of the KDE method is twofold. First, the KDE method is the only method which
considers both the location and the displacement in the similarity function. Therefore, the
inclusion of the displacement in the similarity function can significantly change the behaviour
of the similarity function in different scenarios. Second, KDE is the only probabilistic method
among the three. The probabilistic foundations of the method, helps it to make smoother
decisions over the similarity between two trajectories. For example, the parameters of the
LCSS method (ε, δ) takes binary decisions for matching the subparts of two trajectories.
Meaning that if the distance between two parts are less than the mentioned parameter values
the two parts are similar and not otherwise. On the other hand, the similarity measure defined
by the probability density function of the KDE method changes more smoothly from one to
zero.

Another explanation is that KDE has a mechanism to deal with missing data points by taking
into account the uncertainty (i.e., variance) over the estimated location of the target, while
the two other methods rely only in the interpolated positions. That could be the reason that
the performance of different methods is closer on the simulated dataset (in which there is no
unobserved trajectory) compared to the two other real datasets where there are unobserved
points.

In all settings, increasing the prediction horizon from (s = 5) to (s = 10) has increased the
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Table 4.4: Average error and standard deviation of error for different prediction methods.
Error values are calculated using Eq. 4.1, smaller values are better. Bold values represent
statistically significant results according to the Wilcoxon signed-rank test (p-value=0.05) when
compared pairwise with other methods.

Dataset Simulated MIT Train Station
Prediction horizon = 5

KDE Avg. 11.68m 10.39p 12.45p
Stdev. 0.2 0.6 0.4

LCSS Avg. 35.4m 29.84p 36.65p
Stdev. 0.3 0.8 0.7

PCA Avg. 23.42m 39.56p 54.29p
Stdev. 0.5 0.6 0.6

Prediction horizon = 10

KDE Avg. 33.36m 22.98p 19.65p
Stdev. 0.6 0.6 0.5

LCSS Avg. 72.43m 43.57p 39.58p
Stdev. 1.0 0.9 0.4

PCA Avg. 50.18m 49.52p 58.53p
Stdev. 0.9 0.5 0.7

expected error. This is reasonable given that all methods predict further into the future with
less certainty. The interesting point is that for each dataset, increasing the prediction time
step has roughly the same effect over the different methods (i.e., the increase of the expected
error is comparable for different methods over one dataset). This suggests that the properties
of the dataset (i.e. trajectories of the dataset) has a more significant impact over long term
prediction accuracy than the prediction methods. For example, the simulated dataset has the
largest drop in performance between the short (s = 5) and long (s = 10) prediction time
steps. This could be related to the fact that the targets change direction more frequently in
the simulated dataset than the other two datasets. In this dataset, targets share part of their
trajectory with many other targets, unlike the other two datasets, where each target usually
keeps the initial direction of its movement.

We can also observe that in the simulated dataset the PCA method outperformed the LCSS
method, while in the other two datasets the performance of the LCSS method was superior.
Therefore, it is clear that the characteristics of each dataset has an important effect on the
final performance of each method.

4.7 Conclusion

In this chapter we have presented different methods to predict the future location of a moving
object. The proposed methods are categorized under short term and long term methods. The
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main difference between the two groups is that in the short term methods the only the previous
displacements of each targets are used to predict its future location while in the long term
prediction methods, the history of other targets who traversed the same environment are also
used in the prediction process.

For the short term prediction methods we proposed two probabilistic methods namely the
probabilistic exponential average and the multimodal methods. Besides, we used the maximum
likelihood to optimize the parameters of the unimodal prediction method. The strong point
of the multimodal approach is its capability to handle several assumptions at the same time
(e.g. zig-zag movement) and to adapt to non-Gaussian movement models.

For long term prediction methods, we have presented a model to measure similarity between
trajectories of targets moving inside an environment using the kernel density estimation. Be-
sides, we presented a mechanism to adapt the bandwidth parameter of the kernel density es-
timation for the problem of missing observations which is a common problem in real datasets.
The strong performance of the method is related to its probabilistic nature and consideration
of the displacement in the similarity function.

Under each category, experiments were conducted on one simulated and two real datasets.
The proposed models were compared with other commonly used methods, using the expected
distance as the performance measure. In the long term prediction methods, the KDE method
outperformed both of the other methods over all tested datasets and simulation settings. In the
case of short term methods, the results were inferior to non-probabilistic prediction methods.
As we will see later in chapter 6, the probabilistic short term prediction methods outperform
the non-probabilistic methods when used to support sensor control.
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Chapter 5

Sensor Control

Temporal optimization (as we consider in this thesis) consists of two main problems, the
trajectory prediction and the sensor control. In trajectory prediction (which we covered in
chapter 4) the goal is to predict the future location of moving targets. In this chapter we focus
on the sensor control problem, for which the goal is to modify the parameters (e.g. pan, tilt,
zoom) of the sensors, based on the prediction given by the trajectory prediction algorithm,
so that the final network has a maximal coverage over the targets as they move within the
environment. Coverage degree over the targets and the computation time of the algorithm are
the two main performance criteria which should be considered for designing a sensor control
algorithm.

In section 5.1 we cover other methods proposed in the literature for the sensor control problem.
In section 5.2 the problem is formulated, and in section 5.3 the Greedy Sensor-wise Coverage
Optimization (GSCO) algorithm is proposed for the problem. In section 5.4, we perform some
experiments and compare the performance of the GSCO algorithm with another well-known
optimization algorithm. Finally, section 5.5 concludes the chapter.

5.1 Sensor Control

Once the future location of the targets is predicted, it is the role of the sensor control algorithm
to calculate the best parameters for each of the sensors to have a maximum coverage over the
targets. The sensor control problem is closely related to the placement problem in SNs with
a weighted coverage goal (as mentioned in chapter 3).

There are two differences between the placement problem and the sensor control algorithm.
The main difference is the time requirements of the two algorithms. In placement problem,
the running time of the algorithm can be arbitrarily long, as the placement is a one time
process. In other words, once the best location and direction for sensors is determined there
is no need to run the algorithm again, therefore the running time of the algorithm is less of
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a critical issue. On the other hand, the frequency of the run of sensor control algorithm is
much higher. Besides, the system is online, and the sensor control algorithm should return
the results before the time step expires, otherwise the results are of little use. Therefore, in
sensor control algorithms, the computation time becomes an important issue.

The second difference is that, in placement problem, the goal is to find the best location
and direction for the sensors, so that the final configuration has maximum coverage over the
environment. On the other hand, in the sensor control problem, the location of the sensors
are fixed, but their directions are variable. Therefore, sensor control can be viewed as spatial
coverage optimization problem for the sensors with fixed location, but variable directions over
a weighted environment.

The same problem was discussed in the literature by different authors. For example, Cai et
al. [18] proposed the application of the cover set algorithm to the spatial optimization of the
directional sensors with fixed locations. In each iteration of the greedy method they proposed
for the problem, the target location that can be covered by the minimum number of sensor
directions is selected and added to the solution set. Authors also proposed a distributed version
of the algorithm for large scale applications. In the distributed approach each sensor has only
access to coverage information of its neighbours. The method proposed by the authors does
not work with probabilistic prediction for location of the targets, while in many applications,
the trajectory prediction produces different certainties for the future location of a target.

Similarly, Ai et al. proposed in [4] the maximum coverage by minimum sensors method which
follows the same principles as the one proposed in [18]. The proposed centralized greedy
algorithm iteratively selects a sensor and calculates the number of targets which could change
state from uncovered to covered using the sensor. Next, the direction which maximizes the
coverage over uncovered targets is selected. The iteration continues until all the targets are
covered or all the sensors have been selected. The main problem with the proposed approach is
that the coverage of sensors over the targets is binary, therefore, the algorithm is not applicable
if the sensor has partial coverage over the target.

In [23], Chen et al. defined a weight for each of the targets and each direction the sensor can
take, which are called the target weight and orientation weight respectively. The target weight
is calculated based on the number of sensors that can cover a target. Orientation weights are
defined based on the total number of targets in the environment, the number of targets the
orientation can cover, and the target weight for each of the targets in the coverage range.
Wang et al. [79] proposed a priority based target coverage algorithm, where the importance of
targets is different for the system. A genetic algorithm was applied on the direction of sensors
to find the direction which best covers all the targets.

The main drawback of both algorithms is that they do not take into consideration any limi-
tation on the movement speed of the sensors. In other words, they assume that sensors move
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from any direction to another direction in one time step. The other drawback of the proposed
methods is that they only consider one variable parameter per sensor, and therefore iterate
over all possible directions of the sensors. This approach is not reasonable when a sensor
has two or three variable parameters, as the computation needed to iterate over all possible
combinations is cumbersome.

5.1.1 Proposed Method

In this chapter, we introduce the Greedy Sensor-wise Coverage Optimization (GSCO) algo-
rithm. The algorithm is specifically designed to find the best direction for sensors, to cover
prediction of targets’ location in the environment. The input to the algorithm handles different
degrees of certainty for target locations, works with probabilistic coverage model of sensors,
and finally accepts limitation for moving speed of sensors. Besides the computational need of
the algorithm is very reasonable.

5.2 Sensor Control Problem

In temporal optimization, the goal is to cover a number of targets moving in the environment
using a SN. From here on, we focus on Pan-Tilt-Zoom cameras (PTZ) (as defined in Chapter
2) as our sensors. The pan, tilt, and zoom properties of the sensors are variable through
time, and this provides the capability for the sensors to change their coverage direction and
to provide a maximal coverage over the moving targets. To provide this coverage, first the
targets should be detected in the environment, their trajectories should be modelled and finally
the parameters of the sensors should be modified so that the targets remain under coverage
while they are present in the environment. In general we focus on two parts of the mentioned
problem. In the previous chapter we focused on the trajectory prediction problem and in this
chapter the focus is on the sensor control problem.

Assume that we have a sensor network N = {si|i = 1, . . . , n} consisting of n sensors si

with the pan, tilt, and zoom control parameters. We extend the previous sensors model
presented in Chapter 2, in the way that each sensor is also attributed with a time parameters
t = {1, 2, . . . ,M}, where M is the total simulation time. The time parameter was added,
because in temporal optimization (as its name suggests), the state of the sensor is changing
over time, and the time parameter models this effect. In this setting, the state of each sensor
at time t is defined as s

(t)
i = (pi, θ

(t)
i , ξ

(t)
i , f

(t)
i ). As it can be seen, the location of the sensor is

fixed through time (pi), but the pan, tilt and zoom parameters are variable (θ(t)
i , ξ

(t)
i , f

(t)
i ).

The goal of the network N is to optimally cover J moving targets T = {Tj |j = 1, 2, . . . , J}.
Each target Tj is first detected at time tj in the environment, then it makes nj displacements,
until it exits the environment at time tj + nj . Therefore the trajectory of each target can be
represented as: Tj = {T(t)

j |t = tj , . . . , tj + nj}.
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In the sensor control problem, the goal is to find the configuration for the variable parameters
of the sensors (e.g. pan, tilt, and zoom), to have maximal coverage over the moving targets
in the environment. Sensor control phase is based on the result of the trajectory prediction,
which is given to this phase as a prediction map R(t) (as defined in section 4.2).

The commands that the network applies to sensor si through time is defined by Πi = {π(t)
i |t =

1, . . . ,M}, where π(t)
i = (∆θ,∆ξ,∆f ) is the command given to sensor si at time t for updating

its pan, tilt, and zoom values. The set of commands for the n sensors is summarized as
� = {Πi|i = 1, . . . , n}. Each sensor also has a set of characteristic parameters which define
the maximum and minimum value of each control parameters, along with their associated
speed of change:

〈(θmin, θmax, vθ), (ξmin, ξmax, vξ), (fmin, fmax, vf )〉. (5.1)

It is clear that the given command at each time step should satisfy each sensor’s movement
constraints. More precisely we have as constraints:

|∆θ| ≤ vθ, θmin ≤ θ(t)
i + ∆θ︸ ︷︷ ︸
θ
(t+1)
i

≤ θmax, (5.2)

|∆ξ| ≤ vξ, ξmin ≤ ξ(t)
i + ∆ξ︸ ︷︷ ︸
ξ
(t+1)
i

≤ ξmax, (5.3)

|∆f | ≤ vf , fmin ≤ f (t)
i + ∆f︸ ︷︷ ︸
f
(t+1)
i

≤ fmax. (5.4)

where the boundaries for each sensor was defined in Eq. 5.1.

We define the following objective function for a given command set as the coverage it provides
for all of the targets through time:

O(�) =

M∑
t=1

∑
q∈Ξ

r
(t)
q Cl(N,q), (5.5)

and the goal is to find a command set �∗ which maximizes this objective function:

�∗ = argmax
�

O(�). (5.6)

Notice in this formula, the trajectory prediction step defines the weights assigned to different
locations in the environment through the weight parameter r(t)

q , and the sensor control step
finds the command set �∗ based on that prediction. Therefore, both the prediction and
control steps, affect the result of objective function. The defined objective function provides
an estimate on the actual coverage that the network provides over the targets. The actual
coverage is calculated using the following formula:
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Cg(�) =
1

MJ |Ξ|

J∑
j=1

M∑
t=1

∑
q∈Ξ

1(L
(t)
j ,q) Cl(N,q), (5.7)

where the function 1(L
(t)
j ,q) returns one if target Tj is at location q at time t, and zero

otherwise. The formula provides the average coverage of the network over all the targets
during the whole simulation time.

5.3 Greedy Sensor-wise Coverage Optimization (GSCO)

The result of the prediction step is given to the sensor control step as a prediction map R(t).
The value of each location within the prediction map defines the importance of that location
for the coverage task. There are several points which should be considered once designing
the sensor control algorithm. First, the prediction map contains probabilities and not binary
values as the predicted location of the targets. Therefore, the algorithm should be able to
handle probabilistic predictions. Second, the sensors themselves have probabilistic coverage
over the targets and it should be taken into consideration. Third, the movement of sensors is
limited for each time step. These limitations put a boundary on the sensor’s parameter values
for the next time step. Finally, each sensor has several variable parameters and therefore a
simple iteration over all possible combination of values is usually not possible.

The problem has online time requirements, therefore we are aiming to have an algorithm which
has linear complexity with respect to number of sensors in the environment. So that we can
get some guarantees on the running time of the algorithm in real settings.

Considering all the mentioned criteria, we propose the GSCO algorithm. The main idea behind
the GSCO algorithm is that target locations which have higher prediction value, and at the
same time, can be covered by fewer number of sensors should be given higher priority in the
coverage task. In other words, in the GSCO algorithm, at each time step, the prediction map
R(t) is divided by the accessible coverage map Ψ

(t)
q (which defines the number of sensors that

can cover any location in the environment), to define a weight map which determines the
importance of each location for the coverage task. This weight map is later used to iteratively
optimize the direction of all sensors in the environment.

The algorithm is shown in Fig. 5.1. Different steps of the algorithm are explained in more
details below:

• Calculate ψ(t)
i : For each sensor calculate the accessible coverage map ψ

(t)
i . This map

holds the locations in the environment that the sensor si can effectively cover in the fu-
ture. For its calculation, we take into consideration the current parameters (θ

(t)
i , ξ

(t)
i , f

(t)
i ),

and the maximum speed (vθ, vξ, vf ) of each sensor.
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Given a sensor network N , the prediction map R(t), and the environment Ξ as
the input:
while N 6= ∅ do

for all si ∈ N do
Calculate ψi
Ψq = Ψq + ψiq, ∀q ∈ Ξ

end for
Uq =

R(t)
q

Ψq
, ∀q ∈ Ξ

sj = Rand(N)
Optimize parameters of sj using U.
for all q ∈ Ξ do
r

(t)
q = r

(t)
q − (r

(t)
q . C(s

(t)
j ,q))

end for
N = N \ sj

end while

Figure 5.1: The proposed GSCO algorithm for sensor control.

Figure 5.2: Assuming that a sensor is positioned at (50,50) heading upward, the dark shaded
area shows the current coverage of the sensor and the light shaded area shows the accessible
coverage map (ψ(t)

i ) of the sensor in the next time step.

The other parameter used for the calculation of ψ(t)
i was a threshold parameter φ. This

threshold was defined because (theoretically based on Eq. 2.9), the coverage of a sensor
over all the locations from which it is visible is non-zero, while the coverage over most
of these locations is close to zero. Therefore, by using the φ threshold, we only consider
points for which the sensor can significantly change the coverage of the points it is
covering. For an example of ψ(t)

i , look at Fig. 5.2, where we have shown the current
coverage of a sensor and its accessible coverage map. More precisely, we have:

ψ
(t)
i = {q ∈ Ξ | C(s

(t)
i ,q) > φ}. (5.8)
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• Ψ
(t)
q = Ψ

(t)
q + ψ

(t)
iq : Using ψ

(t)
i , calculate the global accessible coverage map Ψ(t) for the

environment. Each cell q in Ψ(t) has a value Ψ
(t)
q representing the effective accessible

coverage of all sensors over this location. The Ψ(t) value for each location shows the
potential of that location to be covered by different sensors. Notice that the value of
different locations in the possible coverage map are real values (unlike previous work
(e.g. as in [23, 79]) in which the values are integers). This is a natural consequence of
the probabilistic coverage model we used for our sensors.

• U
(t)
q =

R
(t)
q

Ψ
(t)
q

: Create a weight map U(t). In the new weight map, the weight of the

locations which can be covered by more than one sensor is proportionally reduced. This
is the core of the algorithm, which assigns more weight to location that can be covered
by less number of sensors.

• sj = Rand(N): Randomly choose a sensor sj from the sensors whose direction haven’t
been optimized yet.

• Optimize parameters of sj using U(t): The optimization is done using random sampling.
Random sampling was shown to be more effective search method compared to other
simple methods such as grid search [14], therefore we chose it as our optimization al-
gorithm. For that purpose ω samples are randomly chosen from the range of possible
pan, tilt and zoom factors. The parameter set which achieves the best final coverage is
chosen as the final direction of the sensor. The important point is that the evaluation
for different parameter sets for a sensor is based on the weight map U(t).

• r
(t)
q = r

(t)
q − (r

(t)
q . C(s

(t)
j ,q)): Once the direction and zoom level of the sensor sj is

found, its coverage is proportionally decreased from the prediction map. For example,
assume that location q has the value of (r(t)

q = 0.8) in the prediction map. Also assume
that the direction of sensor sj is fixed and the coverage of the sensor over the location
is C(s

(t)
j ,q) = 0.7. Having this, the new value of the location in the prediction map

becomes: r(t)
q = 0.8− 0.8× 0.7 = 0.24.

• N = N \ sj : Remove the sensor sj (for which the direction has been optimized) from
the set of sensors.

The iteration continues until the parameters of all the sensors is determined.

5.4 Experiments and Results

In the experimental section we compare the performance of the proposed GSCO algorithm
with the CMA-ES method. Notice we could not compare our method with other methods
mentioned in section 5.1, given that none of the mentioned algorithms used a probabilistic
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Table 5.1: The parameter values for a realistic model of a PTZ camera.

Parameter Value Parameter Value
Lh(m) 5.37× 10−3 Lv(m) 4.04× 10−3

αdmax(m) 50 αdmin(m) 25
fmin(m) 4.7× 10−3 fmax(m) 9.4× 10−3

βd,βp and βt 1 τ(m) 1
ξmin −90o ξmax 90o

vθ ±30o/t vξ ±5o/t

vf (m/t) ±1.33× 10−3 θmax 360o

θmin 0o

Figure 5.3: The location of sensors is represented by the yellow squares on the map.

coverage model for sensors, and therefore our sensor coverage model is not applicable in those
algorithms.

To perform the experiments, we used the simulated dataset explained in section 4.5.1. Notice
that the dataset lacks the information for the sensors. The position of the sensors is presented
in Fig. 5.3. In this figure the sensor locations are represented by the yellow squares.

Sensors placed in the environment are the Pan-Tilt-Zoom cameras. The specification of the
cameras are explained in section 2.5. For a reasonable model of a camera, we propose to use
the parameters shown in Table 5.1.

5.4.1 Sensor Control

We use the probabilistic exponential average method (section 4.3.4) as the prediction method
to determine the future location of targets. Then, the mentioned two optimization methods
find the best commands for the sensors. For the parameters of the CMA-ES method, we used
the values suggested by the authors of the method [36]. The threshold parameter of the GSCO
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Figure 5.4: Coverage percentage for experiments with 50 targets using CMA-ES and GSCO
optimization methods.

algorithm (φ) was set to 0.5 for the experiments presented here. The value was chosen by trial
and error, and the algorithm appears quite robust to the choice of this parameter.

To test different scenarios, we produced simulations with different density of targets. There-
fore, at each time step, a number of targets equal to the ratio between the total number of
targets to the simulation time enter the environment. For the experiments, we created simula-
tions with 50, 100, and 150 targets in the map, with a total simulation time of M = 200 time
steps. We produced 30 different simulation settings with each parameter set, and performed
the experiments on them. The performance measure was previously defined (Eq. 5.7) as the
average coverage the network provides over all the targets through the whole simulation time.

One of the critical parameters for the CMA-ES algorithm is the maximum number of iterations
that the algorithm is allowed to run for. This parameter directly affects the final performance
and the running time of the algorithm. As it is a critical measure, we tested CMA-ES method
with different values for the maximum number of iterations, ranging from 1 to 100. More
precisely, the iteration numbers are [1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100].

The same argument applies to the number of random samples ω taken by the GSCO al-
gorithm. We performed several experiments, in which the ω parameter has the range of
[1, 10, 50, 100, 200, 300, 400]. The results are presented in Figs. 5.4, 5.5, and 5.6. Each variance
bar in the figures represents the result of the CMA-ES algorithm with one specific maximum
number of iterations or the GSCO algorithm with a specific ω parameter. In these experi-
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Figure 5.5: Coverage percentage for experiments with 100 targets using CMA-ES and GSCO
optimization methods.

Figure 5.6: Coverage percentage for experiments with 150 targets using CMA-ES and GSCO
optimization methods.
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ments, we are looking for small running times and large coverages. Therefore, better algorithm
should produce results closer to the top-left corner of the figure.

We observe that in all the experiments, the GSCO algorithm converged faster than the CMA-
ES algorithm. This is an important aspect as the convergence time is crucial for sensor
control algorithms, given that the results should be produced in an online fashion. This is
particularly important in the current case where the prediction is done using a short term
prediction method, because the system needs to update the direction of the sensors at each
time step, and therefore computation time becomes even more important.

Notice the runtimes presented here measure the overall simulation time (i.e., M = 200 time
steps). Therefore, the overall time should be divided by the total simulation time to get the
computation time of the algorithm for each time step.

In terms of coverage performance, we observe that in the case of 50 targets, the GSCO algo-
rithm performed better than the CMA-ES algorithm, while for the 100 and 150 targets cases,
the performance of the CMA-ES was slightly better. Although in all the cases the perfor-
mance difference between the two algorithms is less than 1%, and not statistically significant
according to a Wilcoxon signed-rank test (p-value=0.05).

We also observe that as the number of targets increases the overall coverage percentage de-
creases, which is also reasonable, as covering more targets is a more difficult task. The point
is that the decrease in the performance of the GSCO algorithm is more significant than the
CMA-ES algorithm. The reason could be that, the CMA-ES algorithm solves the sensor con-
trol problem as a general optimization algorithm and therefore the number of targets has less
important effect on the algorithm, while the performance of the GSCO algorithm is directly
related to the heuristic used to design the algorithm. It could be that the heuristic is more
applicable to less crowded scenes with lower number of targets.

We can argue that GSCO algorithm has a demonstrated advantage over CMA-ES for the
problem of sensor control. Indeed, the final result of the two algorithms in terms of the
coverage is similar while the GSCO algorithm converges faster and produces the result in
less time, which is important for online control systems. Therefore, the GSCO algorithm is
suitable for the systems which have real-time constraints.

5.5 Conclusion

In this chapter we have presented the GSCO algorithm to optimize the parameters of the
sensors in the temporal optimization problem. The proposed algorithm has several advantages
compared to other algorithms proposed in the literature, such as the capability to work with
the probabilistic sensing model for sensors, to handle different certainties for target locations
and to model the limitation of sensor movements.
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We also compared the proposed method with a general purpose optimization algorithm (CMA-
ES), and observed that our algorithm produces the results in a much shorter time in all the
cases considered. Besides, the results of our algorithm was superior to that of the CMA-ES
algorithm in simulations with smaller number of targets and competitive in simulations with
more targets. Therefore the GSCO algorithm can satisfy the real-time requirements of systems
without compromising on the performance in terms of the overall coverage of the network.
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Chapter 6

Experiments with the Integrated
System

In the previous chapters, we have presented several methods on how to place sensors in an
environment (in chapter 3), how to predict the location of the targets moving in that environ-
ment (chapter 4) and finally how to control sensors to better cover the moving targets (chapter
5). All these methods are based on the probabilistic coverage model we proposed for sensors
in chapter 2. In this chapter, we are integrating all those parts into a complete system which
first places the sensors in the environment, and then moves the direction of sensors according
to the predictions made over the movement of the targets.

For the rest of the chapter, in section 6.1 we introduce the new dataset we used for our
experiments, section 6.2 covers the placement of the sensors in the environment, section 6.3
presents the performance of different trajectory prediction methods we presented, namely, the
short term, the long term and the combination of the two. All the experiments are done
using the sensor control algorithm we proposed in chapter 5. Finally, section 6.5 concludes
the chapter.

6.1 Dataset

For the experiments we use a new simulated dataset that we have not used in our previous
experiments. The simulated dataset uses the map of part of the Vieux-Québec district in
Quebec City, Canada. The map has 200 rows and 250 columns with a resolution of one meter
per dimension. The elevation map for the area is shown in Fig. 6.1. From the figure, we can
distinguish the buildings which have blue colour from the ground level which is red.

In the new dataset, targets represent the pedestrians walking between buildings on the map.
For the experiments, we added the information of the gates and the pedestrian paths on the
map (see Fig. 6.2). In this map, the cyan circles represent the gates of the buildings and
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Figure 6.1: The elevation map of the Vieux-Québec area used for experiments.

Figure 6.2: The gates and pedestrian path information for the Vieux-Québec map.

the dashed black lines are the pedestrian paths. The trajectory of the targets were generated
using the methodology presented in section 4.5.1.2.

The model used for the sensors is the PTZ camera model we proposed in section 2.5. The
parameter values used for the model were already given in Table 5.1. We have fixed the
number of cameras to 10 for this map.
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6.2 Spatial Optimization

The first part of the experiment requires that the location of the sensors be optimized for
the environment. Different spatial optimization methods were explained in chapter 3. We
observed that for smaller number of sensors, the CMA-ES method performed better than the
GD method. Therefore, the location of the sensors in the experiments were optimized using
the CMA-ES algorithm.

Notice that the optimization algorithm we used here is slightly different from the one explained
in chapter 3. Before, sensors had the three parameters of location, pan, and tilt angles. Here,
the sensors are the PTZ cameras, therefore, each sensor has an additional parameter of the
focal length. We add the new parameter to the list of parameters and perform the opti-
mization as before. More precisely, in the new experiment, each sensor has the parameters
si = (pi, θi, ξi, fi), i = 1, 2, . . . , 10, with pi = (xi, yi). Also notice that the variable param-
eters do not have a time parameter attributed to them, as we are currently in the spatial
optimization phase, which is a one time process.

We follow the weighted coverage model for the experiments. Meaning some parts of the
environment could have higher weight than others. As the goal of the system is to cover
moving targets, we can use the history of previous targets displacements as the weight map.
For that purpose, a weight map was created by adding the trajectory of 1000 targets who have
traversed the environment. The location of targets in the trajectories should be summed over
each other so that locations which were occupied by more targets get more weight in the final
weight map. The weight map is shown in Fig. 6.3. In the figure, locations with lighter colour
has higher weight.

The final location of the sensors is shown in Fig. 6.4. The overall coverage of the network
over the weight map is 67%. In this figure we observe that the optimization algorithm put
more sensors in the area where there was higher weight which is reasonable. In other words,
the central, top and bottom corridors were completely covered by the sensors, while the right
corridor, which has a smaller weight is not completely covered. In the next section, we use
the location of sensors optimized in this section to perform temporal optimization and cover
the targets moving in the environment.

6.3 Trajectory Prediction

In the chapter 4, we mentioned two categories of trajectory prediction methods, namely the
short term and long term prediction methods, and we mentioned several methods under each
category. In that chapter, we compared the performance of different methods using the ex-
pected distance measure (Eq. 4.1). In this section, we do the comparison, in the context of
the temporal optimization. Meaning the coverage that each method can provide over moving
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Figure 6.3: The weight map used for the spatial optimization.

Figure 6.4: Sensor locations optimized by the CMA-ES method.

targets in the environment (Eq. 5.7).

The experiments are done over the map presented in section 6.1. For that purpose different
datasets with different ratios between the number of targets and simulation time was created.
More precisely, we have three set of experiments each with 30 set of random target trajectories.
The number of targets in each set is 20, 50 and 80 targets, and the total simulation time in
all the cases is 200 time steps.

For the sensor control algorithm, we use the GSCO algorithm explained in chapter 5. As
we saw before, the GSCO algorithm has competitive performance in general compared to
the CMA-ES algorithm, while the computation time is much smaller. In the experiments
presented here the number of targets is generally small compared to experiments of chapter
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Table 6.1: Coverage percentage of the targets with various numbers of targets for the short
term prediction methods. For each scenario, 30 sets of random paths were generated, with
average coverage of the network, and the standard deviation reported.

No. of sensors 10 10 10
No. of targets 20 50 80
Simulation time 200 200 200

Constant
Avg. cov. 78.45% 78.99% 77.44%
Stdev. 4.0 3.5 3.2

Average
Avg. cov. 75.94% 78.07% 76.13%
Stdev. 4.9 2.8 2.5

Exponential average
Avg. cov. 76.04% 77.44% 76.70%
Stdev. 4.4 3.5 3.1

Unimodal
Avg. cov. 82.01% 81.11% 79.55%
Stdev. 4.1 2.9 2.2

Kalman filter
Avg. cov. 82.28% 81.90% 79.40%
Stdev. 3.7 2.6 2.6

Probabilistic exponential avg.
Avg. cov. 82.26% 81.60% 79.57%
Stdev. 4.3 2.5 2.5

Multimodal
Avg. cov. 82.88% 82.10% 79.71%
Stdev. 4.5 2.9 2.4

Fixed sensors
Avg. cov. 66.35% 67.47% 66.69%
Stdev. 7.6 5.5 3.4

5, and we observed that the GSCO algorithm outperforms the CMA-ES algorithm with small
number of targets. Therefore, in all the experiments presented here, the performance of GSCO
should be superior to that of CMA-ES.

The only parameter of the GSCO algorithm is the number of random samples, ω, generated to
optimize the direction of each sensor, which we set the value to 200. The reason is that, in the
experiments of previous chapter, we observe that the performance of the GSCO algorithm did
not change significantly when the number of random samples generated was increased from
200 to 400.

6.3.1 Short Term Prediction Methods

In this section, we compare the performance of the seven different short term prediction
methods explained in section 4.3, namely, constant, average, exponential average, probabilistic
exponential average, multimodal, Kalman filter, and unimodal. Besides, we have performed
another set of experiments, with the fixed (as in Fig. 6.4) direction for the sensors. The results
of the fixed (non-adaptive) setting works as a baseline result to evaluate the effectiveness of
the temporal optimization approach in general. The variable parameters of the methods is
the same as before (Table 4.2).
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The final results of the experiments are presented in Table 6.1. For all the results presented in
this chapter the average coverage of the network over the moving targets (Eq. 5.7) was used
as a measure of performance. Looking at the results, we observe three levels of performance,
meaning that there is statistical performance difference between different levels but not within
each level. The lowest level is the fixed sensors. As expected the non-adaptable sensor config-
urations provide lowest coverage level over the targets. Therefore, we can conclude that usage
of the temporal optimization with adaptive sensors can improve the coverage of the final net-
work. This is an important point, as it shows the effectiveness of the temporal optimization
methods in improving the overall coverage of the network over the moving targets.

The second level contains the non probabilistic prediction methods, namely, the constant,
average, and exponential average methods. The interesting observation is that the constant
method produced the best results among the tested non probabilistic prediction methods.
Although one should mention that the difference is non statistically significant.

The third level consists of the probabilistic prediction methods, which produced the best re-
sults. Among the four prediction methods, they all produced competitive results over all
simulation settings. We observe that the results of the multimodal approach is slightly better
than the three other methods. The multimodal and probabilistic exponential avg. and uni-
modal methods produced very similar results on the simulations with 80 targets, while the
performance of the multimodal approach was slightly better in the simulations with 20 and
50 targets.

In chapter 4, we observed that the performance of the probabilistic methods was inferior
to that of the non probabilistic methods (with respect to the expected distance measure),
while here the probabilistic approaches have a superior performance compared to the other
three methods. Therefore, the results of the expected distance measure cannot be directly
used to measure the performance of different methods once used in the context of temporal
optimization.

The weak point of the unimodal and probabilistic exponential avg. approaches concerns the
direction changes, as it take some time for both methods to modify their prediction and adjust
to new directions. On the other hand, the direction change of the Kalman Filter method is
extremely fast, as this method basically uses the latest displacement for prediction. Therefore,
the weakness of the Kalman filter method is the lack of memory.

The multimodal method makes a good balance between the two requirement, as the prediction
in this method gets updated by the change of direction, and at the same time, the method keeps
some of the history of the recent displacements, and therefore is not completely dependant on
the latest movement.

The running time for all different methods was roughly 130 minutes. With respect to the
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computation time, there is not a significant difference between different prediction methods.
The reason is that, the total simulation time of the algorithms is almost completely due to the
computations of the coverage of the network over the targets, and the sensor control method
(GSCO). In other words, in all cases, the trajectory prediction methods have a negligible effect
on the total simulation time.

6.3.2 Long Term Prediction Methods

The same set of experiments that were used to test the performance of the short term methods,
were used to test the long term methods (KDE, LCSS, and PCA as explained in section 4.4).
The first difference between the two experiments is that for the short term methods, the
prediction step is one time step. On the other hand, for the long term methods, the prediction
step can be arbitrarily large, as the prediction relies on the trajectory of other targets. To
evaluate the performance of the mentioned methods, we performed two set of experiments
with different prediction steps of (s = 5) and (s = 10) time steps. The total simulation time is
200 time steps, which means that the trajectory prediction and the sensor control algorithms
are performed 40 and 20 times for each case, respectively.

The other difference is that the long term methods require to have access to a dataset of
previous trajectories. Notice that the number of trajectories in our test sets is limited (20 to
80), therefore we cannot use the previous trajectories in the same set to predict the trajectory
of a new target (the same way we implemented in the previous chapter). Thus, we need an
extra dataset for the prediction of trajectories. We used the dataset of 1000 trajectories (which
we previously used in the spatial optimization phase) for that purpose.

The results of the experiments are presented in Table 6.2. It can be seen that the KDE method
outperformed the LCSS and PCA methods over all the simulations with the prediction step of
five. When the prediction step equals ten there is less difference between the performance of
the three methods. The reason could be that as the prediction step increases, the prediction
process becomes more difficult, and the difference between the prediction methods would be
less significant. In general, for all methods, the results are better when the prediction step
equals five compared to ten.

The computational time is linearly related to the prediction step. This is also reasonable,
as smaller prediction steps require more trajectory prediction and sensor control. The KDE
method is more computationally expensive compared to the other two methods.

From the other perspective, the computational time increases with the number of targets in
the environment. The reason is that in long term prediction methods, the trajectory prediction
is a costly computation (unlike short term methods), because the trajectory of the new target
should be compared with all the trajectories in the dataset. While in the short term methods,
the prediction step is rather fast, and the overall computational time is related to the coverage
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Table 6.2: Coverage percentage of the targets with various numbers of targets for the global
prediction methods. For each scenario, 30 sets of random paths were generated, with average
coverage of the network, standard deviation, and CPU time.

No. of sensors 10 10 10
No. of targets 20 50 80
Simulation time 200 200 200

Prediction time = 5

KDE
Avg. cov. 73.51% 73.66% 72.98%
Stdev. 5.2 2.3 2.7

CPU time 28m 33m 38m

LCSS
Avg. cov. 68.54% 70.05% 69.07%
Stdev. 4.6 2.5 2.5

CPU time 10m 17m 25m

PCA
Avg. cov. 70.22% 70.56% 70.21%
Stdev. 5.4 2.9 2.7

CPU time 10m 18m 25m
Prediction time = 10

KDE
Avg. cov. 66.26% 68.59% 68.51%
Stdev. 5.7 2.8 2.4

CPU time 10m 16m 17m

LCSS
Avg. cov. 65.46% 67.11% 67.16%
Stdev. 4.8 2.8 2.5

CPU time 5m 10m 12m

PCA
Avg. cov. 65.70% 68.48% 68.03%
Stdev. 5.2 3.2 2.8

CPU time 4m 10m 13m

calculation and sensor control which should be performed in all time steps.

Compared to the results produced by the short term methods, all results of the long term
methods are inferior to that of the short term methods. But in general the computational
requirement is much lower compared to the short term prediction methods. Therefore, we can
conclude that long term methods are a feasible solution, when the computational resources are
scarce. Remember this was the original reason we proposed the long term prediction methods
in the first place.

Compared to the fixed sensor results, we observe that for the prediction of five time steps, there
is an improvement over the results of fixed sensors, while in the ten time step prediction time,
the results are equal or worse than the fixed sensor case. Therefore, from our experiments, we
can conclude that when the coverage of the fixed sensors placement is relatively good over the
environment, the long term prediction methods with large prediction steps cannot improve
the coverage of the targets.
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Figure 6.5: The combination of short and long term prediction methods for predicting the
future location of a target.

6.4 Combination of Short and Long Term Prediction Methods

In this approach the prediction of a short term and that of a long term trajectory prediction
methods are overlaid on top of each other. The reason is that the short term prediction
methods are better at predicting the location of the target in the next time step, therefore
they are vital for keeping maximal coverage over targets all the time. On the other hand, the
long term prediction methods better represent the possible paths that the target might take
in the future. Therefore, they can better inform possible candidate sensors to change direction
and get ready to anticipate target trajectories.

In Fig. 6.5, we have presented a possible combination of short and long term prediction
methods. In this figure, target Tj has made three displacements in the environment and
now we are making predictions for its future locations. As mentioned before, the short term
method is used to predict the next location of the target, here we presented the result of the
probabilistic exponential average method for the short term prediction.

The long term method is used for longer prediction steps. Here, the long prediction step
is five. Therefore, the next location is predicted with the short term method and locations
which are 2 to 5 time steps in the future are predicted using the long term methods. In the
presented scenario, target Tj has similarity with four other trajectories, the location of each
is represented with a different icon. As you can see, each similar trajectory predicts a different
trajectory for the future of the trajectory. Depending on the similarity of Tj with each of
the mentioned trajectories, the predicted locations with the long term method have different
weights.

Following the terminology introduced in section 4.2, the probability of target j being at loca-
tion q at time (t+ s) (i.e., P(t+s)

jq ) is given by:
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P(t+s)
jq =

α · PS
(t+1)
jq if s equals 1

(1− α) · PL(t+s)
jq if s is greater than 1

(6.1)

where PS(t+1)
jq is the result of prediction made by the short term prediction method, and

PL(t+s)
jq is the result of long term prediction method. Notice that the sole concatenation of

the two distributions does not produce a probability distribution per se, as each of the short
and long term methods produce a separate distributions. Therefore, each distribution should
be scaled so that the final result sums up to one. The α parameter has the responsibility of
normalizing the whole distribution. Here we used the value of 0.5 for the α parameter, but
notice that different values can be used to put more emphasis one the short term or long term
methods.

As a final experiment, we combined the multimodal and KDE methods. The reason was that
the KDE method produced the best result among the long term prediction methods, and
multimodal was the best among the short term methods (although not statistically better).
The prediction step of the multimodal method is set to one, and for the KDE approach is five.

We have presented the results of the combined method in Table 6.3. We compared the results
with the multimodal approach as it produced the best results among all the methods previ-
ously tested. We can see that the combined method, has improved the performance of the
multimodal approach.

Although in the combined method we have tried to combine the strong points of both short
and long term methods, one should note that the shortcoming of this approach is related to
the computational time. The reason is that for this prediction model, the results of both
prediction methods should be computed and then combined with each other.

This can be another benefit of the long term prediction methods. So far, we have presented the
long term prediction methods as a solution for systems in which the computational demand
is of concern. Here, we observe that the long term prediction methods can be added to the
short term methods to improve their performance.

6.5 Conclusion

In this chapter, we have presented a complete integration of different subsystems we have
proposed in previous chapters. In a completely new environment, we first optimized the
placement of the sensors using the method proposed in chapter 3, based on the sensor model
presented in chapter 2. Next, the performance of different trajectory prediction methods
proposed in chapter 4 was compared in a combination with the sensor control method proposed
in chapter 5.
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Table 6.3: Coverage percentage of the targets for combination of short and long term prediction
methods.

No. of sensors 10 10 10
No. of targets 20 50 80
Simulation time 200 200 200

Multimodal
Avg. cov. 82.88% 82.10% 79.71%
Stdev. 4.5 2.9 2.4

Multimodal + KDE
Avg. cov. 84.08% 83.23% 80.84%
Stdev. 3.2 2.4 2.4

In general we observed that the temporal optimization methods (combination of trajectory
prediction and sensor control) outperformed the static cameras in terms of coverage. This
is a great achievement as it shows that the extra computation needed to perform different
prediction and optimization algorithms will eventually improve the coverage of the network
over the moving targets.

Among the short term prediction methods, the probabilistic methods produced better results
in the context of temporal optimization and coverage over moving targets. This is in contrast
to the results we observed previously, that the non-probabilistic methods performed better
under the expected distance measure. There was not a significant difference between different
probabilistic methods, but the multimodal approach performed slightly better than the other
methods.

As for the long term prediction methods, they were the least computationally demanding
methods. Among the proposed methods, KDE produced better results than the other two
for short prediction time steps. The performance of all methods were equal or inferior to
fixed sensor model for long prediction steps. Therefore we can conclude if the computational
resources are scarce, it is better to use fix sensor model over the adaptive model with long
prediction steps.

As the final step, we observed that the combination of short and long term prediction methods
would produce the best results compared to all other prediction methods. Therefore, the
combination can actually bring the benefits of both approaches into one method.
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Chapter 7

Conclusion

In this thesis, we have presented a probabilistic model for the sensing region of sensors, con-
sidering the effect of obstacles and terrain information using the line-of-sight coverage region.
We also proposed a placement optimization mechanism based on the gradient descent method
to find the best location and direction for sensors in the environment.

In the temporal optimization part we focused on covering the moving targets in the environ-
ment. In this part, we assumed that the location of the sensors has already been optimized
but their direction should be adjusted based on the location of mobile targets. For that, we
proposed several methods to predict the future location of targets using either the history of
displacements of the same target or other targets. Then we used that prediction, and converted
the temporal problem of target coverage into an optimization problem. For this problem we
proposed a heuristic algorithm to optimize the parameters of the sensors so that the network
can keep maximum coverage over the moving targets.

As all the experiments in the thesis were done in simulated environments, one of the main
criteria throughout the thesis was to make realistic assumptions (e.g., coverage region of
sensors, or movement model of targets) about different parts of the system. Besides, one of
the major requirements for the problem tackled in the thesis (coverage of targets) is the real-
time constraints for the approaches proposed to solve it. Therefore, we always tried to keep
the computation time as one of the major performance measures for all the methods proposed
and tested.

This work provides a complete system for the deployment of SNs. The system will make the
work of people interested in the deployment of SNs much simpler, as the performance of a
real system can be evaluated even before a real sensor is put in place. The users can evaluate
the performance of system under different conditions, and see how different decisions (e.g.
algorithms) can affect the final goal of the system.
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7.1 Research Contributions

This thesis deals with the problems of sensor model, sensor placement, trajectory prediction
and sensor control. The main contributions of this thesis in each of the mentioned fields are
categorized as follows.

7.1.1 Sensor Model

Proposed a novel realistic sensing model, relying on probabilistic 3D sensor cov-
erage and line-of-sight visibility. In the first part, we studied the models proposed to
represent the coverage region of a sensor. Most of the proposed sensor models make oversim-
plified assumptions about the coverage region of the sensors with respect to environmental
factors. These approaches cannot deal with environmental factors such as terrain topography,
and usually assume an omnidirectional disk sensing model for each sensor. In fact, under the
assumptions of uniform disk sensing model, it has been shown that optimal coverage can be
deterministically achieved with a regular placement of sensors [10].

Facing this challenge, we follow a more flexible avenue for a realistic modelling of sensing. Our
approach differs from previous methods in the following three ways:

• Most previous schemes only consider 2D environments and ignore the effects of elevation,
whereas our method takes into account the 2.5D terrain information. In our approach,
the environment is defined using a Geographic Information System (GIS), which is an
information system designed to store, manipulate and analyze geographically referenced
data [84].

• Most previous schemes assume omnidirectional sensors, whereas our method allows for
constraints to be applied on sensors, such as limited sensing angles and range.

• Previous schemes implement mainly binary coverage, i.e., a point can only be classified as
covered or uncovered, whereas our method applies probabilistic coverage in both sensing
distance and sensing angle.

In summary, deterministic approaches assume omni-directional sensors with binary coverage
on a flat terrain, while our probabilistic approach assumes directional sensors, for which omni-
directional sensors are a special case, with probabilistic coverage on a realistic spatial model of
the environment. In order to tackle these problems, we develop a novel probabilistic coverage
function for sensor placement that takes into account the above mentioned issues.

The probabilistic approach proposed here for modelling the coverage area of line-of-sight based
sensors, provides a baseline to model the behaviour of other types of devices who make mea-
surements in the environment. In general, using probabilistic reasoning to measure the per-
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formance of sensor can be a huge benefit for the development of sensing technologies, as the
performance of the sensors in simulation and reality would resemble as much as possible.

7.1.2 Placement Problem

Developed a fast and scalable placement optimization algorithm based on gradi-
ent descent method. Once the coverage model of the sensor is defined considering the
mentioned criteria, it is the responsibility of the optimization algorithm to find the placement
of the sensors. Therefore, in the next step, we are proposing to use gradient descent (GD) as
an optimization method for the sensor placement problem. At each step of the algorithm, we
calculate the analytical derivatives of the coverage function with respect to the position and
orientation of each sensor and try to move them in a way that maximizes the overall coverage
of the network.

Unlike previous approaches on sensor placement optimization using the gradient descent
method [27, 72], we use a realistic model for the terrain and a directional probabilistic sensing
model for the coverage of each sensor [5]. We have shown that in addition to its simplicity,
our method can produce results comparable to more sophisticated black box optimization
methods, without the need for large computational resources.

7.1.3 Trajectory Prediction

The final goal of the system is to cover the moving targets in the environment. Therefore,
once the best location for the sensors has been determined in the placement phase, trajectory
prediction aims at guessing the next location of the targets with maximum accuracy. There
are two general approaches for that purpose, namely, short term and long term prediction
methods. In the short term method, only the previous history of each target is used to predict
its future location, while in the long term prediction, the history of other targets is also used
to further increase the prediction horizon for each target.

Proposed a multi-hypothesis probabilistic short term trajectory prediction method.
We have proposed several probabilistic short term prediction methods, and compared their
performance with other methods proposed in the literature. More precisely, we have proposed
the probabilistic exponential average method, the multimodal methods, and also used maxi-
mum likelihood to learn the parameters of the unimodal method. All these methods produced
superior results compared to non probabilistic methods [86, 87, 88].

Derived a similarity function between spatio-temporal instances from Kernel Den-
sity Estimation, and then used it as a long term trajectory prediction method :
As for the long term prediction methods, we have proposed to use the kernel density estima-
tion (KDE) as a similarity measure between trajectories. the proposed model was compared
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with two other commonly used methods, namely PCA [12] and LCSS [77]. Results showed
that although the proposed approach is slightly more expensive in term of computation time,
it outperformed both of the other methods. The strong performance of the method is related
to its probabilistic nature and consideration of the displacement in the similarity function.

Improved the performance of trajectory prediction by combining the short and
long term trajectory prediction methods. As a final approach, we integrated the short
and long term prediction methods to have the benefits of both approaches. For that pur-
pose, we have combined the Multimodal and KDE prediction methods, and observed that the
combination produces superior results compared to individual approaches.

7.1.4 Sensor Control

Proposed a Greedy heuristic approach for sensor control. Finally, to optimize the
sensing parameters of the sensors we have proposed the Greedy Sensor-wise Coverage Opti-
mization (GSCO). The proposed algorithm follows a greedy approach for the optimization
process. For that purpose, an accessible coverage map is defined for each sensor, which deter-
mines all the locations that a sensor can cover at the next time step. Then, for each iteration
of the algorithm, all the locations in the environment are reweighed to give more importance
to the locations which can be covered by less number of sensors. These new weights are used
to optimize the parameters of the sensors using a random search.

Our method has the following advantages over the methods proposed in the literature (e.g.,
[18]):

• Methods from the literature do not consider any limitation on the movement speed
of sensor direction, while in our approach limitation of movement speed is critical in
determining the possible coverage map of each sensor.

• In all other methods, the coverage of sensors over the environment was binary, while it
is a probabilistic coverage in our sensor model.

• Other methods consider only one variable parameter per sensor, and therefore iterate
over all possible directions of the sensors. This approach is not reasonable when a
sensor has two or three variable parameters, as iteration over all possible combinations
is cumbersome.

• Some of the other methods do not work with probabilistic prediction for location of the
targets, while in our problem, the trajectory prediction produces different certainties
for the future location of a target. As a result our algorithm is capable of working in
weighted environment.
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7.2 Future work

In this thesis we covered the sensor network application, mostly in the context of PTZ camera
networks. With the emerge of Internet of Things (IoT), the number of sensors in many devices
connected to each other is increasing. A great potential application of the algorithms proposed
here is to evaluate their performance for the networks consisting of different types of sensors
with different coverage definitions.

In chapter 3 we proposed the GD algorithm for placement of sensors. The proposed placement
approach has implications in other fields. For example, in the observer sitting problem which
is usually addressed in the geomatics community, could be viewed as a special case of the
placement problem we presented here. In both problems the goal is to find the best location
for sensors (observers) so that the combination coverage of them covers certain parts of the
environment.

In chapter 4 the Multimodal method was proposed to predict the trajectories of humans, while
the strong points of this approach is to handle several assumptions at the same time (such
as zig-zag movement). This movement pattern is not usually true for humans, and therefore
the strong advantages of this method were not apparent in the experiments performed in this
thesis. A possible future work is the application of this method for prediction of trajectories
which have zig-zag movement patterns.

In chapter 4 the KDE based similarity function was proposed to measure the similarity between
trajectories. The proposed similarity measure is of great interest beyond the applications
mentioned in this thesis. For example, many applications including (but not limited to)
speech/handwritten/gesture recognition, computer graphics, protein sequence alignment, etc.,
heavily depend on a similarity function between spatio-temporal instances. Therefore, we
believe that besides the mentioned application, the proposed method could have applications
in a great variety of domains.
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Appendix A

Calculation of Derivatives

The following section provides the calculations of the derivations used in the gradient descent
method for the spatial optimization of sensors. This section presents the calculation of the
analytical derivative of the membership functions (µdi, µpi and µti) with respect to the four
free parameters xi, yi, θi and ξi. The following function is introduced to simplify the math
formulations:

dsg(δ, β, α) =
β exp(β(δ + α))

(1 + exp(β(δ + α)))2
= β sig(δ, β, α)[1− sig(δ, β, α)] (A.1)

which corresponds to the derivative of the so-called sigmoid function:

sig(δ, β, α) =
1

1 + exp(β(δ + α))
(A.2)

First, let us develop the derivatives of membership functions with respect to xi and yi, that
is:

∂ [µdi · µpi · µti]
∂xi

=

[
∂µdi
∂xi

· µpi · µti +
∂µpi
∂xi

· µdi · µti +
∂µti
∂xi
· µdi · µpi

]
(A.3)

∂ [µdi · µpi · µti]
∂yi

=

[
∂µdi
∂yi
· µpi · µti +

∂µpi
∂yi
· µdi · µti +

∂µti
∂yi
· µdi · µpi

]
(A.4)

For the term ∂µdi
∂xi

:

φdi = ‖pi − q‖ =
√

(xi − xq)2 + (yi − yq)2, (A.5)

∂µdi
∂φdi

=
−βd exp(−βd(φdi − αd))

(1 + exp(−βd(φdi − αd)))2
= dsg(φdi,−βd,−αd) (A.6)

To obtain the terms ∂µdi
∂xi

and ∂µdi
∂yi

, we can simply use the chain rule by multiplying the term
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∂µdi
∂φdi

with additional terms ∂φdi
∂xi

and ∂φdi
∂yi

, respectively:

∂φdi
∂xi

=
∂
√

(xi − xq)2 + (yi − yq)2

∂xi
=

(xi − xq)√
(xi − xq)2 + (yi − yq)2

=
(xi − xq)
φdi

(A.7)

∂φdi
∂yi

=
∂
√

(xi − xq)2 + (yi − yq)2

∂yi
=

(yi − yq)√
(xi − xq)2 + (yi − yq)2

=
(yi − yq)
φdi

(A.8)

Consequently, the derivatives of the membership function µdi can be calculated as:

∂µdi
∂xi

=
∂µdi
∂φdi

· ∂φdi
∂xi

= dsg(φdi,−βd,−αd) ·
(xi − xq)
φdi

(A.9)

∂µdi
∂yi

=
∂µdi
∂φdi

· ∂φdi
∂yi

= dsg(φdi,−βd,−αd) ·
(yi − yq)
φdi

(A.10)

For the term ∂µpi
∂xi

, we first notice that µpi = µp(φpi) where φpi = ∠p(q− pi)− θi. Therefore,
we have:

∂µpi
∂xi

=
∂µpi
∂φpi

· ∂φpi
∂xi

(A.11)

In the term ∂φpi
∂xi

only the pan angle ∠p(q− pi) is a function of xi and yi:

∠p(q− pi) = arctan

(
yq − yi
xq − xi

)
(A.12)

and, therefore, we have ∂φpi
∂xi

=
∂∠p(q−pi)

∂xi
. The derivative of ∠p(q − pi) with respect to xi is

thus:

∂∠p(q− pi)

∂xi
=
∂∠p(q− pi)

∂
(
yq−yi
xq−xi

) · ∂
(
yq−yi
xq−xi

)
∂xi

=
1(

yq−yi
xq−xi

)2
+ 1
· (yq − yi)

(xq − xi)2
=
yq − yi
φ2
di

(A.13)

Similarly, the derivative of ∠p(q− pi) with respect to yi can be obtained:

∂∠p(q− pi)

∂yi
=
∂∠p(q− pi)

∂
(
yq−yi
xq−xi

) · ∂
(
yq−yi
xq−xi

)
∂yi

= − 1(
yq−yi
xq−xi

)2
+ 1
· 1

(xq − xi)
= −xq − xi

φ2
di

(A.14)

Consequently, we can also develop the terms ∂µpi
∂xi

and ∂µpi
∂yi

as in the following:

∂µpi
∂xi

=
∂µpi
∂φpi

· ∂φpi
∂xi

=
∂
[

1
1+exp(−βp(φpi+αp)) −

1
1+exp(−βp(φpi−αp))

]
∂φpi

· ∂∠p(q− pi)

∂xi

=

[
βp exp (−βp(φpi + αp)))

(1 + exp (−βp(φpi + αp)))2
− βp exp (−βp(φpi − αp)))

(1 + exp (−βp(φpi − αp)))2

]
· yq − yi

φ2
di

= [−dsg(φpi,−βp, αp) + dsg(φpi,−βp,−αp)] ·
yq − yi
φ2
di

(A.15)
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∂µpi
∂yi

=
∂µpi
∂φpi

· ∂φpi
∂yi

=
∂
[

1
1+exp(−βp(φpi+αp)) −

1
1+exp(−βp(φpi−αp))

]
∂φpi

· ∂∠p(q− pi)

∂yi

=

[
βp exp (−βp(φpi + αp)))

(1 + exp (−βp(φpi + αp)))2
− βp exp (−βp(φpi − αp)))

(1 + exp (−βp(φpi − αp)))2

]
· xi − xq

φ2
di

= [−dsg(φpi,−βp, αp) + dsg(φpi,−βp,−αp)] ·
xi − xq
φ2
di

(A.16)

For the term ∂µti
∂xi

, we have µti = µt(φti) where φti = ∠t(q− pi)− ξi:

∂µti
∂xi

=
∂µti
∂φti

· ∂φti
∂xi

(A.17)

In the term ∂φti
∂xi

, only the tilt angle ∠t(q−pi) is a function of xi and yi (indirectly through pi):

∠t(q− pi) = arctan

(
zq − zi
‖pi − q‖

)
= arctan

(
zq − zi
φdi

)
(A.18)

and, therefore, we have ∂φti
∂xi

= ∂∠t(q−pi)
∂xi

. If we do the calculation for ∂∠t(q−pi)
∂xi

, we have:

∂∠t(q− pi)

∂xi
=
∂∠t(q− pi)

∂
(
zq−zi
φdi

) · ∂
(
zq−zi
φdi

)
∂φdi

· ∂φdi
∂xi

=
1

1 +
(
zq−zi
φdi

)2 ·
zi − zq
φ2
di

· xi − xq
φdi

(A.19)

similarly:

∂∠t(q− pi)

∂yi
=
∂∠t(q− pi)

∂
(
zq−zi
φdi

) · ∂
(
zq−zi
φdi

)
∂φdi

· ∂φdi
∂yi

=
1

1 +
(
zq−zi
φdi

)2 ·
zi − zq
φ2
di

· yi − yq
φdi

(A.20)

and therefore:

∂µti
∂xi

=
∂µti
∂φti

· ∂φti
∂xi

=
∂
[

1
1+exp(−βt(φti+αt)) −

1
1+exp(−βt(φti−αt))

]
∂φti

· ∂∠t(q− pi)

∂xi

=

[
βt exp (−βt(φti + αt)))

(1 + exp (−βt(φti + αt)))2
− βt exp (−βt(φti − αt)))

(1 + exp (−βt(φti − αt)))2

]
· 1

1 +
(
zq−zi
φdi

)2 ·
zi − zq
φ2
di

· xi − xq
φdi

= [dsg(φti,−βt,−αt)− dsg(φti,−βt, αt)] ·
(zi − zq)(xi − xq)

φdi[φ
2
di + (zi − zq)2]

(A.21)

also, we have:

∂µti
∂yi

=
∂µti
∂φti

· ∂φti
∂yi

=
∂
[

1
1+exp(−βt(φti+αt)) −

1
1+exp(−βt(φti−αt))

]
∂φti

· ∂∠t(q− pi)

∂yi

=

[
βp exp (−βt(φti + αt)))

(1 + exp (−βt(φti + αt)))2
− βt exp (−βt(φti − αt)))

(1 + exp (−βt(φti − αt)))2

]
· 1

1 +
(
zq−zi
φdi

)2 ·
zi − zq
φ2
di

· yi − yq
φdi

= [dsg(φti,−βt,−αt)− dsg(φti,−βt, αt)] ·
(zi − zq)(yi − yq)

φdi[φ
2
di + (zi − zq)2]

(A.22)
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By substituting Equations (A.9), (A.15) and (A.21) in Equation (A.3), we obtain the analytical
derivative for the x position of sensor si to the position q in the environment. The derivative
to the y position can be calculated in the same way, substituting Equations (A.10), (A.16)
and (A.22) in Equation (A.4).

Let us now develop the derivatives of membership functions with respect to θi:

∂ [µdi · µpi · µti]
∂θi

=

[
∂µdi
∂θi
· µpi · µti +

∂µpi
∂θi
· µdi · µti +

∂µti
∂θi
· µdi · µpi

]
(A.23)

For the term ∂µdi
∂θi

, the change of θi will not affect the membership functions µdi and µti, hence:

∂µdi
∂θi

=
∂µti
∂θi

= 0 (A.24)

For the term ∂µpi
∂θi

:

∂µpi
∂θi

=
∂µpi
∂φpi

· ∂φpi
∂θi

∂µpi
∂xi

=
∂
[

1
1+exp(−βp(φpi+αp)) −

1
1+exp(−βp(φpi−αp))

]
∂φpi

· (−1)

= −

[
βp exp (−βp(φpi + αp)))

(1 + exp (−βp(φpi + αp)))2
− βp exp (−βp(φpi − αp)))

(1 + exp (−βp(φpi − αp)))2

]
= dsg(φpi,−βp, αp)− dsg(φpi,−βp,−αp) (A.25)

By substituting Equations (A.24) and (A.25) in Equation (A.23), we obtain the analytical
derivative for pan orientation of sensor si to the position q in the environment.

Now, the developments of the derivatives of membership functions with respect to ξi:

∂ [µdi · µpi · µti]
∂ξi

=

[
∂µdi
∂ξi
· µpi · µti +

∂µpi
∂ξi
· µdi · µti +

∂µti
∂ξi
· µdi · µpi

]
(A.26)

For the term ∂µdi
∂ξi

, the change of ξi will not affect the membership functions µdi, and µpi.
Hence:

∂µdi
∂ξi

=
∂µpi
∂ξi

= 0 (A.27)

As for the term ∂µti
∂ξi

:

∂µti
∂ξi

=
∂µti
∂φti

· ∂φti
∂ξi

=
∂
[

1
1+exp(−βt(φti+αt)) −

1
1+exp(−βt(φti−αt))

]
∂φti

· (−1)

= −

[
βp exp (−βt(φti + αt)))

(1 + exp (−βt(φti + αt)))2
− βt exp (−βt(φti − αt)))

(1 + exp (−βt(φti − αt)))2

]
= dsg(φti,−βt, αt)− dsg(φti,−βt,−αt) (A.28)
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By substituting Equations (A.27) and (A.28) in Equation (A.26), we obtain the analytical
derivative for the tilt orientation of sensor si to the position q in the environment.
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List of Publications

B.1 Journal

• V. Akbarzadeh, C. Gagné, M. Parizeau, M. Argany, M.A. Mostafavi, "Probabilistic
Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage,"
IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 2, pp. 293-303,
Feb. 2013.

• V. Akbarzadeh, J.-C. Lévesque, C. Gagné, and M. Parizeau, "Efficient Sensor Placement
Optimization Using Gradient Descent and Probabilistic Coverage," Sensors, vol. 14, no.
8, pp. 15525-15552, Aug. 2014.

B.2 Conference

• V. Akbarzadeh, A. Ko, C. Gagné, M. Parizeau, "Topography-aware sensor deployment
optimization with CMA-ES." Parallel Problem Solving from Nature, PPSN XI, pp. 141-
150, 2010.

• V. Akbarzadeh, C. Gagné, M. Parizeau, M.A. Mostafavi, "Black-box optimization of
sensor placement with elevation maps and probabilistic sensing models," IEEE Interna-
tional Symposium on Robotic and Sensors Environments (ROSE), pp. 89-94, 2011.

• V. Akbarzadeh, C. Gagné, M. Parizeau, "Target Trajectory Prediction in PTZ Camera
Networks," IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 816-822, 2013.

• V. Akbarzadeh, C. Gagné, M. Parizeau, "Kernel Density Estimation for Target Trajec-
tory Prediction," IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015.
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